
Proceedings of the Fourth Workshop on

Evolutionary Algorithms for
Dynamic Optimization Problems

(EvoDOP-2005)

held in conjunction with the

2005 Genetic and Evolutionary

Computation Conference

(GECCO-2005)

26 June 2005, Washington DC, USA

edited by

Shengxiang Yang, University of Leicester, United Kingdom

Jürgen Branke, University of Karlsruhe, Germany

Evolutionary Algorithms for Dynamic Optimization
Problems: Workshop Preface

Shengxiang Yang
Department of Computer Science

University of Leicester
University Road, Leicester LE1 7RH, U.K.

s.yang@mcs.le.ac.uk

Jürgen Branke
Institute AIFB

University of Karlsruhe
76128 Karlsruhe, Germany

branke@aifb.uni-karlsruhe.de

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Algorithms

General Terms: Algorithms

Keywords
Evolutionary algorithms, dynamic optimization problems

1. INTRODUCTION
Evolutionary algorithms (EAs) have been widely applied

to solve stationary optimization problems. However, many
real-world optimization problems are actually dynamic. For
example, new jobs are to be added to the schedule, the qual-
ity of the raw material may be changing, and new orders
have to be included into the vehicle routing problem etc.
In such cases, when the problem changes over the course of
the optimization, the purpose of the optimization algorithm
changes from finding an optimal solution to being able to
continuously track the movement of the optimum over time.
This seriously challenges traditional EAs since they cannot
adapt well to the changing environment once converged.

However, since in a sense natural evolution is a process
of continuous adaptation and evolutionary algorithms are
inspired from principles of natural evolution (e.g., selection
and variation), it seems straightforward to consider evolu-
tionary algorithms with proper enhancement as appropriate
candidates for dynamic optimization problems (DOPs).

In recent years, there has been a growing interest in study-
ing EAs for dynamic problems since many real world prob-
lems are known to be dynamic [1]. And the number of papers
published in this area is rising continuously (see e.g. the on-
line repository on the topic [8]). Most of these publications
can be grouped into one of the following basic categories [4]:

• Identify the occourence of a change in the environment
and then deliberately increase diversity in the popula-
tion, e.g. by means of increased mutation [5, 11];

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

• Try to avoid convergence all the time, e.g. by includ-
ing new random individuals in the population in every
generation [7, 15];

• Supply the EA with a memory, e.g. by using diploidy
[6, 9, 10, 12] or an explicit memory [2, 13, 16], so
that the EA can recall useful information from past
generations;

• Using multiple populations to cover several promising
areas of the search space simultaneously [3, 14].

The purpose of the workshop is to foster interest in the
important subject of evolutionary algorithms for dynamic
optimization problems, get together the researchers working
on the topic, provide an overview on the field, and discuss
recent trends and future directions in the area.

The EvoDOP-2005 workshop, held as a part of GECCO-
2005, is the fourth of a successful series of bi-annual work-
shops on “Evolutionary Algorithms for Dynamic Optimiza-
tion Problems”. The past three EvoDOP workshops have
been held at GECCO-1999, GECCO-2001, and GECCO-
2003 respectively with 60-100 participants each.

2. EVODOP-2005 PROGRAM
For the EvoODP-2005 workshop, six papers of high qual-

ity have been accepted for presentation. Younes et al. pro-
pose a method for constructing general benchmark dynamic
combinatorial optimization problems, which is an important
topic for performance comparisons of EAs. Rand and Riolo
describe a set of measures to examine the behaviour of ge-
netic algorithms (GAs) in dynamic environments and use
these measures to examine the GA behaviour with a dy-
namic test suite, called the shaky ladder hyperplane-defined

functions. Bosman tangles the time-linkage problem (i.e.,
decisions taken now may influence the score in the future)
and shows how such time-linkage can deceive an optimizer.
A means of predicting the future by learning from the past
is proposed and formalized in an algorithmic framework to
address the time-linkage problem. Boumaza studies the re-
lationship between the dynamics of the environment and the
self-adaptation of the mutation steps of evolutionary strate-
gies and shows through experimentation that the nature
of the movements of the optimum is reflected in the self-
adaptive mutation step. The paper by Dudy et al. presents
a study on inverse robust evolutionary design in the pres-
ence of uncertainty based on the concept of multi-objective
optimization. For complex real-world problems, small pop-
ulations for EAs are very desirable due to computational

cost. However, small population can dramatically reduce
the performance of EAs. Jin et al. suggest a method to find
the optimal search accuracy for evolutionary strategies with
a small population1.

The workshop concludes with a panel discussion of rele-
vant topics, as shown below.

3. TOPICS FOR DISCUSSIONS
The EvoODP-2005 workshop is open to all registered at-

tendees of the GECCO-2005 conference. We are open for
topics that should be discussed during the panel discussion.
Some preliminary topics for discussion are listed as follows:

• What constitutes a good benchmark DOP?

• What factors contribute to the difficulty of EAs for
dynamic optimization problems?

• How should one measure “adaptability”?

• What makes a DOP different from a static problem?

• What is the difference between a dynamic optimization
problem and a control problem?

• What are the deficits of current approaches?

• What properties should one pursue when analysing
EAs for dynamic optimization problems?

• What tools are available to analyse EAs for DOPs?

The topics discussed in EvoDOP-2005 will surely lead to
interesting future directions for evolutionary algorithms for
dynamic optimization problems.

4. PROGRAMME COMMITTEE
The programme committee for the EvoDOP-2005 work-

shop reviewed the papers and will also lead the panel dis-
cussion into interesting future directions for evolutionary al-
gorithms for dynamic optimization problems.

• Shengxiang Yang (Co-chair, Univ. of Leicester, UK)

• Jürgen Branke (Co-chair, Univ. of Karlsruhe, Germany)

• Hussein A. Abbass (University of New South Wales,
Australia)

• Tim Blackwell (University College London, UK)

• Ernesto Costa (University of Coimbra, Portugal)

• Kenneth A. De Jong (George Mason University, USA)

• Daniel Merkle (University of Karlsruhe, Germany)

• Ron Morrison (Mitretek Systems, Inc., USA)

• William Rand (University of Michigan, USA)

• Karsten Weicker (University of Stuttgart, Germany)

• Sima Uyar (Istanbul Technical University, Turkey)

We would like to thank all who have helped making the
workshop a success, especially the programme committee
members, and wish all participants enjoy the workshop.
1On the request of the authors, the work by Jin et al. will
be presented at EvoDOP-2005 and included in the CD-
ROM entitled “Workshop Proceedings, Tutorials, and Late-
Breaking Papers at the 2005 Genetic and Evolutionary Com-
putation Conference” as a late-breaking paper instead of in
the workshop proceedings and the ACM digital library.

5. REFERENCES
[1] T. Bäck. On the behaviour of evolutionary algorithms

in dynamic fitness landscape. In Proc. of the 1998

IEEE Int. Conf. on Evolutionary Computation, pages
446–451, 1998.

[2] J. Branke. Memory enhanced evolutionary algorithms
for changing optimization problems. In Proc. of the

1999 Congress on Evolutionary Computation,
volume 3, pages 1875–1882, 1999.

[3] J. Branke, T. Kaußler, C. Schmidth, and H. Schmeck.
A multi-population approach to dynamic optimization
problems. Adaptive Computing in Design and

Manufacturing, pages 299–308, 2000.

[4] J. Branke. Evolutionary Optimization in Dynamic

Environments. Kluwer Academic Publishers, 2002.

[5] H. G. Cobb and J. J. Grefenstette. Genetic algorithms
for tracking changing environments. In Proc. of the

5th Int. Conf. on Genetic Algorithms, pages 523–530,
1993.

[6] D. E. Goldberg and R. E. Smith. Nonstationary
function optimization using genetic algorithms with
dominance and diploidy. In Proc. of the 2nd Int. Conf.

on Genetic Algorithms, pages 59–68, 1987.

[7] J. J. Grefenstette. Genetic algorithms for changing
environments. In Proc. of the 2nd Int. Conf. on

Parallel Problem Solving from Nature, pages 137–144,
1992.

[8] Internet repository on “evolutionary algorithms for
dynamic optimization problems,” online,
http://www.aifb.uni-karlsruhe.de/∼jbr/EvoDOP.

[9] E. H. J. Lewis and G. Ritchie. A comparison of
dominance mechanisms and simple mutation on
non-stationary problems. In Proc. of the 5th Int. Conf.

on Parallel Problem Solving from Nature, pages
139–148, 1998.

[10] N. Mori, H. Kita and Y. Nishikawa. Adaptation to
changing environments by means of the memory based
thermodynamical genetic algorithm. In Proc. of the

7th Int. Conf. on Genetic Algorithms, pages 299–306.
Morgan Kaufmann Publishers, 1997.

[11] R. W. Morrison and K. A. De Jong. Triggered
hypermutation revisited. In Proc. of the 2000

Congress on Evol. Comput., pages 1025–1032, 2000.

[12] K. P. Ng and K. C. Wong. A new diploid scheme and
dominance change mechanism for non-stationary
function optimisation. In Proc. of the 6th Int. Conf.

on Genetic Algorithms, 1997.

[13] C. L. Ramsey and J. J. Greffenstette. Case-based
initializtion of genetic algorithms. In Proc. of the 5th

Int. Conf. on Genetic Algorithms, 1993.

[14] R. K. Ursem. Multinational GAs: Multimodal
optimization techniques in dynamic environments. In
Proc. of the 2000 Congress on Evolutionary

Computation, pages 19–26, 2000.

[15] S. Yang. Memory-based immigrants for genetic
algorithms in dynamic environments. In Proc. of the

2005 Congress on Evolutionary Computation, 2005.

[16] S. Yang. Population-based incremental learning with
memory scheme for changing environment. In Proc. of

the 2005 Congress on Evolutionary Computation,
2005.

Generalized Benchmark Generation for Dynamic
Combinatorial Problems

 Abdunnaser Younes Paul Calamai Otman Basir
Systems Design Engineering

University of Waterloo
Waterloo, On N2L 3G1

Canada
ayounes@engmail.uwaterloo.ca

ABSTRACT
Several general purpose benchmark generators are now available
in the literature. They are convenient tools in dynamic continuous
optimization as they can produce test instances with controllable
features. Yet, a parallel work in dynamic discrete optimization
still lacks.

In constructing benchmarks for dynamic combinatorial problems,
two issues should be addressed: first, test cases that can
effectively test an algorithm ability to adapt can be difficult to
create; second, it might be necessary to optimize several instances
of an NP-hard problem. Hence, this paper proposes a method for
generating benchmarks with known solutions without the need to
re-optimize. Consequently, the method does not suffer the usual
limitations on the problem size or the sequence length.

The paper also proposes a general framework for the generation
of test problems. It aims to unify existing approaches and to form
a basis for designing newer benchmarks. Such a framework can
be more appreciated knowing that combinatorial problems tend to
assume very distinct structures, and hence, relevant benchmarks
are basically too specific to be of interest to the general reader.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Performance measures;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization – Integer programming.

General Terms
Algorithms, Performance, Design.

Keywords
Dynamic optimization, benchmarks, combinatorial optimization
problems.

1. INTRODUCTION
As a new and still expanding field, dynamic optimization has
many outstanding issues. Some of them are related to the
generation of suitable benchmark problems. In this section, we
give a brief introductory background on benchmarks, and some
issues relevant to the generation of dynamic benchmarks for
combinatorial optimization problems (COPs).

Benchmarks can be defined as standardized test problems
designed to serve as bases for algorithm evaluation and
comparison. The usual reason for running an algorithm on such
problems is to obtain results that are comparable to studies on
other algorithms and hence can attest to the superiority of the
tested algorithm.

Test problems can be basically constructed from two types of
data: randomly generated data, and real-life data. On the one
hand, random data is easy to obtain and analyze and more
importantly enables the drawing of general conclusions about the
algorithm performance. On the other hand, a test problem from
the second source would reflect a particular instance from the
real-world as closely a possible. Thus, it can be used to attest to
algorithm ability to fulfill the cause for which it was designed, i.e.
solving a particular real-world problem. Thus, one would be
inclined to include both types of data in the tests.

 In dynamic optimization, however, a test problem is also
characterized by a particular scenario, which postulates the
sequence of events or environmental changes in the problem.
Thus, if one intends to base a test problem on real life situations,
one would be faced by the difficulty of identifying the instances
that best represent the typical scenario(s). On the other hand, a
general-purpose benchmark generator (BG) such as those
mentioned in the next section would not have such a difficulty.
These BGs use continuous functions with tunable parameters to
produce wide varieties of scenarios. The user, thus, can precisely
pre-determine particular courses of events for the test problems as
deemed appropriate.

However, constructing general BGs for COPs can be more
difficult. First, it might prove to be hard to generate a sequence of
instances that can effectively test the adaptability of an algorithm,
without explicitly solving each instance. Second, as different
combinatorial problems take different structures, their test cases
tend to be too problem specific. Hence the task of generalizing
test problems is expected to be difficult.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO'05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006...$5.00

The current paper aims to address the above mentioned issues. In
the next section, the paper argues in favor of the importance of
general-purpose BGs, as opposed to the use of problem specific
test cases only. The rest of the paper focuses on dynamic COPs:
Section 3 discusses difficulties of generating combinatorial
benchmarks. Section 4 introduces a mapping-based scheme to
generate benchmarks with known optima. Then, Section 5
proposes a general framework that unifies the approaches of
benchmark generation for dynamic COPs.

2. GENERAL-PURPOSE BG’s, ARE THEY
REALLY NEEDED?
The need of having diverse test problems to evaluate and
demonstrate the effectiveness of non-exact algorithms is widely
appreciated. For dynamic optimization, test problems should also
be able to cover wide ranges of environmental changes in order to
pose as credible testers for a certain dynamic solver (DS). This
opinion motivates several researchers [1, 5, 11, and 13] to work
on the introduction of general purpose BGs to generate artificial
dynamic landscapes with controllable features. Grefenstette [5],
for example, specifies a dynamic landscape as a set of
components. Each component consists of a single n-dimensional
Gaussian peak characterized by three time-varying features:
center, amplitude, and width. In a similar work, Branke [1]
suggests a moving peaks function, which is basically a multimodal
function with controllable height, width and center for each peak.
The moving peaks function, however, offers an additional
parameter λ, ranging between 0.0 and 1.0 to quantify “how much
a peak’s change in location depends on its previous move”.
Setting λ to 0.0 makes the peak’s change completely random,
while the other extreme, λ = 1.0, means the peak continues its
shifting in the same direction. More in-depth discussion of the
functions and the resultant landscapes produced by these
generators can be found in [2].

Jin and Sendhoff [7] introduce a computationally efficient method
to generate general dynamic test problems based on concepts
from multi-objective optimization. They construct dynamic single
objective and multi-objective test problems by aggregating
different objectives of a multiple objective optimization problem
and changing the weights dynamically.

Yang [15] uses a different approach to construct dynamic
environments. In stead of explicitly defining time varying
functions, he constructs the dynamic problem by continually
introducing changes to a base stationary problem. He proposed
using an exclusive-or (XOR) operator to introduce changes to a
binary-encoded stationary problem. In [16], Yang and Yao use the
XOR operator to generate a series of dynamic problems from a
randomly generated stationary knapsack problem.
Unlike the examples above, many researchers depend solely on
problem specific benchmarks [2], whereas others further
downplay the usefulness of the general-purpose BGs. For
example, Ursem et al. [14] note that these BGs do not reflect
characteristic dynamics of real-world problems and hence are of
little value for modeling realistic dynamic problems. They also
argue that the use of BGs is pointless once a model is developed
for the fitness landscape. However, one might find the notion that
the typical real-world problem—which is supposed to be highly

complex— can be modeled to the extent that the model alone is
capable of testing the DS seems far fetched.

In this paper, the view is that, ideally any DS should be tested on
randomly generated data in addition to real life data. The
importance of general benchmarks problems, which use randomly
generated instances, is evident in many aspects:

First, randomly generated data can be more effective than real life
data in comparing algorithms. With random data, it is possible to
introduce variations of different degrees to the elements of the
optimization problem individually and in combination, whereas
real life data is often too complex to evaluate easily.

Second, randomly generated data might be the only way to detect
deficiencies (in an algorithm) that are not visible through the real-
world data available at the time of evaluation.

Third, the issue of credibility of the tests suggests that test
problems should be designed as independently as possible from
the DS, and this is best achieved through general BGs; whereas
for example the test case generator suggested in [14] obscures the
line between the BG and DS. More generally, the less involved
the DS designer is in the BG design, the less biased the results are
expected to be and the more credible the DS— especially when it
is largely maintained that techniques used by GAs are based on
intuition.

Fourth, the use of general benchmarks promotes the portability of
the ideas within an algorithm to solve other arbitrarily different
problems. Indeed, the more general the testing problems are, the
wider the applicability of the tested algorithm.

Furthermore, as it is well known that the use of GAs is often
justified by their robustness, it seems unreasonable to confine test
cases of a general algorithm to very problem-specific data.

In summary, the use of problem-specific test cases alone will at
best confine the results of testing to the particular optimization
problem under consideration; at worst, the results cannot even be
generalized to problem instances other than those specifically
used. In any case, problem specific tests do not encourage using
algorithmic in other problems. Yet, most general benchmark
generators available in the literature basically target continuous
optimization. Thus, in their current state, these generators have
little use in discrete optimization, except may be for the few cases
discussed in the next section.

3. BENCHMAK PROBLEMS FOR
DYNAMIC COPs
In this section, we discuss some issues related to the design of
dynamic benchmarks in discrete optimization. First, we note that
combinatorial problems tend to assume very distinct structures
(e.g. vehicle routing versus job shop scheduling). This fact does
not allow the testing of say a scheduling DS on a routing problem.
Consequently, benchmark problems for COPs tend to be very
specific to the application at hand. However, the time-varying
knapsack problem and the dynamic traveling salesman problem
(TSP) might be excluded, since their static counterparts are often
considered representative of various combinatorial problems.
There exist several publications related to such benchmarks. For
instance, Goldberg and Smith [5] use a 17-object knapsack with a
weight capacity oscillating between two values in their

benchmark. Other researchers [8, 9, and 10] increase the number
of objects and make the weight change over several values. The
main idea of dynamism in these benchmarks is to vary the
allowable weight limit with time; which can make the current
optimal solution infeasible if the knapsack capacity is sufficiently
reduced.
More recent publications introduce benchmarks for the dynamic
TSP. Guntsch et al. [6] solve the problem using an ant colony
algorithm. They introduce dynamism by exchanging a number of
cities between the actual problem and a spare pool of cities. The
number of cities in the actual problem is kept constant but the
cities themselves are changed. Eyckelhof and Snoek [3] present a
new ants system approach to another version of the dynamic
problem. They change edge length to imitate the appearance and
the removal of traffic jams from roads. The pattern of change is
limited to simple constant increment or decrement of the changing
parameter. Younes et al. [17] introduce a more comprehensive
dynamic TSP generator that can produce test problems with more
complex dynamics.
The above mentioned benchmarks are limited both in the
applications they address and in the dynamics they employ. There
are several reasons behind these limitations. They are better
addressed by first drawing a distinction between the generation of
benchmarks for continuous optimization and that for discrete
optimization.
In the continuous case, the generators use functions with
adjustable parameters to simulate shifting landscapes. Basically,
they introduce time as an additional independent variable in order
to create dynamic landscapes in which optima shift through time.
However, a similar approach will not work for discrete
optimization, where even a static “landscape” cannot be defined
without reference to the search algorithm. In fact, it is the notion
of the continuity of the variables underlying the search space that
makes it possible to define a unique landscape for a continuous
optimization problem.
However, in the discrete case, the metaphor of landscape is an
indistinct one, since the concepts of distance and relative
positions depend on the optimizing algorithm as well. Actually,
these concepts are induced by the particular operators employed
by the algorithm to move from one solution to another together
with what we call neighborhood structure, without which the
metaphor of landscape does not make much sense, if any [12].
Thus in discrete optimization, we cannot define an algorithm-
independent landscape that can be made time-dependent to
simulate dynamic environments. A dynamic problem might have
to be constructed as a time sequence of static problems, i.e. it
should be thought of in terms of possible scenarios in which
changes can happen over time. However, there can be an infinite
number of such scenarios, which at the same time might prove to
be hard to implement effectively and efficiently. These
deficiencies are discussed in the following sections.

3.1 Environmental Effects
From a dynamic solver perspective, changes in a dynamic
problem can be viewed as two categories: dimensionality changes
and non-dimensionality changes.
Changes in the first category correspond to adding or dropping
variables from the optimization problem. Such changes are
applied to reflect for example the insertion and/or cancellation of

assignments in a vehicle routing problem, orders in a job shop
scheduling problem, cities in a TSP, and objects in a knapsack
problem. These changes necessitate a corresponding alteration in
solution representation. Hence, dynamic problems constructed in
this way are generally harder to solve than those involving non-
dimensionality changes.
In the second category, the non-dimensionality changes result
from variations in the values of the parameters and coefficients of
the problem constraints and objective function. As some of these
values change from one instance to another, the optimal solution
of a previous instance might lose quality relative to another
solution that was inferior to it in the past. Examples are the
changes in the capacity of the knapsack problem or in the weights
or values of its objects. Other examples can affect the travel time
on some roads in a vehicle routing problem, and the processing
timing and ready dates of a scheduling problem. Such changes
usually do not alter solution representation and hence are
expected to be easier to solve than the first class.
However, benchmarks from the second category are harder to
construct: While the construction of dimensionality benchmarks
can be seen as basically a simple adding or deletion of variables,
the construction of non-dimensionality benchmarks is not as
simple. One reason for this difficulty that is not addressed
specifically in the literature is what we will refer to by
significance of dynamism.

3.2 Dynamically Significant Changes
When a new instance is generated by applying non-
dimensionality changes to another instance, differences between
both instances can inadvertently be made dynamically
insignificant. In other words, the introduced changes are so trivial
that any optimizing algorithm exhibits the same behavior with or
without them.
Therefore, a dynamically insignificant change can be defined as
an environmental change that does not alter the structure of the
problem instance, i.e. one which keeps the number and relative
positions and values of the peaks unchanged. In a knapsack
problem, for example, increasing the weight of an object not in
the optimal solution (or decreasing the weight of an object in the
optimal solution) will not alter the optimal solution. Furthermore,
reducing the weight of a non-optimal object (or increasing the
weight of an object in the optimal solution) may not alter the
optimal solution unless the changes in the weight are sufficiently
large. In a similar manner, increasing and decreasing travel time
on a road in a TSP may not be significant.
In order to further clarify how a DS exhibits the same behavior
after a dynamically insignificant change, we borrow the following
example from continuous optimization. Once a hill climber
discovers a local maximum, it will consistently return the same
solution if changes were confined to the height of the peak; no
matter how much the change is, as long as the peak remains
higher than its neighbors. This issue seems trivial since the BG
can explicitly shift the location of the optima, and thereby making
the environmental change dynamically significant. However, as
one cannot identify a landscape to start with for a given COP
instance, one would not have a clue to whether any induced non-
dimensionality changes are significant or not. A minimum
requirement to ensure significance of such changes is that the
optimal solution of the current instance is known.

