CONSTRAINT SATISFACTION ADAPTIVE NEURAL
NETWORK AND EFFICIENT HEURISTICS FOR
JOB-SHOP SCHEDULING

Shengxiang Yang *!

Dingwei Wang *

*P. O. Box 135, Department of Systems Engineering, School of
Information Science & Engineering, Northeastern University,
Shenyang 110006, P. R. China

Abstract: An efficient constraint satisfaction based adaptive neural network and
heuristics hybrid approach for job-shop scheduling is presented. The adaptive neural
network has the property of adaptively adjusting its connection weights and biases
of neural units according to the sequence and resource constraints of job-shop
scheduling problem while solving feasible solution. Two heuristics are used in the
hybrid approach: one is used to accelerate the solving process of neural network
and guarantee its convergence, the other is used to obtain non-delay schedule from
solved feasible solution by neural network. Computer simulations have shown that
the proposed hybrid approach is of high speed and excellent efficiency.

Copyright ©1999 IFAC

Keywords: Job-shop Scheduling, Constraint Satisfaction, Neural Networks,

Heuristics

1. INTRODUCTION

Generally job-shop scheduling problems can be
stated as follows (Conway et al., 1967): given n
jobs that have to be processed on m machines
in a prescribed order under certain restrictive
assumptions, the objective of job-shop schedul-
ing is to decide how to arrange the processing
orders and starting times of operations sharing
the same machine for each machine, in order
to optimize certain criteria, e.g., minimize the
makespan. Generally, job-shop scheduling belongs
to the large class of NP-complete problems. It is
very hard to find its optimal solution. An NP-
complete problem exhibits an exponential growth
in the computation time as the size of the problem
increases linearly. Researchers turned to search its

1 Supported by the National Nature Science Foundation
(No. 69684005) and National High-Tech Program (No. 863-
511-9609-003) of P. R. China.

near-optimal solutions to meet practical need with
all kind of heuristic algorithms (French, 1982).

Ever since Foo and Takefuji (Foo and Take-
fuji, 19884a; Foo and Takefuji, 1988b) first used
neural network to solve job-shop scheduling prob-
lem, several neural network architectures have
been presented to solve job-shop scheduling prob-
lem, for details see (Zhou et al., 1989; Willems
and Brandts, 1995). All above mentioned neural
networks are basely non-adaptive networks with
the connection weights and biases prescribed in
advance before the networks begin to work.

An efficient constraint satisfaction adaptive neural
network (CSANN) and heuristics hybrid approach
for job-shop scheduling is proposed in this paper.
CSANN has the property of easily mapping the
constraints of scheduling problem into its archi-
tecture. Meanwhile CSANN has the property of
adaptively adjusting its weights of connections
and biases of neural units according to the ac-
tual situation of constraint violations during its

processing to remove these violations for obtain-
ing feasible solutions. Thus CSANN is constraint
satisfaction based and adaptive. The adaptive
property of CSANN makes it different from other
neural network for job-shop scheduling problems
and results in a simpler network architecture. In
the proposed hybrid approach, CSANN is used to
obtain feasible solutions, one of two heuristics is
used to accelerate the solving process of CSANN
and guarantee obtaining feasible solutions, the
other is used to obtain non-delay solution from
feasible solution solved by CSANN. The computer
simulations have shown that the proposed hybrid
approach has good performance as to the quality
of solutions and the solving speed.

2. FORMULATION OF JOB-SHOP
SCHEDULING PROBLEM

Generally for job-shop scheduling problem there
are two types of constraints: sequence constraint
and resource constraint. The first type states that
two operations of a job cannot be processed at
the same time. The second states that no more
than one job can be performed on one machine
at the same time. Job-shop scheduling can be
viewed as an optimization problem, bounded by
both sequence and resource constraints.

