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Abstract Dynamic optimization problems challenge tra-
ditional evolutionary algorithms seriously since they, once
converged, cannot adapt quickly to environmental changes.
This paper investigates the application of memetic algori-
thms, a class of hybrid evolutionary algorithms, for dynamic
optimization problems. An adaptive hill climbing method is
proposed as the local search technique in the framework of
memetic algorithms, which combines the features of greedy
crossover-based hill climbing and steepest mutation-based
hill climbing. In order to address the convergence problem,
two diversity maintaining methods, called adaptive dual map-
ping and triggered random immigrants, respectively, are also
introduced into the proposed memetic algorithm for dyna-
mic optimization problems. Based on a series of dynamic
problems generated from several stationary benchmark pro-
blems, experiments are carried out to investigate the perfor-
mance of the proposed memetic algorithm in comparison
with some peer evolutionary algorithms. The experimental
results show the efficiency of the proposed memetic algo-
rithm in dynamic environments.
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1 Introduction

Many real-world optimization problems are dynamic optimi-
zation problems (DOPs), where the function landscapes may
change over time and, thus, the optimum of these problems
may also change over time. DOPs require powerful heuris-
tics that account for the uncertainty present in the real world.
Since evolutionary algorithms (EAs) draw their inspiration
from the principles of natural evolution, which is a stochastic
and dynamic process, they also seem to be suitable for DOPs.
However, traditional EAs face a serious challenge for DOPs
because they cannot adapt well to the changing environment
once converged.

In order to address DOPs, many approaches have been
developed (Yang et al. 2007) and can be grouped into four
categories: (1) increasing population diversity after a change
is detected, such as the adaptive mutation methods (Cobb
1990; Vavak et al. 1996); (2) maintaining population diver-
sity throughout the run, such as the immigrants approaches
(Grefenstette 1992; Yang 2007, 2008); (3) memory
approaches, including implicit (Goldberg and Smith 1987;
Uyar and Harmanci 2005) and explicit memory (Branke 1999;
Wang et al. 2007; Yang 2006; Yang and Yao 2008) methods;
(4) multi-population (Branke et al. 2000; Oppacher and
Wineberg 1999) and speciation approaches (Parrott and Li
2006). A comprehensive survey on EAs applied to dynamic
environments can be found in Jin and Branke (2005).

In recent years, there has been an increasing concern from
the evolution computation community on a class of hybrid
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EAs, called memetic algorithms (MAs), which hybridize
local search (LS) methods with EAs to refine the solution
quality. So far, MAs have been widely used for solving many
optimization problems, such as scheduling problems
(Ishibuchi et al. 2003; Liu et al. 2007; Man et al. 2007), com-
binatorial optimization problems (Gallardo et al. 2007; Tang
et al. 2007; Tang and Yao 2007), multi-objective problems
(Goh and Tan 2008; Hatzakis and Wallace 2006; Liu et al.
2007) and other applications (Zhou et al. 2007; Zhu et al.
2007). However, these problems for which MAs have been
applied are mainly stationary problems. MAs have rarely
been applied for DOPs (Eriksson and Olsson 2002, 2004;
William et al. 2005). During the running course of gene-
ral MAs, they may always exhibit very strong exploitation
capacity due to executing efficient local refinement on indi-
viduals, but they may lose the exploration capacity as a result
of the population converging to one optimum, which needs to
be avoided in dynamic environments. Therefore, it becomes
an interesting research issue to examine the performance of
MAs, which are enhanced by suitable diversity methods, for
DOPs.

In this paper, we investigate the application of a MA with
an adaptive hill climbing strategy, which combines the fea-
tures of crossover-based hill climbing and mutation-based
hill climbing in both cooperative and competitive fashions, to
address DOPs. In order to address the convergence problem,
two diversity maintaining approaches, an adaptive dual map-
ping and a triggered random immigrants scheme, are intro-
duced into the proposed MA to improve its performance in
dynamic environments. The effect of introducing these two
diversity maintaining approaches into our MA for DOPs is
experimentally investigated.

The rest of this paper is organized as follows. Section 2
describes the proposed MA with two hill climbing strate-
gies investigated in this paper. Section 3 introduces a series
of DOPs generated by a dynamic problem generator from
the stationary test suite. Section 4 reports the experimental
results and relevant analysis. Finally, Sect. 5 concludes this
paper with some discussions on relevant future work.