A dynamically insignificant change is worthless from a testing
perspective. Furthermore, properties of dynamism such as
severity and frequency of change of the underlying parameters
may become misleading. In other words, patterns of optima shift
can be considerably different from the patterns intended by the
BG user.
This issue adds to the efforts of selecting the changing parameters
and their corresponding values. It might even necessitate solving
newer instances before actually adopting them in the benchmark.

3.3 The Challenge of NP-hardness
This issue arises from treating the dynamic problem as a sequence
of static problems. Ideally, the optimal value for each problem in
the sequence should be known in order to evaluate the
effectiveness of some DS (by comparing its results with the
known optimal values). Furthermore, in order to ensure that the
change introduced to a problem is dynamically significant, the
optimal solution is needed too. Therefore, in the course of
constructing a dynamic test case, several static instances have to
be solved to optimality: a non-trivial task if not impossible,
especially when the problem in question belongs to the NP-hard
class.
Two options are used to alleviate this difficulty. The first one uses
small sequences with problems of limited size. Of course, using
too small problem sizes may reduce the benchmark usefulness. At
the same time, limiting the sequence length restricts the
dynamism characteristics that can be modeled. The second option
uses results of several dynamic solvers to compare with the DS
under testing. This option has two disadvantages: first,
evaluations are of a relative nature (to the quality of other
algorithms). Second, as we do not have a wealth of results for
other algorithms, the choice of the comparing algorithms and the
way they are run can severely change the outcome of evaluations.
This issue motivated the authors to introduce a general scheme to
generate benchmarks of arbitrary size and sequence length, as
described in the next section.

4. MAPPING-BASED BGs
In a recent paper, Younes et al. [17] introduce a scheme to
generate benchmarks for the dynamic TSP with arbitrarily long
sequences and controllable characteristics of dynamics. In what
follows, we generalize the underlying idea to other COPs.
The basic idea is to exploit the fact that GAs do not work directly
on the solutions but rather on their encoding. Thus an
environmental change can be applied at any time by modifying
the mapping function, which encodes solutions to chromosomes.
To illustrate this idea, let us consider a seven-object knapsack
problem as an example, with its mapping function given in
Figure1. In this setting, a candidate solution consisting of the
objects O1, O4, O3, O2 and O7 will be encoded as (B1 B4 B3 B2 B7).
Then if, for example, the object names associated with the labels
B3 and B5 in the mapping function are swapped, the same
chromosome (B1 B4 B3 B2 B7) will represent a different individual,
consisting of the objects O1, O4, O5, O2 and O7.
If all the chromosomes in the population are treated in this way,
they will point to different individuals. Then any re-evaluation of
the population will reveal that it now consists of individuals
which are actually different from their predecessors. Furthermore,
some of the new individuals might even be infeasible. Hence, by

repeatedly changing the encoding, a sequence of instances can be
generated from a single problem. A dynamic solver will treat the
sequence as a dynamic problem i.e. will try to adapt to changes in
the problem. At the same time, the benchmark designer knows the
values of the optimal solutions to all the generated instances,
since they are actually the same. Thus, in using mapping-based
scheme, one needs only optimize the initial instance of the
dynamic problem.

 B1 B2 B3 B4 B5 B6 B7

O1 O2 O3 O4 O5 O6 O7

The severity of change in the mapping-based benchmark can be
expressed as the number of interchanges imposed on the mapping
function a time; and the change frequency can be expressed in
terms of the number of iterations or evaluations between changes.
Other COPs, can be treated in a similar way to produce dynamic
versions. For instance, benchmarks for the dynamic TSP can be
generated by swapping city labels in the mapping function. The
scheme can also be applied to job scheduling or to flexible
manufacturing systems by interchanging any of the labels of
machines, parts or operations to create new instances. Similarly, a
facility location problem can be made dynamic by interchanging
locations labels or facility labels.
Although problems constructed via a mapping-based BG may not
reflect real life situations, this technique serves the goal of
generating dynamic test COPs with known optima without the
usual limitations on the sequence length and instance size.
Furthermore, complicated test problems that are more real-world
oriented can be constructed by combining mapping-based
procedures with dimensionality and/or non-dimensionality
changes. In any case, a mapping-based BG offers a simple, quick
and easy way to generate problems that can be used to test and
analyze a dynamic algorithm running on almost any COP.

5. A GENERALIZED RAMEWORK FOR
BENCHMARK GENERATION
The idea of having general BGs for COPs similar to those
available for continuous optimization is tempting. However,
different COPs in their static forms tend to take very distinct
structures, which make the idea of a general framework for them
in their dynamic states more challenging. This section aims to
encompass dimensionality changes, non-dimensionality changes,
and the proposed mapping-based changes in a general framework
that can form a basis for the generation of benchmarks for
dynamic COPs.
The general idea is to start with an initial static benchmark
problem 0s taken from the literature or from available real life
data. Then, changes are repeatedly introduced to the problem in

Figure 1. swapping in mapping function.
Before change, gene values B3 and B5 originally
represent objects O3 and O5 respectively. After change,
they represent O5 and O3 respectively.

order to generate a sequence of static problems, with some
(exploitable) similarity between any two succeeding problems.
The operation of the generator is divided into two stages: a
sequence generation stage that creates a pool of maxk static
problems and a dynamism control stage that selects problems
from the pool to construct one dynamic problem with maxm
instances, see Figure 2.
The sequence generation stage applies a limited amount of change
in one element of the optimization problem kP to create the next
problem 1+kP in the sequence. We refer to the limited change as an
elementary step kδ , which have one of three forms:

(1) A dimensionality step, i.e. the addition or a deletion of a
single variable.

(2) A non-dimensionality step, which corresponds to a
change in the value of one of the parameters or the
coefficients of the problem. In this case, it should be
dynamically significant; and if it affects problem
constraints, it also should be not too drastic to make the
new problem infeasible.

(3) A mapping-based step, i.e. a single swap in the mapping
function.

32

8762

=
⊕⊕=∆

v
δδδ

41

54321

=
⊕⊕⊕=∆

v
δδδδ

20

100

=

⊕=∆

v
δδ `

time

X7

P5 X5

P8 X8

P10
 X10

P9 X9

P0
X0

X1 P1

P4 X4

P2
X2

P6 X6

P7

P3 X3

δ1

δ9

δ8

δ7

δ6

δ5

δ4

δ3

δ0

δ2

static sequence

time 3210 tttt

P2

P3

environmental
changes

P1

P0

(a) (b)
Figure 2 Generalized Benchmark Generation

(a) Sequence generation stage (b) Dynamism control stage
Although the figure may imply that there is a consistent forward progression of problem instances,
actually the order of the instances in the figure does not reflect how they are close to each other. For
example, if the change in elementary step δ3 is the reverse of that in δ2, static instances P2 and P4 will
actually be identical. More generally, the sequence can be made to cycle from P3 back to P0 by
repeatedly reversing the changes in δ2, δ1and δ0 to create δ3, δ4and δ5.

τ2

The above process of adding an elementary step can be written as:

1,...,1,0 , max1 −=⊕=+ kkPP kkk δ (1)

Then, each newly created static problem is solved independently
of the others. Thus, the stage ends with a sequence S of static
problems kP and their corresponding optimal or near optimal

solutions kx . The sequence generation stage can be formally given
as:

{ }

)(optimize
 ...

where
0 ,),(

1100

max

kk

kk

kkk

Px
PP

,..,kkxP

=
⊕⊕⊕⊕=

===

−δδδ

SS

 (2)

In the second stage, a complete dynamic problemP is created by
selecting some of the static problems in the sequence S to
become instances of P . The selection is done in such away that
the resultant dynamic problem has the required properties of
dynamism. For instance, by skipping more intermediate problems
in the static sequence S , severity of the change is increased;
similarly the frequency of change can be specified by the number
of evaluations/generations between successive instances. To
further elaborate on this stage, let us first define an environmental
shift m∆ as the change applied to the mth instance of the dynamic
problem to create the next instance, i.e.

mmm ∆⊕=+ PP 1 (3)

Then the change severity or vm can be expressed as the number of
elementary steps added to create m∆ ; and the period of change τm
can be defined as the duration (number of generations or
evaluations between successive shifts) of the mth instance.

Once severity vm and period τm are specified, the dynamic
problem can be given as a sequence of problem instances mP , and
their corresponding time mt and target solutions my as :

{ }max,10), , ,(..,m,mmymmm === tPPP (4)

In which mP and my are actually kP and kx in the sequence S
respectively, where

 ∑
−

=

=
1

0

m

i
ivk (5)

 , and each instance begins at

 ∑
−

=

=
1

0

m

i
imt τ (6)

The target solutions my will be the basis of criteria that measure
the success of any dynamic solver on the above benchmark.
 Once a benchmark is generated according to the generalized
form, additional test problems can be added by changing the static
problem 0s , the elementary stepsδ , and/or the values of severity

v and period τ . As well, a second sequence of static problems
can be added to the dynamic problem. The additional sequence is
constructed by reversing the changes introduced to the first
sequence. Thus, by repeatedly adding and reversing changes,
cycling environments can be created. The three modes of the

dynamic TSP benchmark generator introduced in [18] can be
easily fitted in this framework, since it is a generalization of these
three modes. Thus, we refer the interested reader to this paper to
see an actual implementation of the proposed framework.

6. CONCLUSIONS
General purpose benchmark generators are necessary to compare
non-exact algorithms. They enable more thorough analysis and
encourages portability of the algorithm to other applications.
Benchmarks for COPs are treated as sequences of static problems
strung together. Thus, it may be necessary to solve each of them
to optimality, which can be expensive. This difficulty can be
further complicated if changes involve values of the problem
parameters, since such changes might prove to be dynamically
insignificant.

Therefore, this paper proposes a method for generating
benchmarks for COPs that requires the solving of the initial
instance only while solutions to all other instances can be
determined from a changing mapping scheme. In this way, the
method does not suffer the usual limitations on the problem size
and the sequence length.

Problem specific benchmarks tend to repel general readers who
might be interested in the ideas used in the benchmark generator
and the dynamic solver. Hence, the paper proposes a general
framework for the generation of test problems for COPs. It is
hoped that such a frame work helps unify approaches in the
literature and forms a basis for designing benchmarks.

Future work will aim enhance the proposed mapping benchmark
and the generalized framework, as both are in need of further
analysis and improvement.

7. ACKNOWLEDGEMENTS
Support of this work has been provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC).
The authors would like to thank the anonymous reviewers for
many valuable suggestions and comments.

8. REFERENCES
[1] Branke, J. Memory enhanced evolutionary algorithms for

changing optimization problems. In Congress on
Evolutionary Computation CEC99, volume 3, pages 1875-
1882. IEEE, 1999.

[2] Branke, J. Evolutionary Optimization in Dynamic
Environments. Kluwer, 2002.

[3] Eyckelhof, C. J., Snoek, M. Ant Systems for a Dynamic
TSP, In ANTS 2002: Brussels, Belgium, 88-99, 2002.

[4] Goldberg, D. E. and Smith, R. E Nonstationary function
optimization using genetic algorithms with dominance and
diploidy. In J. J. Grefenstette, editor, Second International
Conference on Genetic Algorithms, pages 59-68. Lawrence
Erlbaum Associates, 1987.

[5] Grefenstette, J. J. Evolvability in dynamic fitness landscapes:
A genetic algorithm approach. In Congress on Evolutionary
Computation, volume 3, pages 2031-2038. IEEE, 1999.

[6] Guntsch, M., Middendorf, M., Schmeck, H.
An Ant Colony Optimization Approach to Dynamic TSP. In:

L. Spector et al. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, San Francisco, CA:
Morgan Kaufmann Publishers, 860-867, 2001.

[7] Jin, Y. and Sendhoff, B. Constructing dynamic optimization
test problems using the multi-objective optimization concept,
EvoWorkshops 2004, LNCS 3005, 525-536, 2004.

[8] Lewis, L., Hart, E., and Ritchie G. A comparison of
dominance mechanisms and simple mutation on non-
stationary problems. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature, number 1498 in LNCS, pages
139-148. Springer, 1998.

[9] Mori, N., Kita, H., and Nishikawa, Y. Adaptation to a
changing environment by means of the thermodynamical
genetic algorithm. In H.-M. Voigt, editor, Parallel Problem
Solving from Nature, number 1141 in LNCS, pages 513-522.
Springer Verlag Berlin, 1996.

[10] Mori, N., Kita, H., and Nishikawa, Y. Adaptation to a
changing environment by means of the feedback
thermodynamical genetic algorithm. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors,
Parallel Problem Solving from Nature, number 1498 in
LNCS, pages 149-158. Springer, 1998.

[11] Morrison, R. W. and DeJong, K. A. A test problem
generator for non-stationary environments. In Congress on
Evolutionary Computation, volume 3, pages 2047-2053.
IEEE, 1999.

[12] Reeves, C. R. and Rowe, J. E. Genetic Algorithms:
Principles and Perspectives. A Guide to GA Theory. Kluwer
Academic Publishers,Boston (USA), 2002.

[13] Trojanowski, K. and Michalewicz, Z. “Searching for optima
in non-stationary environments,” in Proceedings of the
Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali
Zalzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9
July 1999, vol. 3, pp. 1843–1850, IEEE Press.

[14] Ursem, R., K., Krink, T., Jensen, M., T., and Michalewicz,
Z. Analysis and Modeling of Control Tasks in Dynamic
Systems. IEEE Transactions on Evolutionary Computation,
2002.

[15] Yang, S. Non-stationary problem optimization using the
primal-dual genetic algorithm. Proc. of the 2003 Congress on
Evolutionary Computation, Vol. 3, pp. 2246-2253, 2003.

[16] Yang, S. and Yao, X. Dual population-based incremental
learning for problem optimization in dynamic environments.
Proc. of the 7th Asia Pacific Symposium on Intelligent and
Evolutionary Systems, pp.49-56, 2003.

[17] Younes, A. A Hybridized Genetic Algorithm for Solving the
Dynamic Vehicle Routing Problem, 2nd Annual McMaster
Optimization Conference: Theory and Applications
(MOPTA 02), Hamilton, Canada, 2002.

[18] Younes, A., Basir, O., and Calamai, P. A Benchmark
Generator for Dynamic Optimization. Proceedings of the 3rd
WSEAS International Conference on Soft Computing,
Optimization, Simulation & Manufacturing Systems., Malta,
2003.

Measurements for Understanding the Behavior of the
Genetic Algorithm in Dynamic Environments

A Case Study using the Shaky Ladder Hyperplane-Defined Functions

William Rand and Rick Riolo
Center for the Study of Complex Systems

University of Michigan
4485 Randall Lab

Ann Arbor, MI, USA, 48109-1120

wrand@umich.edu

ABSTRACT
We describe a set of measures to examine the behavior of
the Genetic Algorithm (GA) in dynamic environments. We
describe how to use both average and best measures to look
at performance, satisficability, robustness, and diversity. We
use these measures to examine GA behavior with a recently
devised dynamic test suite, the Shaky Ladder Hyperplane-
Defined Functions (sl-hdf’s). This test suite can generate
random problems with similar levels of difficulty and pro-
vides a platform allowing systematic controlled observations
of the GA in dynamic environments. We examine the results
of these measures in two different versions of the sl-hdf’s, one
static and one regularly-changing. We provide explanations
for the observations in these two different environments, and
give suggestions as to future work.

Categories and Subject Descriptors
F.2.m [Analysis of Algorithms]: Misc.; I.2.8 [Artificial

Intelligence]: Search

General Terms
Algorithms, Measurement

Keywords
Genetic Algorithms, Measurement, Dynamic Environments,
Hyperplane-Defined Functions, Genetic Algorithms

1. INTRODUCTION
The Genetic Algorithm (GA) has been shown to work suc-

cessfully in many dynamic environments [1] [3], and while
work has been done on trying to understand how the GA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05 June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

works in these environments, the behavior of the GA in dy-
namic environments is still not well understood. Part of the
problem is that when examining a GA on a particular search
problem often researchers are interested in the performance
of the GA and not necessarily why the GA works and thus
they only report performance measures. This does not al-
ways give a good indication of the overall behavior of the
GA. Thus in this paper we present a suite of measures that
are useful to measure beyond the standard performance met-
rics. By examining all of these measures together we hope
to more fully understand the behavior of the GA in dynamic
environments.

In a related area, Branke et al, among others, are inter-
ested in characterizing and measuring the dynamic land-
scape that evolutionary algorithms (EAs) are operating within
[4]. While that work is related, that work does not directly
address the goal we are addressing here, i.e., understanding
the behavior of the EAs themselves, not the landscape they
operate upon. Moreover, many researchers have developed
benchmark dynamic landscapes, like the moving peaks func-
tion, that allow the comparison of different EAs to evaluate
their performance [2] [13]. This work is also related but tan-
gential to the work described here, since we do not want to
compare different EAs but instead we are concerned with
understanding the behavior of the simple GA.

In order to systematically examine the behavior of the GA
we require a test suite of functions. The test suite presented
here is similar to the dynamic bit matching functions utilized
by Stanhope and Daida [17] among others. The difference
between the test suite in this paper and other dynamic test
functions is that the underlying representation of this test
suite is schemata, which make it easier to examine how the
GA is operating. By utilizing a test suite that reflects the
way the GA searches, the performance of the GA can be
easily observed. This test suite is a subset of John Holland’s
hyperplane-defined functions (hdfs) [9]. We have extended
the hdfs to dynamic environments and we call this test suite,
the Shaky Ladder Hyperplane-Defined Functions (sl-hdf’s)
[15].

In the rest of this paper, we examine the measures that
we are interested in exploring, briefly describe the sl-hdf’s,
and finally present some results of these measures on the sl-
hdf’s in two different environments: a static and a regularly-
changing environment. We conclude by discussing these re-

sults, providing some preliminary explanations and describ-
ing future work.

2. MEASURES
Though the performance of the GA is an important thing

to measure, there may be other measures that can be useful
along with performance in order to give a better descrip-
tion of how the system is behaving. This is especially true
in dynamic environments where the behavior of the system
over time can vary dramatically as the environment changes.
Other measures may provide valuable explanations and al-
low researchers to better describe and characterize the dy-
namics of populations being changed by a GA and an as-
sociated (exogenous or endogenous) mechanism that assigns
fitness ratings to the individuals.

In general researchers view the behavior of the GA from
two different perspectives. Some are concerned with under-
standing extreme behaviors of the system, particularly the
best that the system can do. These tend to be the mea-
sures preferred by application practitioners, who want to
know what is the best result the system can possibly ob-
tain. These measures tend to be of more interest to people
who have particular problems that they are trying to solve.
Other measures which may be useful characterize the popu-
lation as a whole, i.e. average, standard deviations, distribu-
tions. Population distribution measures are often important
to researchers trying to understand GAs as representations
of evolutionary systems. They utilize the GA to model these
systems and thus the behavior of the best individual in the
system is not as important to them. Given that loose di-
chotomy, we examine all of the measures below through the
context of both a best and an average measure.

Since a population evolving under the influence of a GA
is, in general, a complex adaptive system, there are inher-
ent stochastic and path-dependent processes such that each
“run” of the GA, even given the same starting population,
will almost always result in dynamics that differ in the de-
tails, and in some cases, the results will differ qualitatively
from run to run as well. When the primary goal is to find a
high performance solution for a real world problem, it often
is most useful to track the best fitness individuals from each
of a set of runs and then focus on the best of those best-of-
run individuals. On the other hand, in other situations it is
important to include measures that reflect the distribution
of population histories, since that gives more information
about both the complexity of the solution space and the dy-
namical properties of populations evolving in that problem
space.

Standard measures of performance fall into a category we
call fitness-related measures, which describe the system by
examining the fitness ratings of the individuals in the popu-
lation. Fitness in an evolutionary algorithm (EA) is defined
to be the score that influences selection and hence deter-
mines the ability of the individual to replicate [8]. Perfor-
mance, on the other hand, is a score that the individual
receives on an objective function. Often fitness is perfor-
mance in EAs; however, there are cases where other factors
are included in the fitness score. In this paper the fitness
score of an individual is defined as the performance score.
Besides the standard measure which we call performance,
we describe two additional fitness-related measures: satis-

ficability, and robustness. Another category of measures is
composition-related measures which attempt to describe the

behavior of the system by describing the components that
currently make up the system. In this paper we chose to
look at only one composition-related measure, diversity.

We describe these four measures in detail below, but briefly,
performance is the standard measure of how well the system
performs the task presented it, satisficability is the ability
of the system to maintain a certain level of fitness and to
avoid egregious errors, robustness is a measure of how the
system responds to changes in the environment, and finally
diversity is a measure of how different the members of the
population are. We do not think of this as a definitive list
of all the possible measurements of a GA’s behavior, but
rather as a representative list of measures that are interest-
ing to both those with a design or engineering perspective
and those with a biological perspective.

2.1 Performance
Performance is the standard measure of how well the sys-

tem solves an objective function. As mentioned, in many
cases, this is the fitness function, but some GAs such as
co-evolving systems, and systems with implicit fitness func-
tions, do not have an absolute fitness function. In this paper
we use the fitness function as a measure of performance. One
use of performance is in evaluating the suitability of a GA-
discovered solution to solving a design problem. The GA
has proved to be particularly useful if there are epistatic in-
teractions between variables. Examining the performance of
the best individual in a population gives an estimate of the
best solution the GA can find for a problem, given a set of
GA parameters and the resulting total computational effort
expended, in terms of the total number of fitness evaluations
required [11]. For biological modelers it is more important to
understand the performance of the whole population. The
average fitness of the population provides a first-order rep-
resentation of the overall fitness distribution, and thus is a
good first measure. In both cases it usually makes sense
when describing how the system works to aggregate the re-
sults of multiple runs by averaging the results across runs,
since the average gives a good indication of how the system
is expected to do on any given run.