Denote N = {1,---,n} and M = {1,---,m},
where n and m are the numbers of jobs and
machines. Let n; be the operation number of job
i. Ojkq represents operation k of job ¢ on machine
g, Sikq and T, represent the starting time and
processing time (which is known in advance) of
Oikg,> Sieiq and Tje;q represent the starting time
and processing time of the last operation of job 4
respectively. Denote r; and d; as the release date
(earliest starting time) and due date (latest ending
time) of job i. Let P; denote the set of operation
pairs [Oikp,0i14] With precedence restriction of job
i, where operation O;;, must precede operation
Oiig- Let R, be the set of operations O;p, that
will be processed on machine q.

Taking minimizing the makespan as the criterion,
the mathematical programming formulation of
the considered job-shop scheduling problem is
presented as follows:
Minimize E = mazien(Sie;q + Tieiq)
subject to
Silq - Sikp Z Tikp; (1)
[Oikp; Oilq] € Pi; kal € {17 o 'Jni}
Sijtq — Sikg = Tikg or Sikg — Sjig > Tjig, 2)
Oikq,Oﬂq € Rq, i,j € N, qe M

ri < Sijq < di — Tijq, 3)
i €N, jE{l,"',’l’Li}, geM

Fig. 1. General neural unit model

where the cost function is the ending time of the
latest operation, i.e. maximal complete time of
job-shop scheduling problem. Equation (1) repre-
sents the sequence constraint; Equation (2), in a
disjunctive type, represents resource constraints;
Equation (3) represents the release date and due
date constraints.

3. MODEL OF CONSTRAINT
SATISFACTION ADAPTIVE NEURAL
NETWORK

3.1 Neural units of CSANN

Generally neural unit consists of two parts: a lin-
ear summator and a nonlinear activation function
which are serialized (see Fig. 1). The summator
of unit 4 receives all activations A;(j = 1,---,n)
from connected units and sums the received ac-
tivations, weighted with connection weight Wj;,
together with a bias B;. The output of summator
is the net input NV;, this net input N; is passed
through an activation function f(.), resulting in
the activation A; of unit 4. The summator and
the activation function are defined as follows:

A= f(N3) = FOQ_(Wij x 45) + Bi) (4)

Jj=1

where W;; is the connection weight from unit j to
unit 4.

Based on the general neural unit, CSANN con-
tains three kinds of units: ST-units, SC-units and
RC-units. The first kind of units represent the
starting times of all operations. Each ST-unit
represents one operation of job-shop scheduling
problem with its activation representing the start-
ing time of the operation. The second represent
whether the sequence constraints are violated.
The third represent whether the resource con-
straints are violated.

The net input of a ST-unit ST; is calculated by

NST,- (t) = Z(Wz] X ASCj (t))+

> (Wi x Arc, (1)) + Asz; (£ — 1) ®)
P

where the net input of unit ST; is summed
from three parts. The first part comes from the
weighted activations of SC-units connected with
ST;, which implements feedback adjustments be-
cause of sequence violations. The second part
comes from the weighted activations of RC-units
connected with ST;, implementing feedback ad-
justments because of resource violations. The
third part comes from the previous activation,
with weight being +1, of unit ST; itself.

The activation function of ST-units is a determin-
istic linear-segmented function as follows.

r;, Ns, (t) <7r;
NSTi (t)>

r; < Nor,(t) < di — Tst, (6)
d; — Tsry,

Nsr,(t) > d; — Tst;

Ast,(t) =

where r; and d; are the release date and due date
of job i to which the operation, corresponding
to unit ST, belongs. Tgr, is the processing time
of the operation corresponding to unit S7;. This
activation function implements the release date
and due date constraints described by equation

3).

The SC-units receive the incoming weighted acti-
vations from the connected ST-units, representing
operations of the same job. The RC-units receive
the incoming weighted activations from the con-
nected ST-units, representing operations to be
processed on the same machine. The net input
of a SC-unit or RC-unit has the same definition
form as follows:

Ne,(t) = > (Wi x Ast; (t)) + Be, (7)

J

where C; equals SC; or RC;, and B¢, is the
bias of neural unit SC; or unit RC;. The bias
B, is added to the incoming weighted activations
of the connected ST-units ST}’s and equals the
processing time of a relative operation, formulated
in this equation.