2 Investigated algorithms

2.1 Framework of GA-based memetic algorithms

The memetic algorithms investigated in this paper are a class
of GA-based MAs, which can be expressed by the pseudo-
code in Fig. 1, where pop_si ze, pc, and pm are the popu-
lation size, crossover probability, and mutation probability,
respectively. Within these MAs, a population of pop_ si ze
individuals are generated randomly and then evaluated at the
initialization step. Then, an elite individual, i.e., an indivi-
dual with the best fitness, is improved by a local search (LS)

Fig. 1 Pseudo-code for a general GA-based MA

strategy. At each subsequent generation, individuals are
selected randomly or proportionally from the current popu-
lation and undergo the uniform crossover operation with a
probability pc. Uniform crossover is the generalization of
n-point crossover which creates offspring by deciding, for
each bit of one parent, whether to swap the allele of that
bit with the corresponding allele of the other parent. After
crossover is executed, the bit-wise mutation operator is per-
formed for each newly generated offspring individual, which
may change the allele in each locus of an offspring bitwise
(0 to 1 and vice versa) with a probability pm. Then, the
pop_si ze best individuals among all parents and offspring
are selected to proceed into the next generation and an elite
individual in the newly generated population is improved by
the LS strategy.

The convergence problem must be addressed when an
EA or MA is applied for DOPs. Some diversity maintaining
approaches, such as the dualism and immigrants methods,
have proved to be good choices for EAs to address this pro-
blem. However, more economical diversity methods should
be introduced to MAs for DOPs, given that the LS operations
always cost a number of extra evaluations. Hence, two diver-
sity maintaining approaches will be introduced to our MA,
which utilizes the adaptive hill climbing strategy as the LS
operator, to address DOPs in the next section.

2.2 Hill climbing

Within MAs, LS operators perform directive local refine-
ments to ensure sufficient exploitation during the course of
evolving the population. Among many LS methods available
in the literature, hill climbing (HC) is a common strategy.
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Fig. 2 Pseudo-code for the GCHC operator

In the context of GAs, HC methods may be divided into
two ways: crossover-based hill climbing (Lozano et al. 2004;
O’Reilly and Oppacher 1995) and mutation-based hill clim-
bing (Lau and Tsang 1996; O’Reilly and Oppacher 1994).
The basic idea of HC methods is to use stochastic iterative
hill climbing as the move acceptance criterion of the search
(i.e. move the search from the current individual to a candi-
date individual if the candidate has a better fitness) and use
crossover or mutation as the move operator in a local area.

Here, we propose two HC methods, a greedy crossover-
based hill climbing (GCHC) and a steepest mutation-based
hill climbing (SMHC), in this section. They are specially
designed for MAs with binary encoding scheme, which are
our concern in this paper. We will consider a class of binary
encoded DOPs in our experiments to be discussed later. The
two HC methods are described as follows.

(1) GCHC: In this strategy, the elite individual is taken
as one parent and another parent is selected from the current
population using a roulette wheel. Then, a special uniform
crossover is executed between these two parent individuals
to generate an offspring. The offspring will replace the elite
individual in the current population if it has a better fitness
than the elite. This procedure is outlined in Fig. 2, where a
maximization optimization problem is assumed.

Fig. 3 Pseudo-code for the SMHC operator

(2) SMHC: The steepest mutation means that the
chromosome only changes several bits randomly when exe-
cuting one mutation operation on it. In SMHC, the elite indi-
vidual is picked out from the current population and several
random bits are changed. If the newly mutated individual has
a better fitness, it will replace the elite individual. The SMHC
strategy is outlined in Fig. 3.

From Figs. 2 and 3, it can be seen that two important para-
meters, pcls in GCHC and nmls in SMHC, respectively, may
affect the results of the local search. In GCHC the smaller the
value of pcls , the more the offspring inherits from the elite
individual. This means executing one step LS operation in
a smaller area around eli te. Similar results can be obtained
for nmls in SMHC. When the value of nmls is larger, SMHC
will perform the LS operation within a wider range around
eli te.