In the experiments described below, we define Best Per-

formance to be the average across n runs of the fitness of the
best individual of the current generation in the population.
One could also examine the best performance of any individ-
ual in any run, but we leave investigations of that measure
for the future. Average Performance, on the other hand, is
the average across n runs of the average fitness of the pop-
ulation. Since we know the optimal value a priori given the
sl-hdf construction scheme, we express these measures as a
fraction of the optimal fitness possible. This allows us to
compare results where the optimal value changes.

2.2 Satisficability
Satisficability is a measure of when the system is able to

achieve a predetermined criteria. The notion was first in-
troduced by Simon who claimed that often humans do not
optimize the solution to a problem but instead simply come
up with a solution that satisfices some criteria they have pre-
viously defined [16]. In this paper, satisficability measures
how well the system is able to maintain a certain level of
fitness and not drop below a pre-set threshold. One appli-
cation of this measure would be autonomous agent control.
If a GA is in charge of steering a robot from one location to

another, it maybe not be necessary to get there as quickly
as possible but the design specifications may require that it
will get there in a reasonable amount of time.

Whether we are interested in the average satisficability
or the best satisficability we set a threshold and count how
many times the system is able to exceed that threshold. In
the experiments described below, we define Best Satisfica-

bility to be the fraction of runs out of n that the GA’s best
solution in that generation exceeds s = oθ which is expressed
as a fraction θ of the optimal o. This gives us a clear indica-
tion of how many times the system will return a result that
is at least as good as our threshold. The fraction, θ (between
0 and 1), is a parameter to the measurement. Average Sat-

isficability is defined to be the average across n runs of the
fraction of individuals in the current population that exceed
s. Of course it would be simple to extend this measure to
a problem where the optimal was not known, in which case
o could be set to 1 and s = θ, which means that the mea-
sures would be based on the fraction of individuals or runs
to exceed an absolute threshold.

2.3 Robustness
Of all the measures listed here, robustness is probably

the most complicated and has the most varied definitions.
There are many different notions of robustness [10], and thus
defining it must always be done within the context of a par-
ticular question. Here we specifically address the idea of
robustness as a measure of how a system’s output changes
in response to environmental changes. We want to know
how much the fitness of the next generation of the GA can
drop, given the current generation’s fitness. The idea is that
the performance of the system should never dramatically de-
crease since a dramatic decrease may upset other elements
if the system is not isolated. In order to make this measure
more useful in real-world systems it is important to define
it so that it is not necessary to know when the environment
changed, because changes are not always easily observable.
One application of such a measure would be managing as-
sets in a stock market portfolio. For instance a GA could be
used to specify which stocks to hold at each time step, with
the goal of never suffering a dramatic decreases in the total
value of the portfolio. As long as the overall net value is in-
creasing the owner is earning money, but it is important to
make sure that this portfolio is robust to dramatic changes.

In the experiments below, we define Best Robustness to
be the fitness of the best individual in the current generation
divided by the fitness of the best individual in the previous
generation. If this score is greater than 1 we set it equal
to 1. For simplicity we set the robustness score of the first
generation equal to 1. We then average this measure across n

runs. We define Average Robustness to be the same measure
but for the average fitness of the population.

2.4 Diversity
Diversity is a measure of the variance in the genomes in

the population of solutions. Diversity captures the notion
of how much of the search space the GA is currently ex-
ploring. Moreover having a diversity of solutions may mean
the system is more able to adapt to changes in the envi-
ronment. The diversity within the run of an EA has been
studied many times before, including attempts to use it as
an objective in a multi-objective EA fitness function [18].
A diversity of solutions is often needed to avoid premature

convergence, which can cause an EA to get stuck at a local
optima. In fact a whole variety of techniques have been used
to maintain diversity throughout a run, like niching through
fitness sharing [6]. Moreover similar techniques have been
used to try and maintain diversity in dynamic environments
throughout a run [7] as well as after a change in the envi-
ronment1 [5]. Besides the study of diversity within GAs for
the purposes of studying GAs, it is also important to look
at diversity within the context of biological modeling. Very
often biological diversity is considered important to the suc-
cess of a species and thus studying how different parameters
of the GA affect the overall diversity of the system could be
interesting to biological modelers [20].

The above concept of diversity is concerned with measur-
ing how diverse solutions are within a run. Another measure
of interest is how diverse solutions are across runs. This pro-
vides an idea of how different the various results of the GA
will be between, as opposed to within, runs. In some cases
diversity among runs would be a good thing, since it would
indicate the system is able to find very different parts of the
search space that may not have been obvious as potential
areas for fruitful exploration. In other cases diversity may
be a bad thing because it indicates that the system is very
dependent on initial conditions.

In order to examine diversity we chose to use Hamming
distance because it measures how many single bit mutations
would be required to move from one string to another within
the population. Likewise Hamming distance is also the Man-
hattan distance between two vertexes in an n-dimensional
hypercube. Thus Hamming distance is a good approxima-
tion of how far apart two solutions are in the sl-hdf solution
space.

In the experiments discussed below, we define Best Di-

versity to be the average Hamming distance between the
genomes of the best individuals of each generation found in
each of the n runs. We can also observe the diversity within a
run and thus, we define Average Diversity to be the average
Hamming distance between every member of the population
averaged over n runs. To allow for comparisons of diversity
where GA string lengths differ, we normalize these measures
to the length of the string.

However, we do not present the results from the Best Di-
versity of the experiments. The reason is that in the case of
the sl-hdf’s the random number seed used to generate the
population of the GA is also used to generate the particular
problem to be solved. The result of this is that in every run
the GA is facing a different problem, and thus the Hamming
distance between different runs of the GA is always 0.5 since
they are optimizing toward different fitness peaks.

3. SHAKY LADDER
HYPERPLANE-DEFINED FUNCTIONS

The functions that we will be utilizing to explore the GA
in dynamic environments are a subset of the hdfs [9]. The
hdfs are designed to represent the way the GA searches by
combining building blocks (through the use of schemata)
hence they are appropriate for understanding the behavior
of the GA. The hdfs were constructed to meet a set of criteria
specified by Whitley [19]. The problem with the hdfs in the
dynamic case is that the optimal set of strings is not easily
known given the definition of the function, and thus the

1For a more thorough review please consult Bränke [3]

absolute performance can not easily be measured. Moreover,
there is no way to take one hdf and create another that is
similar to it, which would be useful when exploring dynamic
environments.

Thus we impose three conditions on the full suite of hdfs
and use a simple algorithm to these functions which solves
these two problems. The process described below is more
thoroughly explained in previous work [15] [14]. The first
condition is the Unique Position Condition (UPC). It re-
quires that all elementary schemata contain no conflicting
bits. The second condition we call the Unified Solution Con-

dition (USC). This condition guarantees that all of the spec-
ified bits in the elementary level schemata must be present
in the highest level schema. The third condition is the Lim-

ited Pothole Cost Condition (LPCC), which states that the
fitness contribution of any pothole plus the sum of the fitness
contributions of all the building blocks in conflict with that
pothole must be greater than zero. These three conditions
guarantee that any string which matches the highest level
schema must be a string with optimal fitness. By knowing
the optimal set of strings we solve one of the problems with
Holland’s original hdfs.

Assuming these conditions, once a set of elementary schemata
have been established we already know the highest level
schema. If we hold the elementary and highest level schemata
constant, we can generate new similar hdfs by creating new
intermediate schemata, we call this Shaking the Ladder. Thus
we have an easy way to create similar but different hdfs ran-
domly, and solve the second problem with Holland’s original
hdfs.

For the experiments discussed below, we used sl-hdf’s with
a length of 500. There are 50 elementary schemata of or-
der 8, 5 intermediate levels of schemata, and 1 highest level
schemata. The length of the schemata is unknown since the
location of the fixed bits are chosen randomly. Moreover
the order of the higher level schemata is also unknown since
the elementary schemata can “share” fixed loci. However
we can place upper limits on the order. If all elementary
schemata are disjoint, the maximum order of the highest
level schemata is 400, which means there will always be at
least 100 wildcards present in the highest level schemata.

4. EXPERIMENTS AND RESULTS
The basic setup for our experiments is a simple GA using

the sl-hdf as its fitness function. The base GA presented here
uses one-point crossover, per bit mutation, full population
replacement, and is similar to the one described by Mitchell
[12]. In this set of experiments we only change one variable,
tδ, which specifies the number of generations between shakes
of the ladder. We only examine two values for tδ, 1801 and
100. tδ = 1801 represents a static environment because the
time between changes exceeds the run of the GA. tδ = 100
represents a regularly changing environment. The optimal
value achievable by the sl-hdf is 1.0. All results below are
presented at 10 generation increments in order to make the
graphs easier to read.

Figure 1 illustrates both the fitness of the best individ-
ual in the population (Best Performance) and the average
fitness of the whole population (Average Performance) for
both tδ values, averaged across 30 runs. These results have
been normalized to 0 to 1; the non-normalized optimal value
of these sl-hdf’s is 191. Figure 2 illustrates (for both tδ val-
ues) how many best of generation individuals out of 30 runs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t a
nd

 A
ve

ra
ge

 F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

Best tδ = 100
Avg. tδ = 100

Best tδ = 1801
Avg. tδ = 1801

Figure 1: Performance Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 800 1000 1200 1400 1600 1800

B
es

t S
at

is
fic

ab
ilt

y
(F

ra
ct

io
n

O
ut

 O
f 3

0
R

un
s)

Generations

Best Satisficability tδ = 100
Best Satisficability tδ = 1801

Figure 2: Satisficability Results

(Best Satisficability) were able to satisfice a goal of achieving
θ = 0.5, where o = 191, and thus s = 0.5× 191 = 95.5. The
actual value of θ that is chosen in this case is arbitrary since
the problem is abstract. Instead what is interesting is ob-
serving the dynamics of the measure over time which will be
explored below. In Figure 2 only the last 1200 generations
are presented to increase the resolution of the data. Figure
3 displays the robustness of the best individual in the popu-
lation (Best Robustness) and the robustness of the average
fitness of the population (Average Robustness) for tδ = 100
across the entire run (averaged across 30 runs). Figure 4
displays the average scaled hamming distance of the popu-
lation (Average Diversity) for the last 1300 generations for
both tδ values.

5. DISCUSSION
The performance of the system has been more thoroughly

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t a
nd

 A
ve

ra
ge

 R
ob

us
tn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

Best Robustness tδ = 100
Avg. Robustness tδ = 100

Figure 3: Robustness Results

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 D
iv

er
si

ty
 (

A
vg

. O
ve

r
30

 R
un

s)

Generations

tδ = 100
tδ = 1801

Figure 4: Diversity Results

explored in a previous paper [15]. However, it is clear from
the results here that the regularly changing environment is
able to outperform the static environment in the long run.
Initially the dynamic environment under-performs the static
environment but before halfway through the run the dy-
namic environment has achieved a superior fitness in both
the best individual and the average fitness. We believe this
is because the regularly changing environment prevents the
GA from being locked into particular building blocks and
forces it to explore a wider range of intermediate schemata.
It is also interesting to note that when the ladder is shaken
in the regularly changing environment, the Average Perfor-
mance of the system falls farther than the Best Performance
of the system (see Figure 3 for additional clarification). This
makes sense– when the ladder is shaken many of the indi-
viduals that were being rewarded before lose those rewards
and hence their fitness falls greatly; however it is reasonable
to suppose that there are some individuals immediately af-
ter a shake that have a higher performance (the new best
individuals) than they did before the shake and thus they
mitigate the fall of the best performance.

Given the performance results the satisficability results
are interesting as well. Since the satisficing results are mea-
sures of individuals above a certain threshold, it would make
sense that the dynamic environment, which outperforms the
static environment, would also have a higher level of satis-
ficability. However, both the static and dynamic environ-
ments behave in a similar fashion. The satisficing threshold
is set at 0.5 and the elementary building blocks constitute
almost half of the fitness function reward. Thus, one hypoth-
esis to explain why both systems are able to achieve similar
levels of satisficability is that both the dynamic and static
environments are finding basic building blocks at roughly
the same rate. However the dynamic environment outper-
forms the static environment because it is better at find-
ing the intermediate building blocks. The dynamic environ-
ment is getting rewarded for different intermediate building
blocks and thus has a higher selection pressure to find them,
whereas the static environment is mainly under pressure to
find the elementary building blocks and the particular inter-
mediate schemata that are rewarded in its sl-hdf instance.
We do not present the results of Average Satisficability but
it closely mirrors the Best Satisficability, which is interesting
since it is a measure within a run instead of across runs, and
thus there is no guarantee that it would be the same.

The robustness results are also interesting. The static en-
vironment results are not presented since it is almost always
able to maintain its robustness, which means that its fit-
ness is constantly improving. The one exception to this is
that occasionally the best individual suffers some degrada-
tion, probably due to a deleterious mutation. However, for
tδ = 100, every 100 generations the robustness decreases
substantially, but then immediately recovers. Moreover, the
robustness score at each shake changes as the run goes on.
Basically there are three phases to the robustness score,
early on (Generation 0 to Generation 400) the decreases are
small, in the middle generations (Generation 400 to Gen-
eration 1000) they are larger, and in the final generations
(Generation 1000 to Generation 1800) they are small again.
The first phase is because the population has little fitness
value to lose. The population is dominated by individuals
who have a few elementary schemata and maybe one or two
intermediate schemata, thus the ladder shakes have little ef-

fect on them since it only changes intermediate schemata.
At the end of the run the GA has found most of the in-
termediate schemata, but has not assembled them into one
individual, and thus it is not affected much by shakes of the
ladder since there is some individual in the population that
has the new intermediate schemata. In the middle is when
the GA has the largest decreases in robustness, and this is
because at this phase the GA has devoted lots of resources
to exploring particular intermediate schemata. Also, the
Best Robustness score never falls as much as the Average
Robustness score. This is explained above when discussing
the performance results.

The most interesting result is the diversity results. Our
initial hypothesis was that the overall diversity of the static
system would decrease as time went on, indicating that the
population was converging, and that diversity in the regu-
larly changing environment would increase immediately af-
ter a change but then decrease again. However that is not
what happens. Instead it appears that for tδ = 1801 di-
versity (minus some noise) always increases, whereas for
tδ = 100 diversity varies around some average, but decreases
immediately after a ladder shake and then increases until the
ladder is shaken again. Our new hypothesis is that the static
environment’s population is dominated by a few strong indi-
viduals but over time these individuals gain additional mu-
tations that are neutral. This results in diversity increasing.
In the regularly changing environment on the other hand,
when the ladder is shaken, there are just a few individu-
als that contain the proper bit values to work well in the
new environment, and thus these individuals quickly dom-
inate the population. This results in the loss of diversity
of all the previous explorations that were going on, and a
very sharp founder’s effect [9] which results in a quick con-
vergence of the population around these new intermediate
building blocks.

This explanation may seem to contradict the earlier state-
ments that the dynamic environment prevents the prema-
ture convergence (loss of diversity) of the GA on particular
intermediate building blocks. However the diversity mea-
sure that we present here is based on bits, not building
blocks. There are some bits that never matter even in op-
timal strings, since they are wildcards in the highest level
schema, we will call these highest level wildcards (as men-
tioned above the lower limit on this is 100 bits). There are
other bits that are not as important given the current ele-
mentary schemata present in the population and the current
intermediate schemata being rewarded, we will call these
currently quasi-neutral bits. The problem with these bits is
that only if an entire new elementary schemata (8 bits out
of 500) is discovered and the proper combination of it with
a few other elementary schemata occurs, is there enough
of a selection pressure to allow these bits to go to fixation.
Thus, diversity increases in the static environment because
both highest level wildcards and the currently quasi-neutral
bits can mutate without greatly affecting the fitness of an in-
dividual. In the dynamic environment diversity is kept lower
because the shaking of the ladder causes a strong selection
pressure that forces the population to move to a new set
of intermediate schemata, and only after that can the cur-
rently quasi-neutral bits mutate. However the above expla-
nation does not say anything about the diversity of schemata
(building blocks). The dynamic environment has a larger di-
versity of schemata and that is how it is able to outperform

the static environment, whereas the the static environment
quickly converges on a group of intermediate schemata and
does not search for additional combinations.

6. CONCLUSION
The overall goal of our project is to better understand how

the GA works in dynamic environments. We have presented
a set of measures that we feel will help us in better under-
standing the overall behavior of the GA in dynamic environ-
ments. Our observations and results here are on the sl-hdf’s
but we hope to show that these measurements are useful
in a wide variety of environments. Though many of these
measures have been presented before in different formats, by
viewing them as a suite we are able to gain a deeper under-
standing of how the GA performs in dynamic environments.
We plan to continue to conduct systematic controlled obser-
vations of the GA. We feel that this allows us to contribute
to theory by providing a series of regular observations and
to contribute to practice by providing suggestions for a rich
set of environments.

Acknowledgments

We would like to thank the University of Michigan’s Cen-
ter for the Study of Complex Systems for the computer re-
sources that they have provided to us without which this
paper would not have been possible.

7. REFERENCES
[1] Branke, J. Evolutionary algorithms for dynamic

optimization problems: A survey. Tech. Rep. 387,
Institute AIFB, University of Karlsruhe, February
1999.

[2] Branke, J. Memory enhanced evolutionary
algorithms for changing optimization problems. In
Congress on Evolutionary Computation CEC99

(1999), vol. 3, IEEE, pp. 1875–82.

[3] Branke, J. Evolutionary Optimization in Dynamic

Environments. Kluwer Academic Publishers, 2001.

[4] Branke, J., Salihoğlu, E., and Uyar, S. Towards
an analysis of dynamic environments. In To appear in

Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2005) (2005).

[5] Cobb, H. G. An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Tech. Rep. AIC-90-001,
Naval Research Laboratory, Washington, D.C., 1990.

[6] Goldberg, D. E., and Richardson, J. Genetic
algorithms with sharing for multimodal function
optimization. In Proceedings of the Second

International Conference on Genetic Algorithms

(Hillsdale, New Jersey, 1987), J. J. Grefenstette, Ed.,
Lawrence Erlbaum Associates, pp. 41–9.

[7] Grefenstette, J. J. Genetic algorithms for changing
environments. In Parallel Problem Solving from

Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem

Solving from Nature, Brussels 1992) (Amsterdam,
1992), R. Männer and B. Manderick, Eds., Elsevier,
pp. 137–144.

[8] Holland, J. Adpatation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[9] Holland, J. H. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolutionary Computation 8, 4 (2000), 373–391.

[10] Jen, E. Stable or robust? what’s the difference?
Complexity 8, 3 (January / February 2003), 12–18.

[11] Koza, J. R. Genetic Programming. MIT Press,
Cambridge, Massachusetts, 1992, ch. 8.

[12] Mitchell, M. An Introduction To Genetic

Algorithms. MIT Press, Cambridge, Massachusetts,
1997, ch. 1.

[13] Morrison, R. W., and DeJob, K. A. A test
problem generator for non-stationary environments. In
Congress on Evolutionary Computation CEC99

(1999), vol. 3, IEEE, pp. 2047–53.

[14] Rand, W., and Riolo, R. The problem with a
self-adaptative mutation rate in some environments: A
case study using the shaky ladder hyperplane-defined
functions. In To appear in Proceedings of the Genetic

and Evolutionary Computation Conference

(GECCO-2005) (2005).

[15] Rand, W., and Riolo, R. Shaky ladders,
hyperplane-defined functions and genetic algorithms:
Systematic controlled observation in dynamic
environments. In EvoWorkshops 2005 Proceedings

(2005), R. et al., Ed., Lecture Notes In Computer
Science, Springer. In Press.

[16] Simon, H. Models of Man. Wiley, New York, 1957.

[17] Stanhope, S. A., and Daida, J. M. Optimal
mutation and crossover rates for a genetic algorithm
operating in a dynamic environment. In Evolutionary

Programming VII (1998), no. 1447 in LNCS, Springer,
pp. 693–702.

[18] Toffolo, A., and Benini, E. Genetic diversity as an
objective in multi-objective evolutionary algorithms.
Evolutionary Computation 11, 2 (2003), 151–67.

[19] Whitley, D., Rana, S. B., Dzubera, J., and

Mathias, K. E. Evaluating evolutionary algorithms.
Artificial Intelligence 85, 1-2 (1996), 245–276.

[20] Wilson, E. O. The current state of biological
diversity. In Biodiversity, E. O. Wilson and F. M.
Peter, Eds. National Academy Press, Washington,
1988, pp. 3–18.

Learning, Anticipation and Time–Deception in
Evolutionary Online Dynamic Optimization

Peter A.N. Bosman
Centre for Mathematics and Computer Science

P.O. Box 94079
1090 GB Amsterdam

The Netherlands

Peter.Bosman@cwi.nl
ABSTRACT
In this paper we focus on an important source of problem–
difficulty in (online) dynamic optimization problems that
has so far received significantly less attention than the tra-
ditional shifting of optima. Intuitively put, decisions taken
now (i.e. setting the problem variables to certain values)
may influence the score that can be obtained in the future.
We indicate how such time–linkage can deceive an optimizer
and cause it to find a suboptimal solution trajectory. We
then propose a means to address time–linkage: predict the
future by learning from the past. We formalize this means in
an algorithmic framework. Also, we indicate why evolution-
ary algorithms are specifically of interest in this framework.
We have performed experiments with two new benchmark
problems that contain time–linkage. The results show, as a
proof of principle, that in the presence of time–linkage EAs
based upon this framework can obtain better results than
classic EAs that do not predict the future.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Online Computation; G.1 [Numerical Anal-

ysis]: Optimization; I.2 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Algorithms, Dynamic Optimization, Online Op-
timization, Learning, Predicting

1. INTRODUCTION
The majority of the literature on dynamic optimization [11]

involves the tracking of optima as the search space trans-
forms over time. If evolutionary algorithms (EAs) [14] are
used to achieve this goal, issues such as maintaining diver-
sity around (sub)optima and continuously searching for new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

regions of interest that may appear over time are the most
important [1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 19, 24, 27, 31]. The
shifting of optima in dynamic optimization problems is im-
portant to study and to (re)design EAs for. However, there
is another feature of dynamic optimization problems that is
common in real–world problems such as scheduling [10] and
vehicle routing [21, 22, 29] that has received less attention
in the literature. We will call this feature time–linkage.