The activation function of a SC-unit or a RC-unit
is a deterministic linear-segment function, defined
as follows.

(o, N¢,(t) >0
Ac,(t) = { —Ne, (8), Ng,- <o ©

The activation of a SC-unit or RC-unit being
greater than zero means the corresponding se-
quence constraint or resource constraint is vio-
lated and there are feedback adjustments from
this SC-unit or RC-unit to connected ST-units
through adaptive weighted connections.

Isty,

Fig. 2. SC-block unit

Fig. 3. RC-block Unit

3.2 Adaptive weights and biases

All units of CSANN are connected according to
the two kinds of sequence and resource constraints
of specific job-shop scheduling problem, result-
ing in two blocks: SC-block (sequence constraints
block) and RC-block (resource constraints block).
Each unit of SC-block contains two ST-units,
responding to two operations of a job, and one
SC-unit, representing whether the sequence con-
straint between these two operations is satisfied
(see Fig.2). Each unit of RC-block contains two
ST-units, responding to two operations sharing
the same machine, and one RC-unit, representing
whether the resource constraint between these two
operations is satisfied (see Fig.3).

Fig. 2 presents an example of SC-block unit,
denoted by SCBjj. ST-units STy, and STy,
represent two operations O, and Oyq of job i.
Their activations Ast;,, and AsT;,, represent the
starting times Sjz, and Siq of Ojkp and Ojiq. The
SC-unit SCj; represents whether the sequence
constraint of equation (1) between O, and Oy,
is violated, with Bgc;,, being its bias. The weights
and bias are valued as follows:

Wi=-=1, Wo=1, Wy =-W, W, =W,
Bscikl = _Tikp

9)

where W is a positive feedback adjustment param-
eter (the same with following equations where W
appears).

If violation exists at time ¢, Nsc,,, (t) = AsT,, (t)—
Asty,, (t) — Tigp < 0, the activation of SCi is
calculated by

ASCikl (t) = AST,-Mp (t) + Tirp

= Dikp (t) + Tikp -

— Asty, (t)

ite 10
Saaty 10
and the feedback adjustments from SCjy; to STikp
and STy, are shown as follows:

Sikp(t +1) = Sigp(t) = W x Ascy,, (t) (11)
Silq(t +]-) = Silq(t) +W x ASCikl(t) (12)

From the above equations we can see the feedback
adjustments from unit SCj; puts back the start-
ing time Sy of operation Oy in time axis, while
putting forward S;4 of Oy,. Thus the sequence
violation between O;xp and Oy can be removed.

Fig. 3 presents an example of RC-block unit,
denoted by RCBy;iji, representing the resource
constraint between Ojr, and Oj, on machine
q. At time t during the processing of network,
the weights and bias are adaptively valued as
following two cases show.

Case 1: If S (t) < Sjie(t), equation (13) holds

Ws=-1, Weg=1, Wo =-W, Wg =W,
(13)
BRqukjl = —Tirq
In this case RC By represents a sequence con-
straint described by the first disjunctive equation
of equation (2). If violation exists, the activation
of RCyirji and the feedback adjustments from
RCyirji to STipq and STy, are calculated by

ARqukjl (t) = AST (t) + Tz’kq - AST]-
= qu() + Tikq - Sjlq (t)
S,'kq(t +1)= Sikq (t) — W x ARqukjl () (15)

Sjlq(t +]‘) = Sjlq(t) + W x ARquka (t) (16)

Case 2: If Sy (t) > Sjie(t), equation (17) holds

W5:1, W6:+1, W7:W, WgZ—W,

(17)

BRquka = —Tjq

In this case RC By, represents a sequence con-

straint described by the second disjunctive equa-

tion of equation (2). If there exists violation, the

activation of RCy;,; and the feedback adjust-
ments are calculated by

ARquk]l (t) AST]lq () + T
jlg (t + Tqu qu (t)