Therefore, the question that remains to be answered here
is how to set the two parameters. Generally speaking, the
methods of setting strategy parameters in GAs can be clas-
sified into three categories (Eiben et al. 1999): determinis-
tic mechanism where the value of the strategy parameter is
controlled by some deterministic rules without any feedback
from the search, adaptive mechanism where there is some
form of feedback information from the search process that
is used to direct the setting of a strategy parameter, and
self-adaptive mechanism where the parameter to be adap-
ted is encoded into the chromosomes and undergoes genetic
operators.
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Two different parameter-setting methods will be discussed
for pcls and nmls in the later experiments. In the deterministic
method, both pcls and nmls are set to constant values, which
means that the LS operation will always be executed in a
local area of a certain fixed range. In the adaptive method,
a population index ξ which can measure the diversity of the
population is considered as the feedback information to direct
the change of the values of pcls and nmls .

Let the normalized Hamming distance between two indi-
viduals xi = (xi1, . . . , xin) and x j = (x j1, . . . , x jn) be defi-
ned by:

d(xi , x j ) =
∑n

k=1 |xik − x jk |
n

(1)

and ξ is calculated by the following formula:

ξ =
∑pop_si ze

i=1 d(x∗, xi )

pop_si ze
, (2)

where x∗ denotes the best individual achieved so far. Obviou-
sly, the index ξ can measure the convergence state of the
population via the Hamming distance calculation. When ξ

decreases to zero, it means that the population has lost its
diversity absolutely.

With the definition of ξ , pcls and nmls can be calculated
as follows:

pcls = min{α · ξ · (pcmax
ls − pcmin

ls )+ pcmin
ls , pcmax

ls } (3)

nmls = min{β · ξ · (nmmax
ls − nmmin

ls )

+nmmin
ls , nmmax

ls }, (4)

where pcmax
ls and pcmin

ls are the preset maximum and mini-
mum value of pcls , respectively, nmmax

ls and nmmin
ls are the

preset maximum and minimum value of nmls , respectively,
and α and β are the predefined constants to control the decrea-
sing or increasing speed of pcls and nmls , respectively. From
these formulae, it is easy to understand that both GCHC and
SMHC exhibit a wide range LS operations in the presence
of a high population diversity (i.e., when ξ → 1) as a result
of pcls → pcmax

ls and nmls → nmmax
ls . This may help algo-

rithms find the optimum (maybe local optimum) more qui-
ckly. However, when the population is converging (i.e., when
ξ → 0), pcls → pcmin

ls and nmls → nmmin
ls , which limits

the LS operations in a very small range in order to perform
more efficient local improvement for the elite individual.

2.3 Adaptive hill climbing

It has been reported that multiple LS operators can be emp-
loyed in a MA framework (Neri et al. 2007; Smith 2007; Talbi
and Bachelet 2006). This is because each LS operator makes
a biased search, which makes a method efficient for some
classes of problems but not efficient for others. That is, LS
is problem-dependent. Therefore, how to achieve improved

LS operators and avoid utilizing inappropriate LS methods
becomes a very important issue. In order to address this pro-
blem, many researchers have used multiple LS methods in
their MAs. In comparison with traditional MAs that use a
single LS operator throughout the run, MAs with multiple
LS methods can usually obtain a better performance.

The key idea of using multiple LS operators in MAs is
to promote the cooperation and competition of different LS
operators, enabling them to work together to accomplish the
shared optimization goal. Some researchers (Krasnogor and
Smith 2005; Ong and Keane 2004) have suggested that mul-
tiple LS operators should be executed simultaneously on
those individuals that are selected for local improvements
and that a certain learning mechanism should be adopted to
give the efficient LS methods greater chances to be chosen in
the later stage. However, Neri et al. (2007) have also propo-
sed a multiple LS based MA with a non-competitive scheme,
where different LS methods can be activated during different
population evolution periods. Inspired by these researches,
an adaptive hill climbing (AHC) strategy that hybridizes the
GCHC and SMHC methods described in Sect. 2.2 is propo-
sed in this paper.