Intuitively put, the presence of time–linkage in a dynamic
optimization problem causes decisions that are made now,
which are often made on the basis of maximizing a certain
score right now, may influence the maximum score that can
be obtained in the future. This in turn decreases the overall
score obtained in the long run. A typical and illustrative
example is the case of dynamic vehicle routing where the
locations to visit are announced over time. If locations are
clustered, but the clusters themselves are far apart, routing
on the basis of the currently available locations will likely
lead to oscillatory behavior of the vehicles if the announced
locations oscillate between the clusters. More efficient routes
could be formed by keeping vehicles inside clusters and only
occasionally letting them move to another cluster. In addi-
tion, quality of service (e.g. being on time) as determined by
the routing, influences future customer demand. Poor per-
formance will likely not result in repeated orders. Hence,
the revenue of a company over time will be determined by
the current performance, but also by the impact the current
way of routing has on future events.

Time–linkage in dynamic optimization problems is to a
certain extent related to the temporal credit assignment
problem in reinforcement learning [25]. In the temporal
credit assignment problem, the feedback from the system
for an action taken now is returned after a certain delay.
Hence it is uncertain when taking an action what its even-
tual effect is on the environment. The problem then is how
to assign credit to an action taken in the past based upon
feedback received now. Ultimately, the goal in reinforce-
ment learning is to learn a policy for navigating a state
space optimally and the same action may be taken start-
ing from the same state multiple times while performing
reinforcement learning. The difficulty in temporal credit as-
signment is that actions and their corresponding rewards are
not synchronized, which makes reinforcement learning more
difficult. In essence, learning a policy is a static optimiza-
tion problem where policies are solutions and the decisions
taken during the process serve to aid in determining a good
policy. This is fundamentally different from the dynamic
optimization problems that we study in this paper where

the decisions themselves must be made optimally and they
can be made only once. What these two problems have in
common is that in both cases the use of predictions of con-
sequences of actions taken now can help to obtain better
results [23]. Whereas this is already known for the temporal
credit assignment problem in reinforcement learning, in this
paper we show that this is also the case for time–linkage in
dynamic optimization problems.

It is important to note that such dependencies between
decisions over time requires their explicit processing in an
algorithm to ensure the best performance in the long run.
Any approach that does not explicitly anticipate these de-
pendencies and instead only solves the problem for the cur-
rent time will never obtain an optimal result.

In this paper, we present an algorithmic framework for
solving dynamic optimization problems that is specifically
equipped with the possibility of processing time–linkage. To
this end, we propose the incorporation of learning (e.g. sta-
tistical [30] or machine [20]) with the explicit task of pre-
dicting the future to prevent being deceived over time. An
evolutionary approach in which the future is predicted for
dynamic optimization has been proposed before [28]. How-
ever, the cited approach only predicts the future for a single
discrete timestep. As a result, the algorithm cannot process
longer, arbitrary sized, time–linkage intervals. Moreover,
the approach was only tested on a problem that doesn’t
contain the time–linkage aspect. As a result, no significant
difference was observed in using either a good predictor or a
bad predictor. In this paper, we present two new benchmark
problems that contain time–linkage and show, as a proof of
principle, how they can be solved using an instance of our
proposed framework.

It should be noted that it is not our goal in this paper
to propose a new state–of–the–art EA for dynamic opti-
mization. Instead, we want to point out the influence that
time–linkage can have and how, in a general manner, EAs
can be equipped with tools to cope with time–linkage.

The remainder of this paper is organized as follows. In
Section 2 we characterize online dynamic optimization prob-
lems. In Section 3 we discuss solving online dynamic op-
timization problems by only taking into account the cur-
rent situation. Section 4 describes the advantages of solv-
ing online dynamic optimization problems by also taking
into account future implications of decisions. In Section 5
we describe our algorithmic framework and in Section 6 we
present results of running experiments with EAs based on
this framework. Finally, possible directions for future re-
search as well as conclusions are presented in Section 7.

2. ONLINE DYNAMIC OPTIMIZATION

2.1 Dynamic optimization
In general, optimization problems can be defined as:

max
ζ∈P

{Fγ(ζ)} subject to Cγ(ζ) = feasible (1)

where Fγ : P → O is the optimization function, P is the
parameter space, O = R

no is the no–dimensional objective
space, Cγ : P→ {feasible, infeasible} is the constraint func-
tion and γ ∈ G are problem–specific parameters.

In dynamic optimization the optimization function and
the constraint function are functionals where the function
space to optimize over consists of functions ζ(t) of the time
variable t ∈ T = [0, tend], tend

> 0:

Fγ(ζ(t)) =

t
end
Z

0

F
dyn

γdyn(t)
(ζ(t)) dt (2)

Cγ(ζ(t))=

feasible if ∀t∈ [0, tend]: C
dyn

γdyn(t)
(ζ(t))= feasible

infeasible otherwise

where the convention that
R

b

a
(f0(x), . . . , fno−1(x))dx =

“

R

b

a
f0(x)dx, . . . ,

R

b

a
fno−1(x)dx

”

is used. Note that the dy-

namic variants of the optimization– and constraint function
have parameters γdyn (t) that may change over time. Note
that they may be dependent on earlier decisions by using
the time variable indirectly, i.e. through a function of ζ(t).

In the above time is assumed to be continuous. How-
ever, the parameters do not have to change continuously
over time. In that case, the integral can be written as a dis-
crete sum and the dynamic problem is said to be discrete.

2.2 The online case
Equation 2 can still be solved in an offline manner by

searching for the best function ζ(t) either in parametric or
time–discretized form. It is the online variant or treatment
of dynamic optimization that is the most interesting and the
most practical, but unfortunately also the most difficult.

In the online case the dynamic optimization problem must
be solved as time goes by. In other words, solutions cannot
be evaluated for any future time t > t

now. Hence, decisions
on what values to use for the variables at the current time
t
now have to be made continuously. The only thing that can

be evaluated is how well the algorithm has done so far, i.e.
the goodness of the history and the present:

H
dyn(tnow

, ζ(t)) =

t
now
Z

0

F
dyn

γdyn(t)
(ζ(t)) dt (3)

2.3 System influence and control influence
We distinguish between two types of influence that cause

the dynamic optimization problem to change with time:

1. System influence. This is the type of influence that the
problem solver has no control over. It is the part of the
dynamic system that changes over time, regardless of
choices made for the problem variables. It is the inher-
ent reason why the optimization problem is dynamic
and hence why the optimization function parameters
γdyn (t) are a function of time.

2. Control influence. This type of influence is the re-
sponse of the dynamic system at time tnow to the choices
of the problem variables made in the past, i.e. the tra-
jectory ζ(t) with t ∈ [0, tnow).

Most EAs designed for dynamic optimization problems
studied in the literature are specifically designed to cope
with system influences. Without taking into account the
(possible) presence of control influence however, the online
dynamic optimizer risks falling victim to time–deception.

3. OPTIMIZING PRESENT:
VICTIM TO TIME–DECEPTION

3.1 The approach
An often–used approach to solving online dynamic opti-

mization problems is to optimize Hdyn(tnow
, ζ) continuously

or whenever an event resulting from system influence takes

place. Since we cannot change the past, we can only vary
the settings of the variables at tnow. Hence, the optimiza-
tion problem to solve at time t

now using this approach is
actually static: optimize the value of the dynamic optimiza-
tion function at time tnow. To cope with a variety of sys-
tem influences when using EAs, diversity preserving mecha-
nisms are often used to prevent complete convergence as are
other techniques such as detecting (major) changes in the
landscape to trigger a restart or forking off multiple sub–
populations from a general optimizer to search various parts
of the search space more closely as they become more inter-
esting over time.

3.2 How bad can it be?
Unfortunately, the answer is arbitrarily bad. The most im-

portant reason for this is the presence of control influence.
Of course system influence could make the problem change
in a random way, clearly already making the problem arbi-
trarily difficult. However, even if system influence is smooth
and the landscape is not–complex, optimizing only the cur-
rent situation can lead to arbitrarily bad results. Consider
for instance the following unconstrained l–dimensional dy-
namic optimization problem; a simple adaptation of the
sphere problem that shifts with time:

max
ζ(t)

8

>

<

>

:

t
end
Z

0

ϕ(ζ(t), t)dt

9

>

=

>

;

(4)

where

ϕ(ζ(t), t)=

(

−

P

l−1

i=0
(ζ(t)i−t)

2 if 0≤ t<1

−

P

l−1

i=0
(ζ(t)i−t)

2 + ψ (|ζ(t− 1)i|) otherwise

Now, when optimizing only the present in an online setting,
a value for ζ(tnow) is chosen by maximizing ϕ(ζ, tnow). But
for any t, ϕ(ζ, t) is just a hyperparabola with a unique max-
imum for ζ(t)i = t. For 0 ≤ t < 1 the associated value is 0

and for t ≥ 1 this value is −
P

l−1

i=0
ψ (|ζ(t− 1)i|). It is this

construction that deceives an approach in which only the
present is optimized because then the actual value of func-
tion ψ(·) is not taken into account although it may decrease
at an arbitrary rate, depending on its form.

-60

-50

-40

-30

-20

-10

 0

 0 1 2 3 4 5

PSfrag replacements

ψ(x) = x2, ζ
dyn
ζ

(t)0 = t

ψ(x) = ex − 1, ζ
dyn
ζ

(t)0 = t

ψ(x) = ∗, ζ
dyn
ζ

(t)0 = 0

F
d
y
n

γ
d
y
n
(
t
)
(ζ

(t
))

t

Figure 1: Illustration of the optimization values ob-

tained for different variable trajectories and differ-

ent forms of ψ(·) in the case of l = 1 and t
end = 5.

If however ζ(t)i = 0 is simply always chosen, then, assum-
ing that ψ(0) = 0, the optimization value that is reached is

l
R

t
end

0
−t

2
dt = − l

3

`

t
end

´

3

, regardless of function ψ(·).

Now if for instance ψ(x) = x
2, the result is better if only

the present is optimized than if just ζ(t)i = 0 is chosen. Al-
though a better result can still be obtained because ζ(t)i = 0
is not the optimal solution, the penalty of time–deception is
only small. But if ψ(·) is a higher–order increasing function,
such as for instance ψ(x) = e

x
− 1, a (much) worse opti-

mization value will be obtained. A graphical illustration of
the difference in obtained optimization values for different
variable trajectories for l = 1 is given in Figure 1.

Since in the online case the behavior of the optimization
function in the future is not known, optimizing only the
present can thus significantly reduce overall solution quality.
Hence, optimizing only the present is not a good approach
unless it the problem is provably not time–deceptive.

4. OPTIMIZING PRESENT AND FUTURE:
LEARN TO AVOID TIME–DECEPTION

4.1 The approach
The approach of optimizing only the present is deceived

over time because the true problem definition (i.e. equa-
tion 2) is not used. Future changes that occur as a result
of decisions made earlier are neglected. To remedy this,
optimization over future choices is required. In the online
case however, an evaluable future is absent. Hence the only
option is to predict the future. The available information
to base that prediction upon besides problem–specific infor-
mation is information collected in the past. The better the
prediction, the closer the algorithm can get to optimality.

Summarizing, the optimization problem to be solved using
this approach at any time tnow is based on an approximation
of the value of the dynamic optimization function over a
future timespan of length t

plen:

max
ζ(t)

8

>

>

<

>

>

:

min{tnow
+t

plen
,t

end
}

Z

tnow

F̂
dyn
α (t, ζ(t)) dt

9

>

>

=

>

>

;

(5)

s.t. ∀t∈ [tnow
,min

˘

t
now+tplen

, t
end

¯

] : Ĉ
dyn
α (t, ζ(t)) = feasible

where F̂dyn
α (tnow

, ζ(tnow)) = F
dyn

γdyn(tnow)
(ζ(tnow))

4.1.1 Prediction in the complete BBO case
The complete BBO (Black–Box Optimization) case is the

most general case. No prior knowledge on the problem to be
solved is assumed other than the number of variables and
their types. Additional knowledge can only be gained by
evaluating solutions. Since nothing is known about the op-
timization function, only a a very general form of induction
can be performed to predict future function values.

We assume that the number of variables and their seman-
tics do not change. To predict the (expected) value of the
dynamic optimization function, an approximation based on
previously evaluated solutions can be used. Computing this
approximation is a (statistical) learning problem. The avail-
able data in the learning problem is:

ndata−1
[

i=0

n““

t
i
, ζ

i

”

,y
i

”o

(6)

where ti, 0 < t
i
≤ t

now is the time–component of the i–th
pattern in the data set, ζi is the variable–value–component
and yi contains the value of the dynamic optimization func-
tion for ζi at time ti. Note that the use of an EA can greatly
add to the availability of data and can hence increase the
accuracy of the predictions because a (diverse) population
is used. Each population member can serve as a pattern.

The actually chosen trajectory ζ(t), t ∈ [0, tnow) is of course
also available to the predictor. Parts of this history–trajec-
tory can be integrated into the dataset to be able to process
time–linkage, i.e. dependencies of the dynamic optimization
function on values actually chosen for the problem variables
in the past.

The goal of learning is to estimate the value of the dy-
namic optimization function for future times (assuming that
the constraint function does not need to be estimated) by
minimizing the generalization error over the timespan that
contains the data to learn from. In the single–objective case:

min
α∈A

8

<

:

t
max
Z

tmin

“

F
dyn

γdyn(t))
(ζ(t))− F̂

dyn
α (ζ(t))

”

2

dt

9

=

;

(7)

where
(

t
min = mini∈{0,1,...,ntrain−1}{t

i
}

t
max = maxi∈{0,1,...,ntrain−1}{t

i
}

and α ∈ A are the parameters of the function class from
which to choose the approximation.

4.1.2 Prediction in the partial BBO case
In the presence of problem–specific information, the learn-

ing task may be less involved which may improve the relia-
bility of the predictions. A typical case is when the function
can be evaluated for any 0 ≤ t < t

end, as long as the required
parameters are set. Then, if we are able to predict the values
for the parameters accurately, we automatically get an ac-
curate function evaluation. The less parameters to estimate,
the better the hope of obtaining good approximations.

4.1.3 Prediction length and prediction base
Two key issues are how far into the future predictions

should be made (prediction length, denoted t
plen) and in-

formation from how far in the past should be used to base
the prediction upon (prediction base, denoted t

pbase indi-
cating generally collected data and history length, denoted
t
hlen indicating the history of the actually chosen trajectory).

A proper choice for the prediction length and the history
length depends on the time–linkage timespan, i.e. how far
into the future do current choices have a significant influ-
ence? Certainly this is also the minimal choice for the pre-
diction base. However, larger values for prediction length,
prediction base and history length may be required to look
beyond the deception and observe the general dynamics of
the optimization problem.

Another issue that influences the proper choice for the
prediction length is the reliability of predictions. As pre-
dictions are made further into the future, they are bound to
become less reliable, giving a trade–off between the required
prediction length as a result of time–linkage and the feasible
prediction length as a result of reliability issues.

4.2 How good can it be?
Fortunately, the answer is arbitrarily good. However, al-

though it is intuitively clear that the optimum is attainable,
this does require perfect predictions. Then, the problem
can be solved to optimality by optimizing at any time the
integral over the predictions with t

plen = t
end
− t

now.
The strength of the optimization method (with respect

to the problem at hand) is still a key component to suc-
cess. However, the success of the approach now also heavily
depends on the strength of the prediction method. Bad
predictions may even lead to worse results than are ob-
tained by optimizing only the present. Hence, careful de-
sign and performance assessment of methods that predict
the future are certainly called for. In the following section
we present a general framework for solving dynamic opti-
mization problems by incorporating learning techniques as
described above.

5. ALGORITHMIC FRAMEWORK
5.1 Components
5.1.1 Solver

The solver, denoted S, is an optimization algorithm, pos-
sibly equipped with tools to allow for adaptability as time
changes. The function to be optimized is provided by the
function component discussed in Section 5.1.3.

5.1.2 Predictor
The predictor, denoted P , is a learning algorithm that

approximates either the optimization function directly or
several of its parameters. The data set from which to es-
timate a function is provided by the database component
discussed in Section 5.1.4. When called upon, the predic-
tor returns either the predicted function value directly or
predicted values for parameters.

5.1.3 Function
The function, denoted F , is the optimization function to

be maximized by the solver. If the future is not to be taken
into account, this function is just the dynamic optimiza-
tion function. The trajectory of the variables in the pre-
dicted future represents the variables to be optimized by
the solver. To be able to compute the optimization value
of such a future trajectory, a solution for each possible time
between tnow and min

˘

t
now + t

plen
, t

end
¯

is needed. It is con-
venient to divide the trajectory–future interval as well as
the trajectory–history interval into non–zero sub–intervals
of length tpint and thint respectively. The optimization value
then is a discrete approximation of the integral over the
future interval where future predictions are in addition to
other data based on a discretized past trajectory. The num-
ber of variables that the solver needs to optimize over is the
union of all sets of variables that pertain to the dynamic
optimization function at the beginning of the sub–intervals.
The dynamic optimization function is used to compute the
optimization value that pertains to the current time and the
predictor is used to predict the future.

5.1.4 Database
The database, denoted D, is a collection of patterns upon

which the predictor bases its predictions. Patterns are added
either by the function component (i.e. in the complete BBO
case whenever a new solution is evaluated) or by the system

whenever an event occurs that is related to the parameters
of interest (i.e. in the partial BBO case). All patterns are
time–stamped. The database only contains patterns with a
timestamp t for which t

now
− t

pbase
≤ t ≤ t

now holds.

5.1.5 Timer
The timer, denoted T , can provide the current time tnow.

5.2 Dividing resources
Clearly, optimization becomes more involved if we also

want to take into account predictions of the future. Not
only does the number of variables to optimize over increase
(at least if we regard the complete BBO case), but also ad-
ditional time is required for learning to make predictions.

It is important to note that there is a trade-off between
how much time should be spent on running the solver and
how much time should be spent on running the predictor. To
allow for a scheme that implements this trade–off we propose
to implement the solver and the predictor components as
threads. This allows both for a scheme in which the solution
component and the predictor component run simultaneously
as well as a scheme where the predictor and solver are run
sequentially by synchronization using signals. An example
of the second scheme is when the solver sends a signal when a
certain number of generations have passed and subsequently
awaits completion of the learning task before continuing.

5.3 Definition
To complete the framework, in this section we provide an

algorithmic description of how the components are used to-
gether to solve online dynamic optimization problems. First,
the trajectory is made empty and all the components are ini-
tialized. Then, the solver and the predictor are started and
the actual optimization begins. Although the solver may
store a solution into the trajectory at any time (e.g. at the
end of each generation for an EA), we want to ensure that
at least a few solutions are stored in the trajectory. To this
end, the solver is requested for a solution at regular inter-
vals of length t

sint. These requests are issued until tend is
reached. Then, the solver and the predictor are halted and
the resulting trajectory is returned:

Framework(S, P, F,D, T, tend
, t

pbase
, t

plen
, t

sint
, t

pint)

1 Z ← ()
2 S.Initialize(S, P, F, . . . , tpint)
3 P.Initialize(S,P, F, . . . , tpint)
4 F.Initialize(S,P, F, . . . , tpint)
5 D.Initialize(S, P, F, . . . , tpint)
6 T.Initialize(S, P, F, . . . , tpint)
7 S.Start()
8 P.Start()
9 do

9.1 t
now
← T.GetTime()

9.2 ζ ← S.RequestSolution()
9.3 Z ← Z t ((ζ, tnow))
9.4 t

next
← min{tnext + t

sint
, t

end
}

9.5 AwaitTime(tnext)
while tnow

≤ t
end

10 S.Stop()
11 P.Stop()
12 return(Z)

The final part of the framework that is of a specific form is
the way in which a solution in the form of a future trajectory
is evaluated. It is here that the prediction component can
influence the way in which the solver searches for a solution
at tnow because the predictor is used to evaluate all parts of
the trajectory that pertain to future times:

F.Evaluate((ζ0
, ζ1

, . . . , ζdt
plen

/t
pinte−1))

1 t
now
← T.GetTime()

2 y ← t
pintF

dyn

γdyn(tnow,Z(tnow,ζ))

`

ζ0
´

3 if CompleteBBOCase() then

3.1 D.AddPattern(((ζ0
, t

now),y))
3.2 for i← 1 to dtplen

/t
pint
e − 1 do

3.2.1 y ← y + t
pint

P.Predict(ζi
, t

now + i·t
pint)

4 else

4.1 for i← 1 to dtplen
/t

pint
e − 1 do

4.1.1 γpredicted
← P.Predict(ζi

, t
now + i·t

pint)
4.1.2 y ← y + t

pint
F

dyn

γpredicted

`

ζi
´

5 return(y)

6. EXPERIMENTS
6.1 EA

The optimization problems that we use are real–valued,
but at any point in time not very daunting as the most im-
portant thing we focus on is time–linkage. Therefore, we
opt for a simple and fast real–valued EA. We use an EDA
(Estimation–of–Distribution Algorithm) for real–valued op-
timization [5, 18] without learning dependencies between
problem variables. The main difference with traditional EAs
is that in EDAs a probabilistic model is learned using the
selected solutions. The probabilistic model can capture var-
ious properties of the optimization problem. By drawing
new solutions from the probabilistic model these properties
can be exploited to obtain more efficient optimization.

In this paper we performed experiments with a real–valued
EDA based on the normal distribution in which each vari-
able is taken to be independent of all the other variables.
Such an EDA is also known as the naive IDEA (Iterated
Density–Estimation Evolutionary Algorithm) [6]. In the
naive variant the mean and standard deviation of a one–
dimensional normal distribution are estimated from the se-
lected solutions for each variable separately. A new solution
is constructed by sampling one value per variable from the
associated one–dimensional normal distribution. Since the
optimization problem is dynamic, we prevented total pre-
mature convergence by bounding the estimated variance for
each variable to a minimum of 0.1. Finally, all results were
averaged over 100 independent runs.

6.2 BBO: Time–deceptive numerical problem
6.2.1 The problem

We first investigate the real–valued time–deceptive prob-
lem introduced in Section 3, Equation 4. We regard two
variants by setting ψ(x) = x

2 and ψ(x) = e
x
− 1. Moreover,

we have used a dimensionality of l = 1.

6.2.2 Instantiating the framework
We used three different predictor instances. In this prob-

lem the goal of the predictor is to predict the value of the
optimization function directly. The first instance is opti-
mal, i.e. it is the true value of the dynamic optimization
function. The second instance estimates a linear function
and the third instance estimates a quadratic function. The
latter two estimates are computed using a least–squares ap-
proximation. For clarity: the linear function for example is
estimated from a set of patterns with timestamps at most
t
pbase time ago. Each pattern ((ti, ζi),yi) is complemented

with the actually chosen trajectory in the past up to time
t
i
−t

hlen in steps of thint, i.e. if thlen = t
hint = 1, the pattern is

transformed to ((ti, ζi
, ζ(ti − 1)), yi). The linear estimator

now is constructed from the transformed dataset.