Sikg(t +1) = Sikq(t) + W X Agc,a;i (t) (19)
Sjlq (t +) qu (t) W x ARqukjl (t) (20)

lq (t) (14)

ASqu() (18)

4. HEURISTICS AND HYBRID APPROACH
4.1 Heuristics

Two heuristics are used as improvement tool of
CSANN for job-shop scheduling problems. One is
used to accelerate the solving process of CSANN
and guarantee feasible solutions, the other is used
to obtain non-delay schedule from feasible solu-
tion obtained by CSANN.

Heuristics 1: Exchange the orders of two near
operations. This heuristics has two folds of func-
tion: to accelerate the solving process and to guar-
antee feasible solution. The former is for two near
operations coming from the same job, while the
latter is for two near operations sharing the same
machine.

On the one hand, assuming [Ojkp, Ouq] € Pi. In
order to accelerate the solving speed of CSANN,
at time ¢ during its processing, if Sirp(t) > Siq(t),
exchange the orders of O;ip and Oy by exchang-
ing their starting times as follows:

Sikp(t +1) = Sig(t), Sug(t+1) = Sikp(t)(21)
In fact equation (21) is a more direct method of

removing sequence violation than that of the feed-

back adjustment of CSANN. Thus the adjustment

time from removing sequence violations may be

shortened and the solving process of CSANN for

feasible solution is accelerated.

On the other hand, during the processing of
CSANN there may appear the phenomenon of
”dead lock” which can result in no feasible so-
lution. In order to remove "dead lock”, we use
the following heuristic: exchange the orders of
two near operations sharing the same machine by
exchanging their starting times.

Assuming O and O;54 € Ry, during the pro-
cessing of CSANN, if Tk, () > T, the following
equation begins to work:

Sikq t+1)= Sjlq (), Sjlq(t +1) = Sikq (t)(22)
where variable Ty;xji (t) is the summed times that
operation pairs O, and Oj;, have their starting
times continuously changed, keeping the same
adjusting effects, at time ¢ ever since the previous
zero-reset because of resource conflict on machine
q during the processing of CSANN. The parameter
T is a prescribed positive integer.

The above heuristic can be used together with
CSANN to guarantee the feasible solution. The
phenomenon of ”Dead lock” results from the
conflicts of feedback adjustments while removing
sequence and resource constraint violations. For
example, assuming [Oixp, Oiug] € P; and Oy,
Ojmqg € Ry. During the processing of CSANN, the

SC-unit SCj; may put forward the starting time
Siiq of operation Oy, along the positive direction
of time axis through feedback adjustment because
of sequence violation, while the RC-unit RCy1jm
may put back Sj, through feedback adjustment
because of resource violation. Thus there may
exist conflicts resulting from this two kinds of
adjustments which result in ”"dead lock”. ”Dead
lock” results in the nonconvergence of CSANN
to its stable station, which corresponds to the
feasible solution of specific job-shop scheduling
problem. By using proposed heuristic, when the
phenomenon of ”dead lock” happens and S;;, has
been continuously put back T times because of
resource violation between O, and Ojpg, that
is, at time ¢ Ti;5j (t) reaches T, the starting time
Sitq of Oj4 may be exchanged with Sjpq of Ojmg-
Thus ”dead lock” can be effectively avoided and
feasible solution is guaranteed.

Heuristics 2: Obtain non-delay schedule from
feasible solution solved by CSANN. A schedule
is non-delay if no machine lies idle when there is
at least one job waiting to be operated on that
machine (French, 1982). A non-delay schedule is
a local optimal schedule with orders of opera-
tions to be operated on each machine already
determined. A schedule is active if no operation
can be started earlier without delaying another
operation or violating the sequence constraints. It
is evident that an optimal schedule is an active
one. The set of non-delay schedules is a proper
subset of the active ones. CSANN can obtain fea-
sible solution quickly, but there may be many idle
times for each machine with operations available
to be operated. Obviously these idle times heavily
degrade the quality of feasible schedule and should
be compacted away in order to shorten makespan
or improve the quality of schedule. The detailed
heuristics is as follow.