In AHC, the GCHC and SMHC operators are both allowed
to work in the whole LS loop and are selected by probability
to execute one step LS operation at every generation when the
MA is running. Let pgchc and psmhc denote the probabilities
of applying GCHC and SMHC to the individual that is used
for a local search, respectively, where pgchc + psmhc = 1. At
the start of this strategy, pgchc and psmhc are both set to 0.5,
which means giving a fair competition chance to each LS
operator. As each LS operator always makes a biased search,
the LS operator which produces more improvements should
be given a greater selection probability. Here, an adaptive
learning approach is used to adjust the value of pgchc and
psmhc for each LS operator. Let η denotes the improvement
degree of the selected individual when one LS operator is
used to refine it and η can be calculated by:

η = | fimp − fini|
fini

, (5)

where fimp is the final fitness of the elite individual after
applying the local search and fini is its initial fitness before the
local search. At each generation, the degree of improvement
of each LS operator is calculated when a predefined number
(ls_si ze) of iterations is achieved and then pgchc and psmhc

are re-calculated to proceed with the local improvement in
the next generation.

Suppose ηgchc(t) and ηsmhc(t), respectively, denote the
total improvement of GCHC and SMHC at generation t . The
LS selection probabilities pgchc(t + 1) and psmhc(t + 1) at
generation (t +1) can be calculated orderly by the following
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Fig. 4 Pseudo-code for the AHC operator

formulae:

pgchc(t + 1) = pgchc(t) + ∆ · ηgchc(t), (6)

psmhc(t + 1) = psmhc(t) + ∆ · ηsmhc(t), (7)

pgchc(t + 1) = pgchc(t + 1)

pgchc(t + 1) + psmhc(t + 1)
, (8)

psmhc(t + 1) = 1 − pgchc(t + 1), (9)

where ∆ signifies the relative influence of the degree of the
improvement on the selection probability. The AHC operator
can be expressed by the pseudo-code in Fig. 4.

From the above discussion, the two different HC strate-
gies, GCHC and SMHC, may not only cooperate to improve
the quality of individuals, but also compete with each other to
achieve a greater selection probability in the running process
of AHC. To promote competition between them, the selection
probability of LS operators can be re-calculated according to
an adaptive learning mechanism where the LS operator with
a higher fitness improvement is rewarded with more chance
of being chosen for the subsequent individual refinement.

2.4 Population diversity

So far, almost all MAs are used for solving stationary opti-
mization problems, where the fitness landscape or objective
function does not change during the course of computation.
The LS operators are designed for exploiting information in
the current population and the genetic operators, for example,
mutation, are mostly responsible for enhancing the diversity
of population in order to make an efficient jump from a local
optimum. Generally speaking, the population will converge
to a small area in the whole search space as a result of keeping

Fig. 5 Pseudo-code for the proposed GA-based MA with diversity
maintaining techniques

the sufficient exploitation for the global optimum. Therefore,
MAs may gradually loose their population diversity during
the running. However, in dynamic environments, the fitness
landscape may change over time. That is, the current opti-
mum point may become a local optimum and the past local
optimum may become a new global optimum point. Conside-
ring that a spread-out population can adapt to these changes
more easily, it is very important and necessary to maintain a
sufficient diversity of the population for MAs all the time.

Obviously, a simple mutation operator can not maintain
sufficient population diversity in MAs since LS operators
can make the population rapidly converge into an optimum.
In order to address this converge problem, two diversity-
maintaining methods, called adaptive dual mapping (ADM)
and triggered random immigrants (TRI), are introduced into
our algorithm framework of MAs, as shown in Fig. 5, for
DOPs.
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(1) The ADM method: Dualism and complementarity are
quite common in nature, such as double-stranded chromo-
some in DNA molecules. Inspired by the complementarity
mechanism in nature, a primal-dual genetic algorithm has
been proposed and applied for DOPs (Yang 2003). In this
paper, we investigate the application of dualism (Wang and
Wang 2006; Yang and Yao 2005) into MAs. For the conve-
nience of description, we first introduce the definition of a
dual individual here. Given an individual x = (x1, . . . , xn) ∈
I = {0, 1}n of a fixed length n, its dual individual is defined
as x′ = (x ′

1, . . . , x ′
n) ∈ I where x ′

i = 1 − xi (i = 1, . . . , n).
With this definition, the dual (eli te′) of an individual (eli te)
is first evaluated before executing a LS on it. If its dual is eva-
luated to be fitter ( f (eli te′) > f (eli te)), eli te is replaced
with eli te′ before the local search is executed; Otherwise,
eli te will be refined by LS directly.