Only the function class used by the quadratic estima-
tor contains the target function for the case of ψ(x) = x

2.
Hence, effective future predictions are possible with proper
estimations in this case, preventing time–deception. For the
case of ψ(x) = e

x
− 1, neither of the estimators can repre-

sent the target function. However, the quadratic estimator
should be capable of far better approximations.

Since we present a proof–of–principle, we do not investi-
gate the selection of tplen during optimization. Instead, we
fix it to either 0 that corresponds to the traditional approach
of not looking into the future or to the optimal value of 1.
Moreover, we set thlen = t

hint = t
pbase = t

pint = t
plen.

6.2.3 Results
A population size of 25 was experimentally found to be

adequate for solving the optimization problem in each time
step. We set tend = 10 and advanced time by a timestep of
0.001 every 25 evaluations (i.e.every generation). Since the
database contains all patterns over a timespan of length 1
and the timesteps are of size 0.001, the size of the database
can become quite large. Although this allows for a higher
precision of estimations, it also results in large time require-
ments for the learning task. Learning was performed after
a predefined number of generations had passed. To investi-
gate the impact on the overall quality of optimization, we
performed experiments with various values for the number
of generations between learning phases: 1, 10, 100 and 1000.

The average trajectories obtained for the quadratic and
the exponential time–deceptive numerical problem are shown
in Figures 2 and 3 respectively. The overall result (i.e. the
integrated function over t ∈ [0, 10]) is tabulated in Table 1.

Theoretically, under the assumption that the length of
the time–linkage is known, the optimal trajectory can be
obtained if the target function is in the function class used
by the learner and the learner is competent in that it will
indeed find that target when learning. In the case of the
quadratic time–deceptive numerical problem this is experi-
mentally verified by the results. The use of the quadratic es-
timator leads to results that are very close to optimality (i.e.
when the future is known). The discrepancy is explained
by the startup time the learner needs before being able to
construct a model based upon previously encountered data.
Moreover, results improve if learning is performed more fre-
quently because the model is then constructed earlier.

In the case of the exponential time–deceptive numerical
problem, neither the linear nor the quadratic estimator pro-
vide a function class that contains the target exponential
function. However, for the time–linkage in this problem that
depends only on a single point in the past over a distance of
1, a quadratic function can quite closely approximate an ex-
ponential function. For this reason the use of the quadratic
estimator leads to good results here as well, albeit not opti-
mal. Small deviations from the optimal trajectory as a result
of a small learner error can indeed be seen in Figure 3. The
linear estimator is not capable of approximating a quadratic
function well. For the exponential function, linear estima-
tion is even worse. The use of the linear estimator therefore
leads to far worse results. An even more important point
to note is that the results using the linear estimator can be
even worse than when prediction is not used because of the
large errors in the predictions. Hence, another important
issue in using learning for online dynamic optimization is
the assessment of the reliability of predictions and the use
of predictions only if this reliability is large enough.

Linear estimator Quadratic estimator

F
d
y
n

γ
d
y
n
(
t
)
(ζ

(t
))

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0 2 4 6 8 10

PSfrag replacements
t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 2 4 6 8 10

PSfrag replacements
t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

ζ
(t

) 0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

PSfrag replacements

t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

PSfrag replacements

t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

PSfrag replacements
t

Learn every gen.

Learn every 10 gen.
Learn every 100 gen.

Learn every 1000 gen.

Future known
Future ignored

Figure 2: Results averaged over 100 runs on the

time–deceptive numerical problem with ψ(x) = x
2.

The results lead to the expected conclusion that compe-
tent learners are called for and that reliability of predic-
tions is a major issue. The competence of the learner in
the BBO case depends on general/overall competence which
is very hard to obtain. In the problem–specific case how-
ever, achieving learner competence may be easier because
the shape of the model to be learned (i.e. parametric learn-
ing) is known from domain knowledge, ensuring that the
target function is in the function class used by the learner.

6.3 Partial BBO: dynamic pickup problem
6.3.1 The problem

The second problem that we investigate is a discrete par-
tial BBO problem. Although it is based on a very simple
model, the time–linkage in the problem is large: any decision
made now influences the result of the dynamic optimization
function for all future timesteps. The intuitive description is
that at timestep t a truck is located at xtruck(t) and a pack-
age appears at location xpackage(t). It must now be decided
whether to send the truck to go and pick up the package
or to drive elsewhere. If the package is not picked up, it
disappears. Picking up the package pays a value of 1, but

Linear estimator Quadratic estimator
−

lo
g

“

−
F

d
y
n

γ
d
y
n
(
t
)
(ζ

(t
))

”

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 0 2 4 6 8 10

PSfrag replacements
t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

-10

-5

 0

 5

 10

 15

 0 2 4 6 8 10

PSfrag replacements
t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

ζ
(t

) 0

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

PSfrag replacements

t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10

PSfrag replacements

t

Learn every gen.
Learn every 10 gen.

Learn every 100 gen.
Learn every 1000 gen.

Future known
Future ignored

PSfrag replacements
t

Learn every gen.

Learn every 10 gen.
Learn every 100 gen.

Learn every 1000 gen.

Future known
Future ignored

Figure 3: Results averaged over 100 runs on the

time–deceptive numerical problem with ψ(x) = e
x
−1.

driving costs a value equal to the Euclidean distance trav-
eled. The number of packages is npackages = t

end + 1, i.e.
the timesteps are of size 1. A solution at time t now is a
tuple ζ(t) = (b(t),xalternative(t)) where b ∈ {0, 1} indicates
whether the package at time t should be picked up (b(t) = 1)
and xalternative(t) is the location to drive to if the package is
not to be picked up (b(t) = 0). Mathematically:

F
dyn

γdyn(t)

`

(b(t),xalternative(t))
´

= (8)

1− ‖ xpackage(t)− xtruck(t) ‖ if b(t) = 1

0− ‖ xalternative(t)− xtruck(t) ‖ otherwise

where

x
truck(t) =

8

>

<

>

:

∼

Q

l−1

i=0
N (0, 1) if t = 0

xpackage(t− 1) if t = 1 and b(t− 1) = 1

xalternative(t− 1) otherwise

For simplicity, the model used to generate new package lo-
cations is a univariately factorized normal distribution with
zero mean and unit variance, i.e. xpackage(t) ∼

Q

l−1

i=0
N (0, 1).

ψ(x) = x
2

ψ(x) = e
x
− 1

Future known −1.21846·102
−1.55430·102

Future ignored −2.42940·102
−8.08692·103

Learn every gen. −1.09434·103
−2.04922·1065

Learn every 10 gen. −1.18946·103
−7.93853·10172

Learn every 100 gen. −9.98665·102
−3.02553·1096

L
in

ea
r

Learn every 1000 gen. −1.38907·102
−1.22634·1086

Learn every gen. −1.22010·102
−1.55966·102

Learn every 10 gen. −1.22013·102
−1.55969·102

Learn every 100 gen. −1.22062·102
−1.56069·102

Q
u
a
d
ra

ti
c

Learn every 1000 gen. −1.23178·102
−1.58092·102

Table 1: Overall results (i.e.
R

t
end

0
F

dyn

γdyn(t)
(ζ(t)) dt) on

the time–deceptive problem.

6.3.2 Instantiating the framework
A very simple strategy is given by a hillclimber. The

decision taken at each timestep is to move only to pick up
a package and moreover only to do so if the distance to the
package is less than 1. In other words, a negative score is
never accepted.

We have compared the hillclimber with an EA instance
of the general framework. Since the optimization function
is completely known with the exception of xpackage(t), the
problem is only partially a BBO problem. Hence, we can
restrict the prediction task to predicting future values for
xpackage(t). We have performed experiments where we as-
sumed the distribution of xpackage(t) to be known and where
we estimated this distribution from data, assuming only that
the data is indeed normally distributed.

In theory, the influence of any decision at time t influences
the outcome of the dynamic optimization function at any
time t

′
> t. However, the larger t

′
− t, the smaller the

remaining impact on the situation at time t′. Although in
theory it would be optimal to set tplen to tend with tpint = 1,
such a choice gives rise to two practical problems. First, a
large tplen gives to extremely large trajectories to optimize.
This drastically increases the resources required by the EA
to solve the problem. Second, since the future is inherently
stochastic, a proper estimation of the expected future profits
requires averaging evaluation over multiple calls. Moreover,
the variability of these outcomes increases as tplen increases
because more uncertainty is introduced. Hence, unless an
infinite number of calls is used, a smaller value for ttplen is
expected to be optimal in practice.

To prevent large trajectories to be subject to evolution in
the EA, we choose a simplified approach by choosing a very
special form for the predictor. The predictor predicts the
result of the dynamic stochastic optimization function up to
a timespan of tplen into the future by using the hillclimber
instead of explicit solutions for each timestep provided by
the EA. The EA only provides a solution for the current
time. Although better results may be obtained by allowing
the EA also to evolve future solutions, using the hillclimber
to predict the future can already give good solutions. The
reason is that using the hillclimber can already give a good
impression of the quality of a certain starting point. Since
the dynamic optimization function is stochastic, it should
be noted that multiple calls are required to estimate the
expected future payoff even when evaluating the future using
the hillclimber. To reduce the number of statistical errors,
the best evolved decision is compared to the default choice
of doing nothing, i.e. b(tnow) = 0 and xalternative(tnow) =

xtruck(tnow). Only if the mean fitness of the best evolved
decision averaged over 100 calls to the dynamic optimization
function is statistically significantly larger than the mean
fitness of the default decision, the evolved decision is used.
The statistical hypothesis test used to this end is the Aspin–
Welch–Satterthwaite (AWS) T–tests at a significance level
of α = 0.05. The AWS T–test is a statistical hypothesis test
for the equality of means in which the equality of variances
is not assumed [17].

6.3.3 Results
A population size of 100 was experimentally found to be

adequate for solving the optimization problem in each time
step. We set tend = 100 and advanced time by a timestep of
1 every 5000 evaluations (i.e. every 50 generations). Since
only one pattern was added to the dataset each timestep,
and only a normal distribution is estimated from data, learn-
ing can be done very fast for this problem. Therefore learn-
ing was performed whenever time was advanced. The final
results (i.e. the integral of the dynamic optimization func-
tion over [0, 100]) are shown in Figure 4 for different values
of the prediction length t

plen. Indeed as expected and mo-
tivated earlier in the previous subsection, the best value for
t
plen is not the maximum length of tend, but a smaller length,

even if the model is fully known.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 0 20 40 60 80 100

PSfrag replacements

tplen

F
in

a
l
sc

o
re

Hillclimber
EA - model known

EA - model estimated if tnow ≥ 1
EA - model estimated if tnow ≥ 10

Figure 4: Final score (i.e.
R

t
end

0
F

dyn

γdyn(t)
(ζ(t)) dt) aver-

aged over 100 runs on the dynamic pickup problem

as a function of the prediction length.

The trajectory of the cumulative fitness for the best value
and maximum value of tplen are shown in Figure 5. This fig-
ure also reveals why the use of information about the future
results in a better result in the end. All algorithms other
than the hillclimber are willing to accept negative scores in
a single turn if the prospect on future gains is larger. This
of course happens if the truck moves more towards the ori-
gin as the density of the normal distribution is the highest
there. The better strategy adopted by the system is thus
to initially move towards the region close to the origin and
never move too far away from it even if a profitable pickup
can be made in a single turn by doing so.

Finally, it is again interesting to note that postponing the
use of learning until a higher reliability is obtained leads to
better results, indicating again the importance of reliable
predictions in the proposed approach.

-2

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

PSfrag replacements

tnow

C
u
m

u
la

ti
v
e

sc
o
re

Hillclimber
EA, model known, tplen =5

EA, model known, tplen =100
EA, est. if tnow≥1, tplen =3

EA, est. if tnow≥1, tplen =100
EA, est. if tnow≥10, tplen =9

EA, est. if tnow≥10, tplen =100

Figure 5: Cumulative score (i.e. H
dyn(tnow

, ζ)) aver-

aged over 100 runs on the dynamic pickup problem.

7. DISCUSSION AND CONCLUSIONS
In this paper we have highlighted a specific source of dif-

ficulty in online dynamic optimization problems. We have
labeled the difficulty time–linkage. In the worst case time–
linkage can lead to time–deception. In that case any opti-
mization algorithm is mislead and finds suboptimal results
unless future implications of current decisions are taken into
account. To tackle problems exhibiting this type of problem
difficulty, we have proposed a framework that learns to pre-
dict the future and optimizes not only the current situation
but also future predicted situations. We have proposed and
used two new benchmark problems, but a larger suite of
problems containing time–linkage is called for and should
become a standard in dynamic optimization research.

In our experiments, we have fixed the future prediction
timespan as well as the history data timespan. An inter-
esting question is whether the timespans required to pre-
vent deception can be measured during optimization. This
calls for techniques for time–linkage identification in a sim-
ilar sense as gene–linkage identification techniques are re-
quired in standard GAs to prevent deception as a result of
dependencies between a problem’s variables [12, 26].

Another important and related issue is how quickly the
reliability of prediction degrades into the future. Even if we
know how far into the future we must predict, it is hardly of
any use to use these predictions if they are unreliable. The
prediction reliability is influenced mostly by the difficulty
of the function to predict (i.e. relatively steady or heavily
fluctuating) and by the availability of data.

Ultimately, the expansion of dynamic EAs to process time–
linkage information should be integrated with current state–
of–the–art dynamic EAs that are capable of tackling other
important problem difficulties that arise in dynamic opti-
mization such as the overtaking of the optima by other local
optima as time goes by. An EA that is capable of efficiently
tackling both sources of problem difficulty is likely to be
robust and well–suited to be used in practice and hence to
be tested in real–world scenario’s. To that end however, a
further expansion that makes the approach well–suited for
the multi–objective case is also likely to be crucial.

8. REFERENCES
[1] M. Andrews and A. Tuson. Diversity does not necessarily

imply adaptability. In J. Branke, editor, Proceedings of the

Workshop on Evolutionary Algorithms for Dynamic

Optimization Problems at the Genetic and Evolutionary

Comp. Conference – GECCO 2003, pages 24–28, 2003.

[2] P. J. Angeline. Tracking extrema in dynamic environments.
In P. J. Angeline et al., editors, Sixth Int. Conf. on Evol.

Programming, pages 335–345, Berlin, 1997. Springer Verlag.

[3] D. V. Arnold and H.-G. Beyer. Random dynamics optimum
tracking with evolution strategies. In J.J. Merelo et al.,
editors, Parallel Problem Solving from Nature – PPSN VII,
pages 3–12, Berlin, 2002. Springer Verlag.

[4] T. M. Blackwell. Particle swarms and population diversity
II: Experiments. In J. Branke, editor, Proceedings of the

Workshop on Evolutionary Algorithms for Dynamic

Optimization Problems at the Genetic and Evolutionary

Comp. Conference – GECCO 2003, pages 14–18, 2003.

[5] P. A. N. Bosman and D. Thierens. Advancing continuous
ideas with mixture distributions and factorization selection
metrics. In M. Pelikan and K. Sastry, editors, Proc. of the

Optimization by Building and Using Probabilistic Models

OBUPM Workshop at the Genetic and Evolutionary

Comp. Conference – GECCO 2001, pages 208–212, 2001.

[6] P. A. N. Bosman and D. Thierens. The naive MIDEA: a
baseline multi–objective EA. In C. A. Coello Coello et al.,
editors, Evolutionary Multi–Criterion Optimization –

EMO’05, pages 428–442, Berlin, 2005. Springer–Verlag.

[7] J. Branke. Memory enhanced evolutionary algorithms for
changing optimization problems. In Proceedings of the 99

Congress on Evolutionary Computation – CEC 99, pages
1875–1882, Piscataway, New Jersey, 1999. IEEE Press.

[8] J. Branke. Evolutionary Optimization in Dynamic

Environments. Kluwer, Norwell, Massachusetts, 2001.

[9] J. Branke, T. Kaußler, C. Schmidt, and H. Schmeck. A
multi–population approach to dynamic optimization
problems. In I. C. Parmee, editor, Adaptive Computing in

Design and Manufacture – ACDM 2000, pages 299–308,
Berlin, 2000. Springer Verlag.

[10] J. Branke and D. Mattfeld. Anticipation in dynamic
optimization: The scheduling case. In M. Schoenauer et al.,
editors, Parallel Prob. Solving from Nature – PPSN VI,
pages 253–262, Berlin, 2000. Springer Verlag.

[11] M. R. Caputo. Foundations of Dynamic Economic

Analysis. Cambridge University Press, Cambridge, 2005.

[12] K. Deb and D. E. Goldberg. Sufficient conditions for
deception in arbitrary binary functions. Annals of

Mathematics and Artificial Intelligence, 10:385–408, 1994.

[13] S. M. Garrett and J. H. Walker. Genetic algorithms:
Combining evolutionary and ’non’–evolutionary methods in
tracking dynamic global optima. In W. B. Langdon et al.,
editors, Proceedings of the Genetic and Evolutionary

Computation Conference – GECCO 2002, pages 359–366.
Morgan Kaufmann, 2002.

[14] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learing. Addison Wesley,
Reading, Massachusetts, 1989.

[15] J. Grefenstette. Evolvability in dynamic fitness landscapes:
a genetic algorithm approach. In Proceedings of the 99

Congress on Evolutionary Computation – CEC 99, pages
2031–2038, Piscataway, New Jersey, 1999. IEEE Press.

[16] K. De Jong. Evolving in a changing world. In Z. W. Ras
and A. Skowron, editors, Foundations of Intelligent

Systems, pages 512–519, Berlin, 1999. Springer Verlag.

[17] M.G. Kendall and A. Stuart. The Advanced Theory Of

Statistics, Volume 2, Inference And Relationship. Charles
Griffin & Company Limited, 1967.

[18] P. Larrañaga, R. Etxeberria, J. A. Lozano, and J. M. Peña.
Optimization in continuous domains by learning and
simulation of Gaussian networks. In M. Pelikan et al.,
editors, Proceedings of the Optimization by Building and

Using Probabilistic Models OBUPM Workshop at the

Genetic and Evolutionary Computation Conference –

GECCO 2000, pages 201–204, 2000.

[19] A. M. L. Liekens, H. M. M. ten Eikelder, and P. A. J.
Hilbers. Finite population models of dynamic optimization
with alternating fitness functions. In J. Branke, editor,
Proc. of the Workshop on Evolutionary Algorithms for

Dynamic Optimization Problems at the Genetic and Evol.

Comp. Conference – GECCO 2003, pages 19–23, 2003.

[20] T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, New York, 1997.

[21] W. B. Powell. Algorithms for the dynamic vehicle
allocation problem. In B. L. Golden and A. A. Assad,
editors, Vehicle Routing: Methods and Studies, pages
249–292. Elsevier Science, Amsterdam, 1988.

[22] H. N. Psaraftis. Dynamic vehicle routing problems. In B. L.
Golden and A. A. Assad, editors, Vehicle Routing: Methods

and Studies, pages 223–248. Elsevier Sc., Amsterdam, 1988.

[23] B. Ravindran and S. S. Keerthi. C3: Reinforcement
learning. In E. Fiesler and R. Beale, editors, Handbook Of

Neural Computation. Oxford Univ. Press, Oxford, 1996.

[24] L. Schöneman. On the influence of population sizes in
evolution strategies in dynamic environments. In J. Branke,
editor, Proceedings of the Workshop on Evolutionary

Algorithms for Dynamic Optimization Problems at the

Genetic and Evolutionary Computation Conference –

GECCO 2003, pages 29–33, 2003.

[25] R. S. Sutton. Temporal credit assignment in reinforcement

learning. PhD thesis, University of Massachusetts,
Amherst, Massachusetts, 1984.

[26] D. Thierens. Scalability problems of simple genetic
algorithms. Evolutionary computation, 7:331–352, 1999.

[27] R. K. Ursem. Multinational gas: Multimodal optimization
techniques in dynamic environments. In D. Whitley et al.,
editors, Proceedings of the Genetic and Evolutionary

Computation Conference – GECCO 2000, pages 19–26.
Morgan Kaufmann, 2000.

[28] J. I. van Hemert, C. Van Hoyweghen, E. Lukschandl, and
K Verbeeck. A “futurist” approach to dynamic
environments. In J. Branke and T. Bäck, editors,
Proceedings of the Workshop on Evolutionary Algorithms

for Dynamic Optimization Problems at the Genetic and

Evolutionary Computation Conference – GECCO 2001,
pages 35–38, 2001.

[29] J. I. van Hemert and J. A. La Poutré. Dynamic routing
problems with fruitful regions: models and evolutionary
computation. In X. Yao et al., editors, Parallel Problem

Solving from Nature – PPSN VIII, pages 692–701, Berlin,
2004. Springer Verlag.

[30] V. Vapnik. Statistical learning theory. Wiley, New York,
New York, 1998.

[31] M. Wineberg and F. Oppacher. Enhancing the ga’s ability
to cope with dynamic environments. In D. Whitley et al.,
editors, Proceedings of the Genetic and Evolutionary

Computation Conference – GECCO 2000, pages 3–10.
Morgan Kaufmann, 2000.

Learning Environment Dynamics From Self-Adaptation

A preliminary investigation

Amine Boumaza
LORIA - MaIA

Campus Scientifique B.P. 239
54506 Vandoeuvre-les-Nancy, France

amine.boumaza@loria.fr

ABSTRACT
We present an experimental study that shows a relationship
between the dynamics of the environment and the adap-
tation of strategy parameters. Experiments conducted on
two adaptive evolutionary strategies SA-ES and CMA-ES
on the dynamic sphere function, show that the nature of the
movements of the function’s optimum are reflected in the
evolution of the mutation steps. Three types of movements
are presented: constant, linear and quadratic velocity, in
all, the evolution of mutation steps during adaptation re-
flect distinctly the nature of the movements. Furthermore
with CMA-ES, the direction of movement of the optimum
can be extracted.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning; G.1.6 [Optimization]:
Stochastic programming

General Terms
Algorithms, Design, Experimentation

Keywords
Evolutionary computation, Self-adaptation, Dynamic envi-
ronments

1. INTRODUCTION
Self-adaptation has become a very important property

in evolutionary computation (EC). The idea of self-tuning
strategy parameters by the algorithm during the search has
proved very powerful and very successful on a wide range
of problems [6, 5, 3]. A substantial body of work regard-
ing self-adaptation in evolutionary computation exists, for a
comprehensive overview see [12].