Assuming a feasible solution {Sikp,4 € N,k €
{1,...,n;},p € M} has been obtained by CSANN.
Sort them in non-decreasing order. Then from the
minimal to the maximal, each S, is adjusted as
follows:

Sijp + Tijp,

G Siip + Tijp 2 Sitk—1)q + Titk—1)q (23)

S =
tkp Sitk—1)q T Titk—1)q>
Stjp + Tijp < Sitk—1)q + Ti(k-1)q

where S;.kp is the starting time of Ojp in the
obtained non-delay schedule after the heuristics is
run. Ojx_1), is the precedence operation of O,
from the same job ¢, and Oyjp is the precedence
operation of O;p sharing the same machine p.
Equation (23) means to shorten each starting
time Sik, to the completion time of O;_1), or
the completion time of Oy;,. The adjustments of
all starting times are dynamic, ¢.e., the starting

time of previous operation that has been adjusted
works while adjusting the latter operations. For
example, supposing that S;;, has been adjusted

]

into S;;,,, when computing S;.(k +1)q of operation

Oi(k+1)q Which is just next to Ojxp of the same
job 4, S;kp is used in equation (23) instead of Sjy,.
Thus each operation needs once and only once
adjustment to obtain non-delay schedule. With
heuristics 2 used, the optimal schedule may be
achieved when obtained non-delay schedule fall
into the optimal set.

4.2 Main steps of hybrid approach

The main steps of hybrid Approach are as follows:

Step 1: Build up CSANN model, set parame-
ter values for T' and W, prescribe the expected
makespan;

Step 2: Randomly or by hand initialize the start-
ing time S;p(0) for each operation Ojxp as the
initial net input Ist;,, of each ST-unit STp;

Step 3: Run each SC-unit SC; of SC-block, cal-
culate its activation with equation (10). Asc,,, (t) #
0 means the dissatisfaction of sequence constraint,
then adjust activations of relative ST-units with
equations (11, 12) or with equations (21) under
the condition of heuristic 1;

Step 4: Run each RC-unit RCyxj; of RC-block,
calculate its activation with equation (14) or (18).
ARC i (1) # 0 means the dissatisfaction of re-
source constraint corresponding to equation (2).
Then adjust Sike(t + 1) and Sj,(t + 1) with
equations (15, 16) or equations (19, 20), or with
equations (22) under the condition of heuristic 1;

Step 5: Repeat step 3 and step 4 until all units
are in stable states without changes, which means
that all the sequence and resource constraints are
satisfied and the feasible solution is obtained.

Step 6: If heuristics 2 is not used, stop now;
Otherwise, use equation (23) to obtain non-delay
schedule. When the non-delay schedule is ob-
tained, stop the program.

In the practical process of hybrid strategy, ex-
pected makespan is usually used as the due dates
of all jobs, which maybe a number greater than
the minimal makespan of solved problem.

5. SIMULATION STUDY

Example: Table 5 presents a 6/6/J/C\nqp prob-
lem, where (M,T) represents the relevant opera-
tion will be processed on machine M with process-
ing time being T'. And the sequence constraints of

Table 1 An example of 6/6/J/Ciyq problem

Operation No. 1 2 3 4 5 6
Job 1 3,1 1,3 26 4,7 6,3 5,6
Job 2 28 35 5,10 6,10 1,10 44
Job 3 30 44 6,8 1,9 2,1 5,7
Job 4 25 1,5 3,5 4,3 5,8 6,9
Job 5 39 23 55 6,4 1,3 4,1
Job 6 2,3 43 6,9 1,10 54 3,1

Table 2 Simulation results by hybrid approach

Expected Initial Makespan Runtime
makespan starting (E) (Seconds)
times Ave/Min/Max Ave/Min/Max
200 0 76 1
200 Random 76/60/94 0.17/0/1
100 0 69 1
100 Random 75/60/93 0.21/0/1
58 0 56 30
58 Random 57/55/58 6.6/1/44

all jobs are the same: from operation 1 to oper-
ation 6 orderly. This example has the optimum,
i.e. minimal makespan, of 55.