(2) The TRI method: The random immigrants approach
was first introduced by Grefenstette (1992) where in every
generation the population is partly replaced by randomly
generated individuals. Though this method introduces a
constant diversity into the population, it is more helpful that
the random individuals migrate into a converging popula-
tion than a spread-out one. Thus, it is not necessary that the
population is always injected by random individuals at every
generation. Here, we introduce a triggered random immi-
grants method via combining a trigger mechanism with the
random immigrants scheme. In the triggered method, the ran-
dom individuals will be immigrated into the population only
when its convergence degree is below a threshold. A triggered
generator may be designed using the index ξ (see Sect. 2.2).
When the value of ξ is less than a certain threshold θ0, the
random immigrants strategy will be triggered and im_si ze
(here, im_si ze = 10% × pop_si ze) lowest fitness indivi-
duals in the population are replaced by the same amount of
randomly generated ones.

Based on the above description, the ADM method can
introduce a certain degree of diversity to the current popu-
lation if the eli te individual makes a long jump to its com-
plement in the search space. Although just one individual in
the current population is allowed to execute the dual mapping
operation, this diversity method may affect the algorithm very
explicitly. This is because the selected individual is the best
fitness individual which plays an important role in the run-
ning of investigated MAs. The TRI method can bring a high
degree of diversity when the current population has conver-
ged below a certain level. It is obvious that the TRI method
may just make an implicit influence on the performance of
algorithms as the fitness level of randomly generated indivi-
duals is usually very low.

One main problem that follows when the diversity methods
are introduced into MA is how much they affect the LS ope-
ration. Just as introduced in Sect. 2.1, the number of evalua-
tions must be considered in the framework of MAs for DOPs

while the LS operation and diversity maintaining operation
both cost a number of additional evaluations (ls_si ze in LS,
one in ADM, and im_si ze in TRI) per generation of the MA
running. As a generation index is used to set the change per-
iod of environment in the later experiments, it is necessary
to maintain a constant number of evaluations in each genera-
tion in order to have fair comparisons among our investigated
MAs and other peer EAs. Therefore, the LS step size ls_si ze
will be re-calculated when ADM or TRI or both are used. Let
Num_epg denote the number of evaluations per generation,
ls_si ze = Num_epg − pop_si ze − 1 − im_si ze if ADM
and TRI techniques are both introduced into MA. In fact, it
is why we use the ADM and TRI methods in our investiga-
ted MAs, with a view to decrease the evaluations of useless
diversity maintaining operations as much as possible.

3 Dynamic test environments

In this paper, a series of dynamic test environments are
constructed by a specific dynamic problem generator from a
set of well studied stationary problems. Four 100-bit binary-
coded functions, denoted OneMax, Plateau, RoyalRoad, and
Deceptive, respectively, are selected as the stationary func-
tions to construct dynamic test environments. Each stationary
function consists of 25 copies of 4-bit building blocks and has
an optimum value of 100. Each building block for the four
functions is a unitation-based function, as shown in Fig. 6.
The unitation function of a bit string returns the number of
ones inside the string. The building block for OneMax is an
OneMax subfunction, which aims to maximize the number
of ones in a bit string. The building block for Plateau contri-
butes 4 (or 2) to the total fitness if its unitation is 4 (or 3);
otherwise, it contributes 0. The building block for Royal-
Road contributes 4 to the total fitness if all its four bits are
set to one; otherwise, it contributes 0. The building block

0 1 2 3 4
0

1

2

3

4

Unitation

F
itn

es
s

OneMax
Plateau
RoyalRoad
Deceptive

Fig. 6 The building blocks for the four stationary functions selected
to construct dynamic test problems in this paper
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for Deceptive is a fully deceptive sub-function. Generally
speaking, the four functions have an increasing difficulty for
GAs in the order from OneMax to Plateau, RoyalRoad to
Deceptive.

In Yang (2003) and Yang and Yao (2005), a DOP genera-
tor was proposed. The DOP generator can generate dynamic
environments from any binary-encoded stationary function
f (x) (x ∈ {0, 1}l ) by a bitwise exclusive-or (XOR) operator.
The environment is changed every τ generations. For each
environmental period k, an XOR mask M(k) is incrementally
generated as follows:

M(k) = M(k − 1) ⊕ T(k), (10)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1,
0 ⊕ 0 = 0) and T(k) is an intermediate binary template
randomly created with ρ × l ones for the k-th environmental
period. For the first period k = 1, M(1) = 0. Then, the
population at generation t is evaluated as:

f (x, t) = f (x ⊕ M(k)), (11)

where k = �t/τ� is the environmental index. One advan-
tage of this XOR generator lies in that the speed and severity
of environmental changes can be easily tuned. The parame-
ter τ controls the speed of changes while ρ ∈ (0.0, 1.0)

controls the severity of changes. A bigger ρ means more
severe changes while a smaller τ means more frequent
changes.