Although adaptation can take place at any stage of the
evolution [12], the best-known examples are self-adaptation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

of the mutation steps. Self-adaptive mutations were origi-
nally introduced in evolutionary strategies by H.P. Schwe-
fel [14], however extensions to other areas of evolutionary
computation as evolutionary programming [9] and genetic
algorithms [4] exist. In this study, we address the case of
evolutionary strategies trough the examination of two self-
adaptive algorithms.

In dynamic optimization problems self-adaptation plays
an important role mainly because it controls the exploration
and exploitation phases. In such problems, the goal is not
only to find the optimum, but also track it over time [7].
Therefore, the algorithm must adjust its exploration capac-
ity when it looses the optimum once this one moves; self-
adaptation is one way of doing it. There exist many studies
on self-adaption in dynamical environments see for exam-
ple [7, 8, 1], however to our knowledge, there are no results
that link the self-adaptation process and the dynamics of
the fitness landscape.

The aim of this article is to present experimental results
on the relationship between the evolution of the mutation
steps and the dynamics of the search problem. Section 2
presents briefly the algorithms used in this article, whereas
section 3 presents the experiments conducted and comments
the results. Finally section 4 presents the discussion and
conclusions.

2. SELF-ADAPTIVE MUTATIONS
The idea underlying self-adaptive mutations, is to evolve

the parameters of the mutation operator to adjust the be-
havior of the algorithm to the environment. In most cases,
these parameters represent the parameters of the normal
distribution used to sample offspring. Different methods
of adaptation exist depending on the type of the normal
distribution. The simplest case is when this distribution
is chosen isotropic (hyper-sphere), here only one step size
is adapted. This model can be extended to non-isotropic
distributions (ellipsoid), where each coordinate posses its
own step size. Finally a further generalization can be made,
where the mutation normal distribution has a full covariance
matrix. In this article we will only address the case of the
last two types of adaptation through two implementation
the (µ + λ)SA-ES [14] and the (µ/µ, λ)CMA-ES [11].

2.1 SA-ES
In this algorithm, to each coordinate corresponds a mu-

tation step, which is usually encoded within the genotype
of the individual. Steps are adapted independently in each

dimension of the search space and mutation takes place in
two steps. At first the parameter vector −→σ = (σ1, . . . , σn)
is mutated using a log-normal rule:

σ̃i = σi exp
`

τN (0, 1) + τ
′
Ni (0, 1)

´

∀i ∈ {0, · · · , n} (1)

here, Ni are n independent realizations of a normal random
variable, whereas N is a single realization common to all σi.
τ and τ

′ are fixed parameters representing learning rates. In
the second step, the individual −→x = (x1, . . . , xn) is mutated
by adding it to a normal vector whose components have
(σ̃1, . . . , σ̃n) as variances.

x̃i = xi + Ni

`

0, σ̃i
2
´

∀i ∈ {0, · · · , n} (2)

2.2 CMA-ES
The CMA-ES algorithm introduced by N. Hansen [10, 11]

is to this day one of the best performing algorithms based on
covariance matrix adaptation. The main advantage of this
algorithm compared to SA-ES is its invariance against rota-
tions. The axes of the normal distribution are independent
from the coordinate system which allows invariance against
rotations of the search space.

The mathematical details of the algorithm were intention-
ally left out for the purpose of this article, the reader is
encouraged to consult the referenced work for full details.

In CMA-ES, offspring at generation (g) are sampled from
the following normal distribution:

X
(g+1)

k
∼ N

“

〈x〉
(g)

µ
, σ

(g)
2

, C
(g)

”

(3)

in which 〈x〉(g)

µ
is a weighted average of the µ best individuals

at generation (g), C is a positive definite matrix representing
the covariance matrix, and σ is the mutation step size, note
that in this case there is only one step size.

Adaptation in CMA-ES takes place in two steps: the
adaptation of the covariance matrix C and the adaptation of
the mutation step σ. These steps need not occur at the same
time, in fact, they usually occur at different time scales.

The step size is adapted using cumulative step size adap-
tation (CSA) [13] which in a nutshell adapts it using infor-
mation on the evolution path (a sequence of mutation steps).
If consecutive mutation steps have correlated directions then
fewer larger steps could have been applied to cover the same
distance. Conversely, uncorrelated mutation steps are the
result of large steps that make the algorithm oscillate back
and forth. In a similar fashion, the covariance matrix is
adapted using the evolution path and the successive differ-
ences between the mean population vectors at generations g

and g + 1.
Unlike SA-ES whose distribution ellipsoid is dependent of

the coordinate system, CMA-ES allows the realization of any
normal distribution. The ellipsoid has its own orthogonal
basis described by the eigenvectors of the covariance matrix.

3. EXPERIMENTAL STUDY

3.1 Description of the scenario
We are interested in studying the evolution of the muta-

tion steps over time, for that we have conducted experiments
using the above described algorithms on a dynamic sphere
function:

F (X) = min

n
X

i=1

(xi − x̂i)
2 (4)

were X̂ = (x̂1, . . . , x̂n) represents the moving optimum over
time. Table 1 shows the different parameters used in the ex-
periments in which “period” represents the number of gen-
erations between the movements of the optimum. In the
case of CMA-ES, we kept the default parameters suggested
by N. Hansen [11]. The results illustrate the evolution of
the mutation steps over time and the error to the optimum,
in the case of the CMA-ES we also present the direction
of the search i.e. the direction of the eigenvectors of the
covariance matrix. Due to the stochastic nature of the al-
gorithms, each experiment was conducted 1000 times and
the figures represent the averaged results with their respec-
tive standard deviations. The algorithms were left evolving
throughout the changes with no explicit actions taken when
changes occur.

Table 1: Parameter settings for the presented ex-

periments.

Parameters Algorithm
SA-ES CMA-ES

Dimension n 2 2
Population size µ 5 3
Offspring λ 10 6
Initial step size 5.0 0.5
τ and τ

′ 0.3 and 0.4 n.a.
Period (gen) 50 50

In this study, we were interested in three types of move-
ments of the optimum: movements with constant velocity,
movements with linearly increasing velocity and movements
with quadratically increasing velocity.

3.2 Results and discussion

Experiments with SA-ES
Figures 1 trough 7 represent the evolution of the mutation
steps and the error of the best individual over time in the
case of SA-ES. In all experiments the optimum moves ev-
ery 50 generations. Figure 1 represents the fluctuations of
σ0 when the optimum moved with a constant velocity in
one dimension (severity of 1.0). This is the effect of self
adaptation, the mutation step increases to favor exploration
when the algorithm is no longer at the optimum, and then
gradually decreases when it starts converging toward the op-
timum. Figure 2 shows the error to the optimum for that
case. The interesting part about this experiment, is that the
maximum value σ0 takes remains constant throughout the
movements of the optimum.

In the case where the optimum moves with linearly in-
creasing velocity, the mutation steps behave differently, fig-
ure 3 shows the fluctuations of σ0. In this experiment the
optimum moves with linearly increasing severity i.e. the dis-
tance traveled increases linearly. Here the results show that
at each movement of the optimum the mutation steps fol-
low a similar behavior and attain a maximum value that
increases linearly over time. This values reflects the search
distance or the width of the normal distribution for the mu-
tation needed to find the optimum. Figure 4 shows the error
of the best individual.

10-4

10-3

10-2

10-1

100

101

102

 0 250 500
 0

 0.05

 0.1

 0.15

 0.2
Lo

g
(S

te
p

si
ze

)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 1: Evolution of the mutation step (both in

log and regular scale) in the case of SA-ES when

the optimum moves with constant velocity in the

dimension x0

In the third experiment conducted on the SA-ES, the opti-
mum moved with a quadratically increasing velocity in other
words the distance (severity) traveled by the optimum in-
creased quadratically. Here again the mutation steps behave
in a similar fashion with the movements of the optimum, and
attain a maximal value that increase quadratically overtime.
Figure 5 shows the evolution of σ0 and figure 6 shows the
error of the best individual to the optimum.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500 600

E
rr

or

Generations

Figure 2: Evolution of the error in the case of SA-

ES when the optimum moves with constant velocity

in the dimension x0

Figure 7 show a case where the optimum moves with con-
stant speed (severity 1.0) in the first dimension and then
shifts direction at generation 250 to move in both dimensions
at once with a 60 degrees heading. In the first phase of this
experiment, only σ0 adapts to the changing environment, σ1

keeps low values during this phase (no exploration needed
in this dimension). However when the optimum changes di-
rection, σ1 starts evolving and attain higher values than σ0

due to the fact that with a 60 degrees the optimum moves
more in the second dimension than in the first one. How-
ever since the axes of the mutation distribution are linked to

the coordinates system, the heading of the optimum cannot
be known directly. In the next set of experiments with the
CMA-ES we show that the direction of movement could be
easily known.

10-5

10-4

10-3

10-2

10-1

100

101

102

 0 250 500
 0

 0.5

 1

 1.5

 2

Lo
g

(S
te

p
si

ze
)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 3: Evolution of the mutation step (both in

log and regular scale) in the case of SA-ES when the

optimum moves with linearly increasing velocity in

the dimension x0

Experiments with CMA-ES
In this part, we present the experiments conducted using
the CMA-ES algorithm. In addition to the mutation steps,
we show the direction of the dominant eigenvector. The
dominant eigenvector is the largest vector in the eigenvec-
tor basis of the covariance matrix. These experiments show
that not only the mutation step reflect the amplitude of the
optimum’s movements, the eigenvector follows the direction
of the optimum.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600

E
rr

or

Generations

Figure 4: Evolution of the error in the case of SA-ES

when the optimum moves with linearly increasing

velocity in the dimension x0

In the first experiment of this series, the optimum moves
with constant velocity with severity one in the first dimen-
sion. Figure 8 illustrates the direction of the eigenvector
when the optimum moves in the first dimension. It shows

that the angle of the eigenvector maintains a constant di-
rection at angle zero throughout the experiment; this corre-
sponds to the direction in which the optimum moves. How-
ever from figure 8, we can’t describe the nature of move-
ment, we will have to inspect the evolution of the mutation
step (figure 9) which behave in a similar fashion as in the
case described by figure 1, where step sizes attain a constant
maximum value.

10-4

10-3

10-2

10-1

100

101

102

 0 250 500
 0

 1

 2

 3

 4

 5

Lo
g

(S
te

p
si

ze
)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 5: Evolution of the mutation step (both in

log and regular scale) in the case of SA-ES when the

optimum moves with quadratically increasing veloc-

ity in the dimension x0

In the second experiment, the optimum changes direction
during the evolution. In the first phase, the optimum moves
on the first dimension as in the experiment above. Afterward
it shifts direction by 45 degrees during the second phase. In
phase three it moves back in the direction of the first dimen-
sion then sifts again in phase four to -45 degrees. Through-
out all phases, the optimum maintains a constant velocity.
The evolution of the direction the eigenvector takes is shown
on figure 10, in which we can clearly distinguish the different
phases of the movement.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600

E
rr

or

Generations

Figure 6: Evolution of the error in the case of SA-

ES when the optimum moves with quadratically in-

creasing velocity in the dimension x0

Figures 12 and 13 illustrate the case where the optimum
moves with linearly increasing velocity in both dimensions
at once (45 degrees heading). They correspond respectively
to the direction of the eigenvector and the evolution of the
mutation step. In this case we also note that the mutation
step increases linearly over time. Similarly, figures 14 and 15
show the same entities in the case were the optimum moves
with quadratically increasing velocity. In this experiment
the optimum moved in the first dimension.

3.3 Discussion
The aim of mutation adaptation in evolutionary comput-

ing is to control the step size in order to adapt the algorithm
to the fitness landscape. This adaptation process is generally
expressed in the evolution of the step sizes; this evolution is
characterized by two phases: exploration and exploitation.
The exploration phase represents the period during which
the algorithm is searching for better performance, most mu-
tations during this period are unsuccessful and the step sizes
increase. When the algorithm starts to gain performance, it
enters the exploitation phase, mutations become more suc-
cessful and the step size reduces as the algorithm approaches
the optimum. Mutation steps increase during exploration
and decrease during exploitation.

10-5

10-4

10-3

10-2

10-1

100

101

 0 100 200 300 400 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Lo
g

(S
te

p
si

ze
)

S
te

p
si

ze

Generations

log(σ0)
σ0

log(σ1)
σ1

Figure 7: Evolution of the mutation steps in the case

of SA-ES when the optimum moves with constant

velocity with a change of direction at generation 250

In dynamical environments the algorithm is constantly
switching between exploration and exploitation, and step
sizes oscillate between high and low values. Once an opti-
mum is lost, the adaptation process increases mutation steps
to raise exploration until it finds it again.

In the case where the optimum moves with constant veloc-
ity, the step sizes attain a constant hight value after the ex-
ploration phase and then drop during the exploitation phase.
Furthermore, in the case where the optimum moves with lin-
early increasing velocity, the maximum values attained by
the mutation steps are not constant but increase linearly
over time, which is in concordance with the movements of
the optimum. Finally, when the velocity of the optimum in-
creases quadratically, the maximum values attained by the
mutation steps increase quadratically also. These results

show that there exist a correspondence between the nature
of the dynamics in the environment and the evolution of the
step sizes. This correspondence exists with both adaptation
techniques.

-20

-10

 0

 10

 20

 30

 40

 0 250 500 750 1000

A
ng

le
 (

de
gr

ee
s)

Generations

Figure 8: Direction of the dominant eigenvector in

the covariance matrix over time when the optimum

moves in the dimension x0 with constant speed.

It is conceivable to exploit the information given by the
step size evolution, in order to for example detect the dy-
namic of the environment and further adapt the algorithms
to the different movements. Even though our experiments
were conducted on a simple unimodal function, we believe
that in multi-modal environments the evolution steps should
behave similarly. In that case we expect to track the evolu-
tion of different optima at once.

10-5

10-4

10-3

10-2

10-1

100

 0 250 500 750 1000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Lo
g

(S
te

p
si

ze
)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 9: Mutation steps (both in log and regular

scale) over time when the optimum moves in the di-

mension x0 with constant speed in the case of CMA-

ES.

We have also noticed in our experiments that using high
severity for the optimum’s movements, as in our case, the
algorithm needs several generations to adapt its parameters.
Experiments not presented here with 10 generations between
changes in the environment, showed that the algorithm was

not able to adapt its mutation steps before the change oc-
curred. However that was not the case when the severity was
low, with a small number of generations the algorithm could
adapt its steps. This observation implies that, in order to
extract useful results on the dynamics of the environment,
we have to give the algorithm enough time to adapt. How-
ever most of the times we don’t have such a possibility, since
we don’t control the dynamics.

-45

 0

 45

 0 250 500 750 1000

A
ng

le
 (

de
gr

ee
s)

Generations

Figure 10: Direction of the dominant eigenvector in

the covariance matrix over time when the optimum

changes direction.

Finally, our study lacks the investigation concerning the
link between the values of the mutations steps and the veloc-
ity values of the movements. We believe, that the amplitude
of the step sizes could indicate the distance traveled by the
optimum. In figure 7 where both mutation steps are shown,
we notice that since the movement in the second dimension
is greater than the movement in the first one, the steps have
different amplitudes. It would be interesting to make a link
between the value of the step size and the displacement.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 250 500 750 1000

E
rr

or

Generations

Figure 11: Evolution of the error when the optimum

changes directions in the case of CMA-ES.

In experiments where the optimum shifts direction, we
show how the different steps evolve. In the case of CMA-
ES, the direction of the optimum’s movements is learned

be the covariance matrix and characterized by the principal
axis of the mutation ellipsoid. This is due to the invariance
of CMA-ES against rotations. This is not the case with
SA-ES, since it is dependent of the coordinate system. The
results show that if the optimum moves further in one di-
mension than in the others, the step size on that dimension
attain higher values during adaptation. We believe though
not shown here, that the heading can by inferred from the
difference in proportions of the mutation steps. For exam-
ple if the σ0 is twice the value of σ1, we could say that the
optimum moves roughly at a 25 degrees heading.

 0

 45

 0 250 500 750 1000

A
ng

le
 (

de
gr

ee
s)

Generations

Figure 12: Direction of the dominant eigenvector in

the covariance matrix over time when the optimum

moves with linearly increasing velocity in both di-

mensions.

Theoretical results [2] showed that the convergence of the
step sizes is linear in log scale, this property is demonstrated
here, the step size in all experiments converge lineally. Al-
though the theoretical results apply to the (1, λ) strategy,
it is interesting to notice that they are verified in the case
where the population size is greater than one.

10-5

10-4

10-3

10-2

10-1

100

101

 0 250 500 750 1000
 0

 1

 2

 3

 4

 5

 6

 7

Lo
g

(S
te

p
si

ze
)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 13: Evolution of the step size (both in log

and regular scale) over time in CMA-ES when the

optimum moves with linearly increasing velocity in

both dimensions.

4. CONCLUSIONS
In this article we showed through experimentation that

there exists a relationship between the movements of the
dynamic sphere model and the evolution of the self-adapted
mutation steps. Experiments on both SA-ES and CMA-ES
algorithms show that the nature of the movement of the
optimum is reflected in the evolution of the mutation steps.
In the case of CMA-ES we have shown that not only the
nature of the movements is reflected in the mutation step,
the direction of movement of the optimum is learned by the
covariance matrix. The dominant eigenvector has the same
direction as the moving optimum.

-20

-10

 0

 10

 20

 30

 40

 50

 0 250 500 750 1000

A
ng

le
 (

de
gr

ee
s)

Generations

Figure 14: Direction of the dominant eigenvector in

the covariance matrix over time when the optimum

moves with quadratically increasing velocity.

This, as stated in the introduction, is only a preliminary
study, further experiments should be conducted on different
fitness models and higher dimensions than presented here.
It is also important to experiment on the multi-modal case,
where several moving optima need to be detected. Finally, it
is interesting to see such relationships between the dynam-
ics of the search space and the evolution of the mutation
parameters; however what would be more interesting and
by the same means challenging, is to use the information
learned from the adaptation in a meaningful manner, say
for example privilege certain directions of the search space,
or tune the internal parameters to the specific dynamics of
the problem.

5. ACKNOWLEDGMENTS
I would like to warmly thank Nikolaus Hansen for provid-

ing me with an implementation of the CMA-ES algorithm
and for his useful comments.

6. REFERENCES
[1] P. J. Angeline. Tracking extrema in dynamic

environments. In P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, and R. Eberhart, editors, Proceedings of

the 6th International Conference on Evolutionary

Programming, volume 1213 of Lecture Notes in

Computer Science, Indianapolis, Indiana, USA, April
13-16 1997. Springer Verlag.

10-5

10-4

10-3

10-2

10-1

100

101

102

 0 250 500 750 1000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50
Lo

g
(S

te
p

si
ze

)

S
te

p
si

ze

Generations

log(step size)
step size

Figure 15: Evolution of the step size (both in log and

regular scale) over time when the optimum moves

with quadratically increasing velocity in the case of

CMA-ES.

[2] A. Auger. Convergence results for (1,λ)-SA-ES using
the theory of φ-irreducible markov chains. Theoretical

Computer Science, 2004. In press.

[3] T. Bäck and H. P. Schwefel. Evolution strategies. In
J. Périaux and G. Winter, editors, Genetic Algorithms

in Engineering and Computer Science, chapter 6-7.
John Wiley and Sons, 1995.

[4] T. Bäck. Self-adaptation in genetic algorithms. In
F. J. Varela and P. Bourgine, editors, Proc. of the 1st

European Conf. on Artificial Life, pages 227–235,
Cambridge, MA, 1992. MIT Press.

[5] H.-G. Beyer. Evolution strategies: A comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

[6] H.-G. Beyer and K. Deb. On self-adaptive features in
real-parameter evolutionary algorithms. IEEE

Transactions on Evolutionary Computation,
5(3):250–270, 2001.

[7] J. Branke. Evolutionary Optimization in Dynamic

Environments. Kluwer, 2001.

[8] J. Branke and W. Wang. Theoretical analysis of
simple evolution strategies in quickly changing
environment. In E. Cantu-Paz et al., editor,
Proceedings of the Genetic and Evolutionary

Conference, pages 537–548. Springer, 2003.

[9] L.J. Fogel, P.J. Angeline, and D.B. Fogel. An
evolutionary programming approach to self-adaptation
on finite state machines. In J. McDonnell,
R. Reynolds, and D. Fogel, editors, In Evolutionary

Programming IV: Proceedings of the Fourth Annual

Conference on Evolutionary Programming., pages
355–366. MIT Press, 1995.

[10] N. Hansen, S.D. Müller, and P. Koumoutsakos.
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[11] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[12] R. Hinterding, Z.Michalewicz, and A.E. Eiben.
Adaptation in evolutionary computation: A survey. In
Proceedings of the 4th IEEE International Conference

on Evolutionary Computation, pages 65–69, 1997.

[13] A. Ostermeier, A. Gawelczyk, and N. Hansen. A
derandomized approach to self-adaptation of evolution
strategies. Evolutionary Computation, 2(4):369–38,
1994.

[14] H. P. Schwefel. Numerical Optimisation of Computer

Model. Wiley, 1981.

Inverse Multi-Objective Robust Evolutionary Design

Optimization in the Presence of Uncertainty

Dudy Lim Yew-Soon Ong Bu-Sung Lee

School of Computer Engineering

Nanyang Technological University

Nanyang Avenue, Singapore 639798

{dlim, asysong, ebslee}@ntu.edu.sg

ABSTRACT

In many real-world design problems, uncertainties are often

present and practically impossible to avoid. Many existing works

on Evolutionary Algorithm (EA) for handling uncertainty have

emphasized on introducing some prior structure of the uncertainty

or noise to the variable domain and conducting sensitivity analysis

based on the assumed information. In this paper, we present an

evolutionary design optimization that handles the presence of

uncertainty with respect to the desired robust performance in

mind, which we call an inverse robust design. The scheme, unlike

others developed to represent uncertainty does not assume any

structure of the uncertainty involved; hence it is particularly

useful when there is very little information about the uncertainties

available. In our formulation, we model the clustering of uncertain

events in families of nested sets using a multi-level optimization

searches within the multi-objective evolutionary search. Empirical

studies were conducted on synthetic functions to demonstrate that

our algorithm converges to a set of designs with non-dominated

nominal performances and robustness to the presence of

uncertainties.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization – global optimization.

General Terms

Algorithms.

Keywords

Evolutionary Algorithms, robust design optimization, design

optimization in the presence of uncertainty.