The simulations are completed on a Pentium
586/133 PC and under VC++ development en-
vironment. In the simulations before the hybrid
approach begins to run scheduler can prescribe
an expected makespan, which can be used as the
common due date for all jobs. The simulations are
finished with expected makespan prescribed to be
200 (big enough for feasible solution, greater than
the sum of processing times of all operations, 197),
100 (appropriate value) and 58 (near-optimal
value) respectively. For each expected makespan,
100 experiments are carried out, of which the first
one is executed under zero initial condition with
initial starting times of all operations set to zero,
the other 99 experiments are carried out with
initial starting times of all operations valued in
a randomly uniform distribution between [0,100].
For all experiments, the parameters are valued as
follows: T = 5, W = 0.5 and X = 5, and the
release dates for all jobs are set to zero.

Table 2 shows the simulation results with respect
to average, minimum and maximum of obtained
makespans and program run times for each pre-
scribed expected makespan respectively. In table
2 the run time being zero means that it is less
than one zero. Fig.4 shows the Gantt chart of an
obtained optimal solution, where (i, j) means the
relative operation is the jth operation of job i.

6. CONCLUSIONS

Simulations show that the proposed hybrid ap-
proach for job-shop scheduling problems has very
good performance with respect to the quality of
solution and the speed of calculation. From ta-
ble 2 and Fig.4 we can see: Given zero initial
solution, hybrid approach can find good or near-

wi| 2 23361 T 25 b3
vz [2T TETBT 353 [

, 6|j6
v [BeAl [2:2] 5.1 [4.3] 56
i 63 (26]]

M5 [23] [53]367] 45 [65[16]

M6 [33][63 [24 [543 46]
IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|
0 5 10 15 20 25 30 35 40 45 50 55

Runtime: 9 Seconds Makspan: 55

Fig. 4. An optimal solution

optimal schedules for different expected makespan
restriction; Given appropriate expected makespan
restriction, hybrid approach can always find good,
near-optimal or optimal schedules; The solving
speed of hybrid approach is very high.

While the proposed hybrid approach is used for
solving practical job-shop scheduling problems,
we can run the hybrid approach to solve the
practical problem several times, e.g. 10 times,
with appropriate expected makespan restriction.
Then obtain the solution with shortest makespan.
Usually the obtained best solution is a near-
optimal or optimal solution of the problem. Thus
we can use it as practical schedule.

7. REFERENCES

Conway, R. W., W.L. Maxwell and L.W. Miller
(1967). Theory of Scheduling. Reading, MA:
Addison-Wesley.

Foo, S. Y. and Y. Takefuji (19884). Neural net-
works for solving job-shop scheduling: Part 1.
problem representation. Proc. IEEE IJCNN
TI, 275-282.

Foo,S.Y. and Y. Takefuji (1988b). Stochastic neu-
ral networks for solving job-shop scheduling;:
Part 2. architecture and simulations. Proc.
IEEE IJCNN 11, 283-290.

French, S. (1982). Sequencing and scheduling: an
introduction to the mathematics of the job-
shop. New York: Wiley.

Willems, T. M. and L. E. M. W. Brandts (1995).
Implementing heuristics as an optimization
criterion in neural networks for job-shop
scheduling. Journal of Intelligent Manufac-
turing 6, 377-387.

Zhou, D. N.; V. Charkassky, T. R. Baldwin and
D. W. Hong (1989). Scaling neural network
for job-shop scheduling. Proc. IEEE IJCNN
3, 889-894.