The dynamic test environments used in this paper are
constructed from the four stationary functions using the afo-
rementioned XOR DOP generator. The change severity ρ

parameter is set to 0.1, 0.2, 0.5, and 0.9, respectively, in
order to examine the performance of algorithms in dynamic
environments with different severities: from slight change
(ρ = 0.1 or 0.2) to moderate variation (ρ = 0.5) to intense
change (ρ = 0.9). The change speed parameter τ is set to
10, 50, and 100, respectively, which means that the environ-
ment changes very fast, in the moderate speed, and slowly,
respectively.

In total, a series of 12 different dynamic problems are
constructed from each stationary test problem. The dynamics
parameter settings are summarized in Table 1.

Table 1 The index table for dynamic parameter settings

τ Environmental dynamics index

10 1 2 3 4

50 5 6 7 8

100 9 10 11 12

ρ → 0.1 0.2 0.5 0.9

4 Experimental study

4.1 Experimental design

In this section, experiments are carried out in order to study
the major features of our proposed MAs and to compare their
performance with several existing peer algorithms where
similar dualism and immigrants methods are also used. The
following abbreviations represent GAs or MAs considered
in this paper:

– CHMA: MA with the GCHC operator;
– MHMA: MA with the SMHC operator;
– AHMA: MA with the AHC operator;
– SGA: Standard GA;
– SGAr: SGA with restart from scratch whenever the envi-

ronment changes;
– RIGA: GA with the random immigrants scheme;
– EIGA: GA with the elitism-based immigrants scheme

(Yang 2007). In EIGA, a set of immigrant individuals are
generated by bitwise mutating the elitist (the best indivi-
dual) from the previous generation to replace the worst
individuals in the population at each generation;

– DPBIL3: The population-based incremental learning
(PBIL) algorithm is a combination of evolutionary com-
putation and competitive learning (Baluja 1994). At each
generation PBIL first generates a population of samples
(solutions) according to a real valued probability vector
and then retrieves the best sample generated to update
(learn) the probability vector. With the progress of such
iterations, each element in the probability vector will
eventually converge to either 0.0 or 1.0 and PBIL can
always achieve high quality solution with a high proba-
bility. In order to improve the performance of PBIL in
dynamic environments, a PBIL variant, denoted DPBIL3,
was investigated in Yang and Yao (2005). DPBIL3 inte-
grates the dualism and immigrants approaches. Instead
of using only one probability vector as in the standard
PBIL, DPBIL3 uses three different probability vectors, a
pair of probability vectors that are dual to each other and
one central probability vector. The three probability vec-
tors generate their own sets of samples, respectively, and
the number of samples they generate changes adaptively
according to their relative performance. More details on
DPBIL3 can be found in Yang and Yao (2005).

The following parameters are used in all algorithms: the
total number of evaluations per generation Numepg is always
set to 120 for all algorithms, and the population size
(pop_si ze) is set to 100 for all MAs, RIGA and EIGA, but
is set to 120 for SGA, SGAr and DPBIL3 because the LS
operation in MAs may be executed ls_si ze = 20 steps at
most and the immigrant ratio is set to 0.2 in RIGA and EIGA
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Fig. 7 Experimental results with respect to the running offline performance of CHMAs with different pcls settings on stationary test problems:
a OneMax, b RoyalRoad, and c Deceptive

per generation. The uniform crossover probability pc equals
to 0.6 and the bit-wise mutation probability pm is set to 0.01
for all GAs and MAs. The specific parameters in our MAs are
set as follows: α = β = 1, ∆ = 4 and θ0 = 0.1. Other para-
meters in the studied peer algorithms are always the same as
their original settings.

For each experiment of an algorithm on a test problem, 20
independent runs were executed with the same set of random
seeds. For each run of an algorithm on a DOP, 10 environmen-
tal changes were allowed and the best-of-generation fitness
was recorded per generation.