1. INTRODUCTION
Uncertainties are often present and practically impossible to avoid

in many real world engineering design problems. For instance, if a

design is very sensitive to small geometric variations, which may

arise either due to manufacturing processes, and/or in-service

degradation due to erosion processes and foreign object damage,

and/or drifts in operating conditions, it may not be desirable to

use this design. Hence optimization without taking uncertainty

into consideration generally leads to designs that should not be

labeled as optimal but rather potentially high risk designs that are

likely to perform badly when put to practical use. Faced with high

sensitivities to uncertainties, traditional Evolutionary Algorithms

(EAs) [1] tend to display sign of over-searching since they

naturally favor designs with a larger fitness value. However, in

practice, the preferable design solution is probably one that may

not be the globally optimum solution, but one that has a high

tolerance or robustness to uncertainties. Solutions whose

performances do not change much in the presence of uncertainties

are often referred to as robust designs.

In recent years, a number of approaches have been proposed in

the literature to attain robust designs. These include the One-at-a-

Time Experiments, Taguchi Orthogonal Arrays, bounds-based,

fuzzy and probabilistic methods [2]. In EA, a number of

prominent new studies on handling the presence of uncertainty in

engineering designs have also been made over the recent years. A

noisy phenotype scheme was introduced in [3] where a

probabilistic noise vector is added to the genotype before fitness

evaluation. In biological terms, this means that part of the

phenotypic features of an individual is determined by the

decoding process of the genotypic code of genes in the

chromosomes. In [4], the study of an (1+1)-Evolutionary Strategy

(ES) with isotropic normal mutations using the noisy phenotype

scheme has also been reported. In [5-7], uncertainty was regarded

in the form of a dynamic environment where the landscape of the

problem is perceived to be changing dynamically. In their work,

approaches using multi-populations to facilitate exploration and

exploitation were also considered. A multi-objective approach to

handling uncertainty in EA was also studied in [8] where the

trade-off between robustness and nominal performance of a

solution was discussed. A strategy to attain robust designs with

minimum variations in noise was also presented in [9] on realistic

mechanical design problem.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’05, June 25–29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00.

In most of these schemes, often some prior knowledge about the

structure of the uncertainties, such as the distribution property

involved were assumed to be available. For instance, the

uncertainty that exists in the environmental conditions and design

parameters of evolutionary search are often assumed to be

uniformly or normally distributed, with certain range or standard

deviation. However, it is worth noting that the quality of the

solution is generally attainable only when the assumptions made

on the structure of the uncertainty reflect the actual uncertainty

flawlessly.

In many real world engineering design problems, it is often the

case that very little knowledge about the structure of the

uncertainty involved is available. Making assumptions about the

uncertainty that are not backed up by strong evidence in

evolutionary design optimization can possibly lead to erroneous

designs that could have catastrophic consequences. Thus, it would

be wiser for one to avoid making assumptions about the structure

in the formulation of the optimization search process. In this

paper, instead of using sensitivity analysis, i.e., analyzing the

changes in performance of a design with respect to variability in

the key design variables, we present evolutionary design

optimization that handles the presence of uncertainty in view of

the desired robust performance, which we call the inverse robust

design. From the desired performance, we search for solutions

that guarantee a certain degree of maximum uncertainty and at the

same time satisfy the desired nominal performance of the final

design solution. For this purpose, we conduct series of nested

multi-point local searches using the Sequential Quadratic

Programming method [10] within the Non-dominated Sorting

Genetic Algorithm (NSGA) [11].

The remaining of this paper is organized as follows: Section 2

provides a brief discussion on evolutionary design optimization in

the presence of uncertainties. The proposed algorithm for inverse

evolutionary robust design optimization in the presence of

uncertainties is presented subsequently in section 3. Section 4

summarizes our empirical study on synthetically generated

benchmark functions before section 5 finally concludes this paper.

2. EVOLUTIONARY DESIGN

OPTIMIZATION IN THE PRESENCE OF

UNCERTAINTY
In this section, we present a brief overview on some fundamentals

of robust evolutionary design optimization in the presence of

uncertainties. In particular, we consider the general bound

constrained nonlinear programming problem of the form:

Maximize:)x(f

Subject to: ul xxx ≤≤ (1)

where)x(f is a scalar-valued objective function, d
x ℜ∈ is the

vector of design variables, while lx and ux are vectors of lower

and upper bounds for the design variables.

Further, it is noted that the present focus is on EAs for robust

engineering design optimization under uncertainties that arise in:

i) design vector x

() ()δ+= xfxF (2)

where ()k,...,, δδδδ 21= , is the noise in the design vector where

some distribution about the uncertainty is assumed and F(x) is the

effective fitness of design vector x.

ii) operating/environmental conditions

)c,x(f)x(F ξ+= (3)

where ()nc,...,c,cc 21= , is the nominal value of the environmental

parameters and ξ is a random vector used to model the

variability in the operating conditions. Referring to [8], both

forms of uncertainties may be treated equivalently. Hence in this

study, we do not differentiate the uncertainties between design

variables and operating conditions. Rather the reader is referred to

[8] for greater details on the issue. However, as far as this paper is

concerned, we consider uncertainties in the design variables.

The core mechanism in many existing robust schemes for solving

this type of uncertainty is driven based on the effective fitness

F(x) of the design solutions. Mathematically, the effective

evaluation function F(x) is generally defined as:

∫
∞

∞−

+= δδδ d)(q)x(f)x(F (4)

where)(q δ is a continuous density function of noise δ which is

often assumed to be known a priori, usually a Gaussian or

uniform distribution.

To locate a robust design solution in the presence of uncertainties

in the design vector, one may consider using the Noisy Phenotype

Scheme proposed in [3] which is outlined in Figure 1.

Figure 1. Noisy Phenotype Scheme.

Consider the one-dimensional function depicted in Figure 2 and

defined by

BEGIN EA (for maximization problem)

• Generate a population of designs

while(termination condition is not satisfied)

 for(each individual i in the population)

 for(j=1 to m)

• Perturb individual to arrive at xij

• Evaluate F(xij) = f(xij + δj)
 end for

• Determine effective fitness, F(xi) of individual i

 F(xi)= ∑
=

m

j

ij)x(F
m

1

1

 end for

• apply mutation and crossover to create new

population

• perform selection of individuals.

end while

END EA

180818075055

50418033202

222

222

212332

42222

./)x(./)x(./).x(

./)x(./)x(./)x(

e.e.e.

e.e.e)x(f

−−−−−−

−−−−−−

+++

++=

where -1 ≤ x ≤ 10 (5)

This represents a multimodal function with a nominal global

optimum located at sharp peak x*∈ [6.5,7.8] and has many other

ocal optima located elsewhere1. The robust solution that the noisy

phenotype scheme in figure 1 converges to depends on the

perturbation assumed on δ, i.e., the assumption on the structure of

the uncertainty, δ. By making assumption on the distribution of δ

in f(x), one may easily derive the respective effective fitness

function, F(xi). For instance, figures 2(a) and (b) illustrates the

effective fitness functions for the one-dimensional function

defined in equation (5) assuming a uniform distribution for δ with

σ set to ± 1.0 and ± 0.25, respectively. Note that σ defines the

range or bound of the uncertainty that is assumed about δ. When

the range for σ is configured to be ± 1.0, the global robust

optimum2 may be easily found to be located in the region

x^∈[3.0,4.0]. On the other hand, if σ is configured to be ± 0.25,

the global robust optimum approaches that of the nominal fitness

function f(x). For a complete explanation of how these may be

arrived at, the reader is referred to [3, 6].

(a) Range of the uncertainty, σσσσ = ± 1.0

1 Note that x* represents the nominal global optimum.

2 Note that x^ represents the global effective optimum.

(b) Range of the uncertainty, σσσσ = ± 0.25

Figure 2. Effective fitness F(x) of the function defined in

equation (5) assuming a uniform distribution for δ

In most cases, the algorithm described in Figure 1 is capable of

converging appropriately to the robust design solution defined by

the effective fitness as long as the assumption made about the

uncertainty, δ, including the type of distribution and the respective

range or deviation, are known precisely. In contrast, it is often the

case in many realistic problems that very little knowledge about

the structure of the uncertainty involved is available a prior.

Besides, a major problem with many existing robust schemes in

the literature is that the nominal fitness of the final design is often

neglected [3, 5, 12]. These schemes generally optimize the

robustness of the final design, at the expense of nominal

performance of the final design. For instance, it may be observed

from figure 2(a) that the design point x at 6.3 possess very good

robustness, i.e., a high effective fitness of around 1.4, but have a

very poor nominal fitness of only 0.84. This implies that it is

crucial to consider both the nominal performance and robustness

in the design optimization search. A straightforward manner to

solve this problem is to reformulate the robustness scheme as a

constraint problem with f(x) ≥ c and c is the minimum acceptable

nominal performance for the final design [13]. This way, any

individuals that fail the constraint gets heavily penalized in the

robust EA search. This approach however may not be practical

since information about the perceived minimum performance may

not always be available.

A more promising solution to handle the trade-off between the

robustness and nominal fitness is to consider a multi-objective

optimization approach [8] where a pareto front of robustness and

nominal fitness can be attained. Motivated by this work, we

present here an inverse robust solution based on a multi-objective

evolutionary approach. In particular, we consider two objective

functions, namely the robustness and nominal fitness of the

design.

Input design Variable: x

Input design Variable: x

3. INVERSE MULTI-OBJECTIVE ROBUST

EVOLUTIONARY DESIGN

OPTIMIZATION
To mitigate the problems identified in section 2, we present in this

section an inverse multi-objective robust evolutionary design

optimization strategy for locating designs with non-dominated

nominal performances and robustness in the presence of

uncertainties.

In many real world engineering design problems [12, 14-16], it is

often the case that very little knowledge about the structure of

the uncertainty involved is available. Hence, instead of focusing

on making any probably unjustifiable mathematical model out of

the uncertainty, we focus here on how a design may deteriorate in

the presence of uncertainties. While it is common that designers

may not possess the necessary expertise or have sufficient

knowledge to identify suitable bounds of the uncertainties

involve. On the contrary, it is more viable that designers have

practical knowledge about the robust performance of the final

design it desires.

Here, we present the proposed algorithm for Inverse Multi-

Objective Robust Evolutionary design optimization (IMORE) in

the presence of uncertainty. The basic steps of the proposed

algorithm are outlined in Figure 3. In the first step, the maximum

degradation tolerable for the final design, dt and step size ∆ used

to conduct nested searches are defined and initialized. Within the

initialization phase, a population of designs is also created either

randomly or using design of experiments techniques such as Latin

hypercube sampling or minimum discrepancy sequences [17].

Each individual in the population is first evaluated to determine

its nominal fitness. Subsequently, each individual then undergoes

a sequence of nested searches across a family of nested search

regions parameterized by the uncertainty vector in the spirit of

Info-Gap theory [18-20]. The aim of the nested searches is to

determine the maximum robustness that a particular design can be

guaranteed to handle under the permitted maximum performance

degradation of td defined. More specifically, during the inner

search for each chromosome in an IMORE generation, we solve a

sequence of bound constrained optimization subproblems of the

form:

Maximize:)x(f)x(f)x(d k
i −=

subject to: k
u

k
l xxx ≤≤ (6)

where k
lx and k

ux are the appropriate bounds on the design

variables, which is updated at each k iteration based on the step

size defined, ∆ .

For each optimization subproblem (or during each k iteration), the

optimal solution of the kth subproblem is sought. The objective of

each subproblem search is to find the worst-case fitness function

value by solving a bound constrained maximization problem.

After each iteration, the design variables search bounds, k
lx and

k
ux are updated using the step size ∆ which is given by

∆−= kxx i
k
l

∆+= kxx i
k
u (7)

Figure 3. Inverse Multi-Objective Robust Evolutionary

Design Algorithm in the presence of uncertainty.

It is worth noting that by conducting a sequence of local searches

across a family of ascending nested bounds parameterized by the

uncertainty vector, we arrive at a monotonic increasing function

of performance degradation versus uncertainty as illustrated in

Figure 4 such that

() ()111 +++ ≤→≤≤ k
opt

k
opt

k
u

k
u

k
l

k
l xdxdxx,xx (8)

where k
optx denotes the optimum at the kth iteration and

() () ()k
opti

k
opt xfxfxd −= is the corresponding maximum

performance degradation obtained for k
u

k
l

xxx ≤≤ . In addition,

the ()k
optxd found and associated ∆k for each search iteration is

then stored to create a database of uncertainties and corresponding

performance degradations. For example, consider a design point

with xi=4 in Figure 4, labelled points A, B and C correspond to

))x(f,x(k
opt

k
opt for k=1, 2 and 3 respectively and ∆ set to 1.

BEGIN IMORE (Consider a maximizing problem)

Initialization Phase:

• Initialize Maximum degradation tolerable for

the final design, dt

• Initialize the step size ∆ for local search

• Generate a population of design vectors

Search Phase:

While (termination condition is not satisfied)

 For (each individual i in the population)

• Evaluate f(xi)

 Repeat

• Maximize:)x(f)x(f)x(d k
i −=

 subject to: k
u

k
l

xxx ≤≤

∆−= kxx i
k
l , ∆+= kxx i

k
u

• Obtain k
optx and ()k

optxd

• Store ()k
optxd and associate it with ∆k

 until () (){ } t
k
opti

k d)x(fxfxd >−=

• Estimate maximum uncertainty i
maxδ using

linear interpolation from ()k
optxd for different

∆k

• Nominal fitness(xi) = f(xi)

• Maximum uncertainty(xi) = i
maxδ

 end For

• Apply standard MOEA operators to create a

new population

end While

END IMORE

For each chromosome, the iterative searches are terminated when

the optimal solution of the kth subproblem exceeds the maximum

degradation defined, i.e.

() (){ } t
k
opti

k d)x(fxfxd >−= (9)

At the end of the sequences of searches for a chromosome, the

maximum uncertainty
maxδ that a design may handle given a

maximum performance degradation of td permitted can be

determined by interpolating from the database of previous

uncertainties and maximum performance degradations, i.e.,

∆k and ()xd
k . This is also illustrated in Figure 4 where D

represents the point where a maximum performance degradation

of td is reached and
maxδ is the corresponding maximum

uncertainty that the design guarantees to handle. The IMORE

search then proceeds with the standard multi-objective operators

to create a new population and terminates upon convergence.

Figure 4. Steps of IMORE for xi=4 and ∆ =1.

4. EMPIRICAL STUDY
To illustrate the utility of the IMORE algorithm described in

section 3, we present here an empirical study based on two

synthetic one-dimensional multimodal functions. The EA was run

for 100 generations with 16 bit binary-coded, linear ranking

selection, mutation probability of 0.01, crossover probability of

0.9 and a population size of 100. Further, we consider here a

sequence of multi-start local bound constrained optimization

subproblems to locate the maximum certainty
maxδ in our

IMORE algorithm. In this study, we employ the Feasible

Sequential Quadratic Programming (FSQP) as the local search

strategy.

Test Function 1. The first test function we consider here is a one-

dimensional multimodal function which is an aggregation of

multiple one-dimensional Gaussian functions given in equation

(10) and depicted in Figure 5. A unique property of this test

function is that it contains a mixed of many sharp peaks or noisy

near-global optimum solutions and rounded robust peaks in the

regions x ∈[0, 4] and x ∈[10, 12], respectively. Hence it is not a

simple task to identify a robust solution among them. This

function is defined as:

18012180115059

50818073206

5030450752005042

0202202081005061

01280510450251501

222

222

222

222

222

212332

42222

22

52522

502

./)x(./)x(./).x(

./)x(./)x(./)x(

./)x(./).x(./).x(

./).x(./).x(./).x(

./).x(./).x(./)x(

e.e.e.

e.e.e

eee

e.e.e

e.ee)x(f

−−−−−−

−−−−−

−−−−−−

−−−−−−

−−−−−−

+++

+++

+++

+++

++=

where -1 ≤ x ≤ 13 (10)

Figure 5. Test function 1.

Test Function 2. The second multimodal test function is based on

the one-dimensional “Michalewicz 2” function. This test function

contains a mixture of a flat and robust region with moderate

Performance Degradation

U
n
ce

rt
ai

n
ty

∆
α

 2 ∆

3 ∆

d1 (x)

δ

k=1

D

dt

Input design Variable: xi

k=2

k=3

d2 (x) d3 (x)

k = 3

k = 2

k = 1

A B

C

D

N
o
m

in
al

 F
it
n
es

s
 ,
 f
(x

)

nominal fitness for x∈[-0.5, 0.5] and noisy peaks with good

nominal fitness for x∈[0.5, 3] as depicted in Figure 6 and is

defined as:

∑
=

=

10

1

2
10

i

ix
sin)xsin()x(f

π
 , -1.5 ≤ x ≤ 3 (11)

Figure 6. Test function 2.

In our IMORE algorithm outlined in Figure 3, it can be observed

that besides the standard EA control parameters, we have

introduced two additional parameters. These include 1) the

maximum degradation permitted, td and 2) the step size for local

search, ∆ . td is user-specific and depends on the degree of

robustness desired by the designer in the final design. Hence, this

leaves us only with the ∆ value to consider. To define a suitable

value of ∆ , we conduct an empirical study on the effect of

IMORE for different ∆ s on the two test functions. In our

experimental study, td is kept fixed at 1.0. The results obtained

from the study are tabulated in Table 1. Here ∆ is defined as a

percentage of the search bound, i.e., lu xx − . The average

approximated robustness may then be defined by equation (12).

%
xxn

n

i lu

i
max 100

1

1

×
−∑

=

δ
 (12)

The average exact robustness is defined using the same equation

(12), except that i
maxδ is now the exact robustness. From the

results, it is shown that generally the average error increases with

the step size, i.e., the accuracy decreases with a larger step size.

This makes good sense since a larger step size translates to a

larger interpolation error. Like all algorithms, it is crucial to

balance the accuracy desired and the computational cost incurred

by the nested searches. Since a smaller step size translates to

greater iterations of nested searches, i.e., k, as a result, more

function evaluations are also required. In our IMORE algorithm,

it is possible to show that the computational cost as ()klO , if l is

the average number of function evaluations incurred in a single

multi-start local search. Further, we consider the use of ∆ =3% in

all experimental studies from here onwards since this value offers

good accuracy, see Table 1, the % error is lower than 0.25%.

Table 1. Effect of step size ∆ in IMORE on test functions 1

and 2.

 Step

Size

∆

(%)

Average

Approximated

Robustness

(%)

Average

Exact

Robustness

(%)

Average

Error

(%)

1 16.78 16.79 0.01

3 14.11 14.20 0.09

5 16.03 16.46 0.43

Test

Function

1

10 14.91 15.36 0.45

1 5.59 5.60 0.01

3 7.16 6.95 0.21

5 5.83 4.91 0.92

Test

Function

2

10 9.33 6.13 3.2

Next, we consider the IMORE algorithm for optimization of

functions 1 and 2. The pareto fronts obtained from the simulation

runs are presented in Figures 7 and 8 for test function 1 and 2,

respectively.

The solution in the pareto fronts represents a diverse set of

designs having non-dominated nominal performances and

robustness to the presence of uncertainties. To explain the results

presented in these figures, we cluster the solutions into three

separate groups in each pareto front. Group A consists of

solutions having excellent nominal fitness at the expense of poor

robustness. On the other hand, group B consists of solutions that

are a balance trade-off between nominal fitness and robustness,

while the solution members of group C have poor nominal fitness

but excellent robustness measure.

(a)

A

B

C

(b)

Figure 7. (a) Pareto front at generation 100,

(b) Corresponding offspring in (a) for test function 1.

(a)

(b)

Figure 8. (a). Pareto front at generation 100,

(b). Corresponding offspring in (a) for function 2.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a study on inverse multi-

objective robust evolutionary design optimization in the presence

of uncertainty. Using a prior information on the desire robustness

of the final design, the algorithm was shown capable of

converging to a set of solutions that gives good nominal

performances while handling maximum robustness in the presence

of uncertainties when applied on two synthetic functions. Most

importantly, these solutions were discovered without any

requirement to make possible untrue assumptions about the

structure of the uncertainties involved.

In evolutionary algorithms, many thousands of calls to the

objective function are often required to locate a near optimal

solution. While the IMORE algorithm proposed offers an

effective approach to modeling of uncertainty in engineering

design, a compelling limitation of the theory is the massive

computational efforts incurred in the nested evolutionary design

search. The computational efforts incurred would be even more

devastating if the objective function is computationally expensive

which is very common in complex engineering design problems

[21-22]. Nevertheless, it is worth noting here that a promising and

intuitive way to reduce the search time incurred in solving the

sequences of bound constrained subproblems is to replace as

much as possible the computationally expensive high-fidelity

analysis solvers with lower-fidelity models that are

computationally less expensive. The reader is referred to [21, 22]

for greater details on the algorithm available to achieve this cost

savings.

6. ACKNOWLEDGMENTS
The authors would like to thank the Parallel and Distributed

Computing Centre at the School of Computer Engineering,

Nanyang Technological University for providing support and

computing resources to this work.

7. REFERENCES
[1] Goldberg D.E., “Genetic Algorithms in Search, Optimization

and Machine Learning”, 1989.

[2] Huyse L., “Solving Problems of Optimization Under

Uncertainty as Statistical Decision Problems”, AIAA-2002-

1519, 2001.

[3] Tsutsui S. and Ghosh A., “Genetic Algorithms with a Robust

Solution Searching Scheme”, IEEE Transaction on

Evolutionary Computation, Vol. 1, No. 3, pp. 201-208,

1997.

[4] Arnold D. V. and Beyer H. G., “Local Performance of the

(1+1)-ES in a Noisy Environment”, IEEE Trans.

Evolutionary Computation, Vol. 6, No. 1. , pp 30-41, 2002.

[5] Branke J., “Creating Robust Solutions by Means of

Evolutionary Algorithms”, Springer-Verlag Berlin

Heidelberg, 1998.

[6] Branke J., “Evolutionary Optimization in Dynamic

Environments”, Kluwer Academic Publishers, 2002.

[7] Branke J., Kauβler T., Schmidt C., and Schmeck H., “A

Multi-Population Approach to Dynamic Optimization

B

C

C

A

B

C

A

B

C

A

A

Problems”, Adaptive Computing in Design and

Manufacturing, Springer, 2000.

[8] Jin Y. and Sendhoff B., “Trade-Off between Performance

and Robustness: An Evolutionary Multiobjective Approach”,

Proceedings of Second International Conference on

Evolutionary Multi-criteria Optimization. LNCS 2632,

Springer, pp.237-251, Faro, 2003

[9] Chen W., Allen J.K., Tsui K.L., and Mistree F., “A

Procedure for Robust Design: Minimizing Variations caused

by Noise Factors and Control Factors”, ASME Journal of

Mechanical Design, 118:478-485, 1996.

[10] Lawrence C.T. and Tits A.L., “A Computationally Efficient

Feasible Sequential Quadratic Programming Algorithm”,

Society for Industrial and Applied Mathematics, Vol. 11, No.

4, pp. 1092-1118, 2001.

[11] N. Srinivas and K. Deb. Multiobjective Optimization Using

Nondominated Sorting in Genetic Algorithms. Evolutionary

Computation, 2(3):221-248, 1994.

[12] Anthony D.K. and Keane A.J., “Robust Optimal Design of a

Lightweight Space Structure Using a Genetic Algorithm”,

AIAA Journal 41(8), pp. 1601-1604, 2003.

[13] Michalewicz Z., Dasgupta D., Le Riche R.G., and

Schoenauer M., “Evolutionary Algorithms for Constrained

Engineering Problems”, Computers & Industrial

Engineering Journal, Vol.30, No.4, pp. 851-870, 1996.

[14] Wiesmann D., Hammel U. and Back T., “Robust Design of A

Multilayer Optical Coating by Means of Evolutionary

Algorithms”, IEEE Transaction on Evolutionary

Computation, Vol. 2, No. 4, pp. 162-167, 1998.

[15] Huyse L. and Lewis R.M., “Aerodynamic Shape

Optimization of Two-dimensional Airfoils Under Uncertain

Operating Conditions”, Hampton, Virginia: ICASE NASA

Langley Research Centre, 2001.

[16] Padula S.L. and Li W., “Robust Airfoil Optimization in High

Resolution Design Space”, Hampton, Virginia: ICASE

NASA Langley Research Centre, 2002.

[17] Fang K.T., Ma C.X., and Winker P., “Centered L2-

Discrepancy of Random Sampling and Latin Hypercube

Design, and Construction of Uniform Designs”, Mathematics

of Computation, Vol. 71, No. 237, pp. 275-296, 2000.

[18] Ben-Haim Y., “Information Gap Decision Theory”,

California: Academic Press, 2001.

[19] Ben-Haim Y., “Uncertainty, Probability, and Information-

Gaps”, Reliability Engineering and System Safety 85, pp.

249-266, 2004.

[20] Ben-Haim Y., “Robust Reliability in Mechanical Sciences”,

Springer-Verlag, Berlin, 1996.

[21] Ong Y.S., Lum K.Y., Nair P.B., Shi D.M. and Zhang Z.K.,

“Global Convergence of Unconstrained and Bound

Constrained Surrogate-Assisted Evolutionary Search in

Aerodynamic Shape Design Solvers”, IEEE Congress on

Evolutionary Computation, Special Session on Design

Optimization with Evolutionary Computation”, 2003.

[22] Ong Y.S., Nair P.B. and Keane A.J., “Evolutionary

Optimization of Computationally Expensive Problems via

Surrogate Modeling”, AIAA Journal, Vol. 41, No. 4, pp

687-696, 2003.

Finding the Optimal Search Dimension for Evolution
Strategies with A Small Population

Yaochu Jin
Honda Research Institute

Europe
Carl-Legien-Str. 30

63073 Offenbach am Main

yaochu.jin@honda-ri.de

Markus Olhofer
Honda Research Institute

Europe
Carl-Legien-Str. 30

63073 Offenbach am Main

Bernhard Sendhoff
Honda Research Institute

Europe
Carl-Legien-Str. 30

63073 Offenbach am Main

ABSTRACT
Small populations are very desirable for reducing the re-
quired computational resources in evolutionary optimization
of complex real-world problems. Unfortunately, the search
performance of small populations often reduces dramatically
in a large search space. To address this problem, a method
to find an optimal search dimension for small populations
is suggested in this paper. The basic idea is that the evolu-
tionary algorithm starts with a small search dimension and
then the search dimension is increased during the optimiza-
tion. The search dimension will continue to increase if an
increase in the search dimension improves the search perfor-
mance. Otherwise, the search dimension will be decreased
and then kept constant. Through empirical studies on a test
problem with an infinite search dimension, we show that the
proposed algorithm is able to find the search dimension that
is the most efficient for the given population size.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic Algorithms

General Terms
Algorithms

Keywords
Evolution strategy, optimal search dimension, dynamic prob-
lems

1. INTRODUCTION
To reduce the computational time in solving expensive op-

timization problems using evolutionary algorithms, a com-
monly adopted approach is to parallelize the fitness evalua-
tion process so that each individual is evaluated on a sepa-

Genetic and Evolutionary Computation Conference, June 25-29, Washing-
ton DC, USA
.

rate machine. In this case, use of a relatively small popula-
tion size will be very helpful in reducing the computational
cost for the evolutionary optimization.

Unfortunately, we are left in a dilemma when we use small
populations for solving complex real-world problems. On
the one hand, many real-world optimization problems, e.g.,
design optimization where splines are used to describe the
geometry of a structure [6], have a very large number of de-
sign parameters. On the other hand, the search efficiency
decreases seriously when small populations are used to op-
timize problems with a high search dimension.

Two approaches could be employed to alleviate, if not
solve, the difficulty mentioned above. One method is to de-
velop an efficient evolutionary algorithm with a small popu-
lation size whose performance is less sensitive to the search
dimension. One good example is the derandomized evo-
lution strategy with covariance matrix adaptation (CMA-
ES) [4], which has shown to be robust on various unimodal
test functions. Nevertheless, the search efficiency of the
CMA-ES still greatly depends on the population size. A
conclusion from empirical studies is that the population size
should be scaled between linear and cubic with the problem
dimension to locate the global optimum [1].

Another method is to adapt the search dimension to the
population size in use. To this end, an adaptive coding
scheme has been suggested where the CMA-ES is employed
in aerodynamic shape optimization [7]. The basic idea is
to encode the number of parameters to be optimized (the
search dimension) in the chromosome and to mutate dur-
ing the optimization. One issue that arises in the adaptive
coding scheme is that the self-adaptation of the evolution
strategy can be disturbed due to the mutation in the search
dimension, which is harmful to the search performance. One
measure to address this problem is to ensure that the mu-
tations are neutral, i.e., the shape of the geometry will be
kept the same before and after a new point is inserted in the
spline representation.

In this paper, we will explicitly monitor the performance
change after the search dimension is increased. If the in-
crease in the search dimension is beneficial, the search di-
mension will be further increased. Otherwise, the search
dimension will be decreased and then will be kept constant
until the end of the optimization. To minimize the distur-
bance on the self-adaptation mechanism, the dimension is
increased only by 1 in each change in dimension. Through
simulations on various population sizes, it is shown that our

method is able to find an optimal or nearly optimal search
dimension for the given population size on a test problem
with an infinite search dimension.

The test problem used in this study will be briefly de-
scribed in Section 2. The search capacity of the CMA-ES
with regard to the population size on the test problem are
investigated empirically in Section 3. The algorithm to find
the optimal search dimension is given in Section 4 and a
number of simulations are conducted in Section 5, where
we show that the algorithm is able to find the optimal or
sub-optimal search dimension for different population sizes.
Conclusion and further research topics are discussed in Sec-
tion 6.

2. TEST PROBLEM
The test problem used in this study is very simple. How-

ever, it serves our purpose well where an infinitely large
search dimension is needed theoretically. We consider the
approximation of a one-dimensional function using a Taylor
series. If a function f(x) has continuous derivatives, then
this function can be expanded as follows:

f(x) = f(a) + f
′(a)(x− a) +

f
′′(a)(x− a)2

2!
+ · · ·

+
f

(n)(a)(x− a)n

n!
+ Rn, (1)

where Rn is the remainder after n + 1 terms defined by:

Rn =

Z

x

a

f
(n+1)(u)

(x− u)n

n!
du

=
f

(n+1)(ξ)(x− a)n+1

(n + 1)!
, (2)

where a < ξ < x. When this expansion converges over a
certain range of x, i.e., limn→Rn = 0, then the expansion
is known as em Taylor Series of function f(x) about a. For
example, the Taylor expansion of sine function is as follows:

sin(x) = x−
x

3

3!
+

x
5

5!
−

x
7

7!
+ · · · ,−∞ < x <∞. (3)

The optimization problem is to find the coefficients of the
Taylor series by minimizing the squared approximation er-
ror:

E(x) = (
n
X

i=0

aix
i
− sin(x))2, (4)

where x is the point about which the Taylor series is ex-
panded, ai, i = 0, 1, 2, · · · , n is the number of terms of the
Taylor series. Theoretically, an infinite search dimension is
needed to realize a perfect approximation of a sinusoidal
function using Taylor series. To estimate the approximation
error reliably, we sample 100 points uniformly within the
range of 0 ≤ x ≤ 1:

E =

100
X

j=1

E(xj). (5)

An interesting fact in the above test function is that the
influence of each term on the function value decreases as the

order increases. Thus, terms in the Taylor expansion are
added in the search algorithm from lower orders to higher
ones. This is reasonable because in optimization of real-
world problems, we try to account for at first the most im-
portant factors and then try to include those with minor
influence.

3. SEARCH EFFICIENCY OF SMALL EAS
As we mentioned in the Introduction, the derandomized

evolution strategy with covariance matrix adaptation (CMA-
ES) proposed in [3] was designed for small populations. It
has shown to be efficient on a large number of unimodal
optimization problems, particularly on ill-conditioned and
non-separable problems [4]. In the (µ, λ)-CMA-ES without
recombination, the λ offspring of generation g + 1 is gener-
ated as follows:

x
(g+1)

k
= x

(g)

j
+ σ

(g)
B

(g)
D

g)
z
(g+1)

k
,

j = 1, · · · , µ; k = 1, · · · , λ, (6)

where k is randomly chosen from the µ selected parents,
z is an n-dimensional (n is the search dimension) vector
of normally distributed random numbers with expectation
zero and identity covariance matrix, BD (BD)T = C is the
covariance matrix. During the evolution, the covariance ma-
trix is updated as follows:

C
(g+1) = (1 − ccov)C(g) + ccovp

(g+1)

c

“

p
(g+1)

c

”T

, (7)

where p
(g+1)

c is known as the evolution path calculated by:

p
(g+1)

c = (1− cc)p
(g)

c +
p

cc · (2 − cc)B(g)
D

(g)
z
(g)

k
. (8)

The adaptation of the global step-size σ
(g+1) is calculated

by:

σ
(g+1) = σ

(g)exp

1

dσ

||p
(g)

σ || −
ˆchin

χ̂n

!

, (9)

where χ̂n is the expected length of a (0, I)-normally dis-
tributed random vector and can be approximated by

√

n(1−
1

4n
−

1

21n2), dσ is a damping coefficient, and p
(g+1)

σ is a “con-
jugate” evolution path:

p
(g+1)

σ = (1− cσ)p(g)

σ +
p

cσ · (2− cσ)B(g)
z
(g)

k
. (10)

The default parameter setting suggested in [4] is as follows:

cc =
4

n + 4
, ccov =

2

(n +
√

2)2
, cσ =

4

n + 4
, dσ = c

−1

σ + 1.

(11)
In this study, a slightly modified variant of the algorithm

presented in [3] has been adopted, where a separate co-
variance matrix is maintained for each parent individual.
Though the CMA-ES is designed for small populations, re-
cent studies have found that CMA-ESs with a large popu-
lation can improve the search performance significantly [2,
1].

However, little work has been reported on what is the
optimal search dimension for a CMA-ES with a small popu-
lation size when the theoretic search dimension is very large
or even infinite. In the following, we investigate the search
performance of CMA-ES with small populations on the test

3 7 11 15 19 23 27 31 35 39 43 47
10

−3

10
−2

10
−1

10
0

10
1

10
2

S
qu

ar
ed

 E
rr

or

Search Dimension

Figure 1: Search performance of the (1,4)-CMA-ES

for search dimensions ranging from 3 to 49. Results

averaged over 50 runs.

3 7 11 15 19 23 27 31 35 39 43 47
10

−6

10
−4

10
−2

10
0

10
2

S
qu

ar
ed

 E
rr

or

Search Dimension

Figure 2: Search performance of the (2, 10)-CMA-

ES for search dimensions ranging from 3 to 49. Re-

sults averaged over 50 runs.

problem described in Section 2. In our simulations, the
CMA-ES without recombination has been adopted and a
maximum of 2000 generations are run for search dimensions
5, 7, · · · , 47, 49. For each search dimension, the results are
averaged over 50 independent runs. The results from a (1,
4)-CMA-ES and a (2, 10)-CMA-ES are presented in Figures
1 and 2, respectively.

From Fig. 1, we can see that the search performance of
the (1, 4)-CMA-ES heavily depends on the search dimen-
sion. For a search dimension smaller than 7, the approxi-
mation error is quite large due to the limited number of free
parameters. The minimal approximation error (0.002936)
is achieved when the search dimension is 11, where the ap-
proximation error is mostly smaller than 0.01. When the
search dimension further increases, the search performance
degrades seriously due to the limited search capacity of the
(1,4)-CMA-ES.

Similar simulations are carried out for the (2, 10)-CMA-
ES. The minimal approximation error (0.000003) is achieved
when the search dimension is 11. This implies that the

(1, 4)-CMA-ES failed to locate the global optimum for an
eleven-dimensional optimization problem in 50 runs. Even
the (2, 10)-CMA-ES is able to locate the best found solu-
tion only once in the 50 runs. These results indicate that
the search efficiency of CMA-ES with small populations is
limited even for a relatively low dimensional problem. Mean-
while, as in the (1, 4)-CMA-ES case, the search performance
becomes worse when the search dimension increases, though
not as serious as the (1, 4)-CMA-ES. Again, there is an op-
timal search dimension where the (2, 10)-CMA-ES achieves
the best performance and the search performance is accept-
able when the search dimension is from 9 up to 17 (approx-
imation error smaller than 0.01).

4. ADAPTATION OF SEARCH DIMENSION
It can be seen from the results in the previous section that

there is an optimal search dimension for a given population
size that is able to achieve the minimal approximation er-
ror. The optimal search dimension is unknown beforehand
and is presumably dependent on the population size and the
problem at hand.

In this section, we suggest a simple approach to address
this problem by adapting the search dimension during the
optimization to find an approximately optimal search di-
mension for a given population size. The basic idea is to
start the optimization from a relatively low search dimen-
sion and let the search dimension increase in every k gen-
erations during the optimization. k is called change period.
To determine whether an increase in search dimension is
beneficial, we compare the best fitness values before and af-
ter dimension increase. Assume the best (minimal in this
work) fitness values before and after an increase in search
dimension are PBest and CBest, respectively. Note that
CBest is the best fitness value after k generations with an
increased search dimension. The increase in search dimen-
sion is considered to be beneficial if CBest is smaller than
Pbest for minimization problems. If an increase in dimen-
sion is regarded as beneficial, then the search dimension will
be further increased by one. Otherwise, the search dimen-
sion will be decreased by one and fixed until the end of the
optimization.

To implement the above idea, the change period k needs
to be determined. We conduct simulations to investigate the
influence of this parameter on the adaptation performance.
Another parameter to be determined is the initial search
dimension. This parameter should depend on the problem
at hand. In our simulations, the initial dimension is set to
5.

When the search dimension is increased, we have the fol-
lowing three alternatives:

• Re-initialize all design parameters randomly;

• Inherit the value for existing design parameters and
initialize new design parameter randomly;

• Inherit the value for existing design parameters and set
the new parameter to zero, so that the fitness function
does not change after the inclusion of the new dimen-
sion.

We test the performance of the suggested algorithm for 10
change periods, i.e., k = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

5

6

7

8

9

10

O
pt

im
iz

ed
 S

ea
rc

h
D

im
en

si
on

Change Period

(a) (b)

Figure 3: Adaptation of search dimension for (1,

4)-CMA-ES with various change periods. The de-

sign parameters are randomly re-initialized during

dimension changes. (a) The best fitness value, and

(b) the optimized search dimension. Results aver-

aged over 50 runs.

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

5

6

7

8

9

10

11

12

13

O
pt

im
iz

ed
 S

ea
rc

h
D

im
en

si
on

Change Period

(a) (b)

Figure 4: Adaptation of search dimension for (2,

10)-CMA-ES with various change periods. The de-

sign parameters are randomly re-initialized during

dimension changes. (a) The best fitness value, and

(b) the optimized search dimension. Results aver-

aged over 50 runs.

The results where all design parameters are randomly initial-
ized are presented in Figures 7 and 8, respectively. Again,
50 runs are conducted for each k.

From Fig. 3 and Fig. 4, we see that the neither the (1,
4)-CMA-ES nor the (2, 10)-CMA-ES shows acceptable per-
formance. The search dimension is largely underestimated
for all tested change periods. A much larger change period
is not practical, since an overly large period will unfavorably
increase the needed computational time. Thus, we conclude
that randomly re-initialize the design parameters is undesir-
able in adopting an adaptive search dimension.

The next idea to try out is to inherit the value for each ex-
isting design parameter and then initialize the newly added
design variable randomly. The simulation results are shown
in Figures 5 and 6, respectively. We notice that the per-
formance has been improved significantly. For the (1, 4)-
CMA-ES, the performance is quite good when the change
period is between 30 and 50, where the optimized search di-
mension is between 9 and 11 on average, which are optimal
or sub-optimal if we refer to the empirical results shown in
Fig. 1. Similar conclusion can be made to the results ob-
tained for the (2, 10)-CMA-ES. However, the performance
of the algorithm seems more robust against the change pe-
riod in that satisfying performance has been achieved when
the change period varies from 15 to 50, where the estimated
optimal search dimension is 13 on average, which is one of
the optimal search dimension as shown in Fig. 2.

Finally, we investigate the performance of the algorithm
when we initialize the newly added design parameter to 0,
which in this example makes the inclusion of the new search

5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

O
pt

im
iz

ed
 S

ea
rc

h
D

im
en

si
on

Change Period

(a) (b)

Figure 5: Adaptation of search dimension for (1, 4)-

CMA-ES with various change periods. The value

of the existing design parameters are inherited and

the new one is randomly initialized during dimen-

sion change. (a) The best fitness value, and (b) the

optimized search dimension. Results averaged over

50 runs.

5 10 15 20 25 30 35 40 45 50
10

−6

10
−4

10
−2

10
0

10
2

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

O
pt

im
iz

ed
 S

ea
rc

h
D

im
en

si
on

Change Period

(a) (b)

Figure 6: Adaptation of search dimension for (2,

10)-CMA-ES with various change periods. The

value of the existing design parameters are inher-

ited and the new one is randomly initialized during

dimension changes. (a) The best fitness value, and

(b) the optimized search dimension. Results aver-

aged over 50 runs.

5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

O
pt

im
iz

ed
 S

ea
rc

h
D

im
en

si
on

Change Period

(a) (b)

Figure 7: Adaptation of search dimension for (1, 4)-

CMA-ES with various change periods. The value of

the existing design parameters are inherited and the

new one is set to zero during dimension changes. (a)

The best fitness value, and (b) the optimized search

dimension. Results averaged over 50 runs.

5 10 15 20 25 30 35 40 45 50
10

−6

10
−4

10
−2

10
0

10
2

S
qu

ar
ed

 E
rr

or

Change Period
5 10 15 20 25 30 35 40 45 50

6

8

10

12

14

16

18

20

22

O
pt

im
iz

ed
 S

ea
rc

h
 D

im
en

si
on

Change Period

(a) (b)

Figure 8: Adaptation of search dimension for (2,

10)-CMA-ES with various change periods. The

value of the existing design parameters are inher-

ited and the new one is set to zero during dimen-

sion changes. (a) The best fitness value, and (b) the

optimized search dimension. Results averaged over

50 runs.

dimension neutral to the fitness value. Such neutral muta-
tions have shown to be essential to the success of adaptive
coding when splines are used for geometry description in de-
sign optimization [7]. Comparing the results in Fig. 5 and
those in Fig. 7 regarding the (1, 4)-CMA-ES, we see that
minor improvements have been achieved, particularly when
the change period is small.

5. CONCLUSIONS
Evolutionary optimization of large problems with evolu-

tionary algorithms with a small population is a challenging
topic. To efficiently optimize possibly infinite large problems
using small populations, a method to adapt the search di-
mension has been suggested in this paper. The basic idea is
that for small populations, we should start from a relatively
low search dimension and then increase it gradually during
the optimization. The increase in search dimension should
continue until performance improvement cannot be achieved
in a number of generations after the dimension increase. In
this case, the search dimension is decreased by one and and
kept constant till the end of the optimization. From our em-
pirical studies, the change period should be between 20 to
50 generations. A too small change period is not desirable
because the algorithm needs some time to find the poten-
tial improvement after an increase in dimension. Neither
is a large change period preferred because a larger change
period tends to increase the computational time rapidly.

It is found essential for the success of our algorithm that
the value of the existing design parameters should be inher-

ited after an increase in search dimension. This result is
consistent with the findings reported in the literature that a

priori knowledge is beneficial in enhancing the performance
of evolutionary algorithms [5].

The strategy parameters are randomly re-initialized dur-
ing dimension changes in this work, which may not be op-
timal for evolution strategies. It will be one of our future
work to investigate the influence of re-initialization of strat-
egy parameters on the performance of our algorithm using
a dynamic search dimension.

6. REFERENCES
[1] N. Hansen and S. Kern. Evaluating the CMA evolution

strategy on multimodal test functions. In Parallel

Problem Solving from Nature, volume 3242 of LNCS,
pages 282–291. Springer, 2004.

[2] N. Hansen, S. Müller, and P. Koumoutsakos. Reducing
the time complexity of the derandomized evolution
startegy with covariance matrix adaptation (CMA-ES.
Evolutionary Computation, 11:1–18, 2003.

[3] N. Hansen and A. Ostermeier. Adapting arbitrary
normal mutation distributions in evolution strategies:
The covariance matrix adaptation. In IEEE Conference

on Evolutionary Computation, pages 312–317, 1996.

[4] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[5] Y. Jin, editor. Knowledge Incorporation in Evolutionary

Computation. Springer, Berlin Heidelberg, 2005.

[6] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for
evolutionary optimization with approximate fitness
functions. IEEE Transactions on Evolutionary

Computation, 6(5):481–494, 2002.

[7] M. Olhofer, Y. Jin, and B. Sendhoff. Adaptive encoding
for aerodynamic shape optimization using evolution
strategies. In Congress on Evolutionary Computation,
volume 1, pages 576–583, 2001.