The overall offline performance of an algorithm is defined
as the best-of-generation fitness averaged across the number
of total runs and then averaged over the data gathering period,
as formulated below:

F BG = 1

G

G∑

i=1

⎛

⎝ 1

N

N∑

j=1

FBGi j

⎞

⎠ , (12)

where G is the number of generations (i.e., G = 10 ∗ τ ),
N = 20 is the total number of runs, and FBGi j is the best-
of-generation fitness of generation i of run j .

In order to measure the behavior of an algorithm during
the course of running, another numeric measure is defined as
the best-of-generation fitness averaged across the number of
total runs and then averaged from the last change generation
τ ′ to the current generation t . More formally, the running
offline performance is defined as:

F BGt = 1

t − τ ′
t−τ ′
∑

i=τ ′

⎛

⎝ 1

N

N∑

j=1

FBGi j

⎞

⎠ (13)

4.2 Experimental study on the effect of LS operators

In the experimental study on LS operators, we first study the
influence of different settings of pcls in CHMA and nmls in
MHMA, with the aim of determining a robust setting for these
two parameters. In particular, we have implemented CHMA

that hybridizes the ADM and TRI schemes just on stationary
test problems. Three different settings for pcls were used:
pcls = 0.6 and pcls = 0.1 in the deterministic setting and
pcmax

ls = 0.6 and pcmin
ls = 0.1 in the adaptive setting scheme

(see Sect. 2.2). For each run of an algorithm on each problem,
the maximum allowable number of generations was set to
100.1 The experimental results are shown in Fig. 7, where the
data were averaged over 20 runs. The results on the Plateau
problem are similar to the results on the RoyalRoad problem
and are not shown in Fig. 7.

From Fig. 7, it can be seen that CHMA with adaptive pcls

always outperforms CHMAs with the deterministic value of
pcls on the OneMax, Plateau and RoyalRoad problems and
that a smaller pcls can help CHMA obtain a better perfor-
mance on the Deceptive problem. So the adaptive setting
scheme for pcls is always used in the following experiments
considering that the deterministic setting scheme is problem-
dependent and the adaptive scheme for pcls always shows a
better adaptive capacity on different problems.

Similar experiments were also carried out to test the
influence of different settings of nmls on the performance
of MHMA, where the ADM and TRI methods are integra-
ted. The value of nmls was set to 4 and 1, respectively, for
the deterministic scheme and nmmax

ls = 4 and nmmin
ls = 1 in

the adaptive setting scheme (see Sect. 2.2). The experimen-
tal results with respect to the running offline performance are
presented in Fig. 8.

From Fig. 8, it can be observed that the performance curves
of the three MHMAs almost overlap together on the Pla-
teau, RoyalRoad and Deceptive problems except that MHMA
with nmls = 1 performs better than MHMA with adaptive
nmls and MHMA with nmls = 4 on the OneMax problem.
This indicates that adaptively varying the search range of
the SMHC operator may not improve the performance of
MHMA remarkably. Hence, the value of nmls will always
be set to 1 in the later experiments.

1 The number of maximum allowable fitness evaluations is actually
12,000 since each algorithm has 120 fitness evaluations per generation.
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Fig. 8 Experimental results with respect to the running offline performance of MHMAs with different nmls settings on stationary test problems:
a OneMax, b RoyalRoad, and c Deceptive
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Fig. 9 Experimental results with respect to the running offline performance of MAs and SGA on stationary test problems: a OneMax, b RoyalRoad,
and c Deceptive

In the following experiments, we investigate the perfor-
mance of AHMA, MHMA, CHMA and SGA on the statio-
nary test problems in order to examine the validity of LS
operators. The two diversity maintaining methods (ADM
and TRI) are both used in all MAs and experimental results
with respect to the running offline performance are shown in
Fig. 9.

From Fig. 9, it can be seen that all MAs always outper-
form SGA on all test problems. This shows that the com-
bination of proper LS techniques (here AHC in AHMA,
SMHC in MHMA, and GCHC in CHMA) and some diver-
sity methods (here, ADM and TRI) can help MAs obtain a
much better performance than SGA. Of course, these conclu-
sions have been drawn by many researchers. On the OneMax
problem, AHMA always performs better than CHMA but is
always beaten by MHMA with a lower degree. On the Pla-
teau and RoyalRoad problems, CHMA outperforms MHMA
after a period of early running and AHMA behaves similar as
CHMA but with a little inferior performance. On the Decep-
tive problem, MHMA always performs better than AHMA
and CHMA significantly while AHMA always performs bet-
ter than CHMA with a much high degree.

The results indicate that LS operators are problem-
dependent and AHC always does well although it needs
to take some time to adjust its local search strategy. Since

it is almost impossible for an algorithm to achieve all the
characters of a problem in advance, the combination of mul-
tiple LS operators within a single MA framework is a good
choice for solving optimization problems.

4.3 Experimental study on the effect of diversity
maintaining schemes

There are two diversity maintaining schemes, ADM and TRI,
within the investigated MAs. In the above experiments, we
used both of them in MAs. In order to investigate the effect
of different diversity methods on the performance of MAs,
we further carry out experiments on AHMAs on DOPs with
τ = 100 and ρ set to 0.1, 0.2, 0.5 and 0.9, respectively.
In order to make a convenient description of the experi-
ments, AHMA1, AHMA2, AHMA3 and AHMA4 are used to
denote AHMA with both the ADM and TRI methods, AHMA
without any diversity scheme, AHMA with only the ADM
scheme, and AHMA with only the TRI method, respectively.

The experimental results with respect to the overall offline
performance are presented in Table 2. The corresponding
statistical results of comparing algorithms by the one-tailed
t-test with 38 degrees of freedom at a 0.05 level of signi-
ficance are given in Table 3. In Table 3, the t-test results
regarding Alg. 1−Alg. 2 are shown as “+”, “−”, or “∼”
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Table 2 Experimental results with respect to overall offline performance of AHMAs on dynamic test problems

Dynamics OneMax problem Plateau problem

τ ρ AHMA1 AHMA2 AHMA3 AHMA4 AHMA1 AHMA2 AHMA3 AHMA4

100 0.1 98.97 ± 0.06 99.28 ± 0.17 99.26 ± 0.18 99.02 ± 0.06 97.49 ± 0.26 98.14 ± 0.28 98.11 ± 0.20 97.60 ± 0.29
100 0.2 99.07 ± 0.07 98.77 ± 0.42 98.72 ± 0.39 98.07 ± 0.10 96.66 ± 0.46 96.19 ± 0.35 96.12 ± 0.32 95.53 ± 0.53
100 0.5 97.80 ± 0.08 97.57 ± 0.07 97.42 ± 0.09 97.87 ± 0.09 89.69 ± 1.06 84.46 ± 0.55 84.53 ± 0.39 90.34 ± 0.98
100 0.9 99.23 ± 0.07 95.89 ± 0.11 99.25 ± 0.06 97.86 ± 0.11 98.03 ± 0.22 62.88 ± 1.71 98.03 ± 0.22 90.54 ± 0.64

Dynamics RoyalRoad problem Deceptive function

τ ρ AHMA1 AHMA2 AHMA3 AHMA4 AHMA1 AHMA2 AHMA3 AHMA4

100 0.1 93.48 ± 0.82 94.33 ± 0.68 94.19 ± 0.61 93.86 ± 0.78 85.22 ± 1.32 79.50 ± 1.57 88.06 ± 0.44 79.49 ± 2.11
100 0.2 87.79 ± 1.21 88.03 ± 1.10 88.07 ± 0.85 87.06 ± 0.92 89.17 ± 0.47 77.82 ± 1.12 88.19 ± 0.44 78.24 ± 1.40
100 0.5 71.23 ± 1.59 67.34 ± 0.88 67.13 ± 1.10 70.62 ± 1.23 80.18 ± 0.68 77.86 ± 0.55 88.64 ± 0.51 79.26 ± 0.66
100 0.9 94.42 ± 0.51 52.52 ± 1.27 94.08 ± 0.62 57.31 ± 3.12 87.75 ± 1.23 85.75 ± 0.27 88.90 ± 1.09 85.54 ± 0.29

Table 3 The t-test results of comparing the overall offline performance of AHMAs on dynamic test problems

t-Test result OneMax problem Plateau problem RoyalRoad problem Deceptive function

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA1 − AHMA2 − + + + − + + + − ∼ + + + + + +
AHMA1 − AHMA3 − + + ∼ − + + ∼ − ∼ + + − + − −
AHMA1 − AHMA4 − + − + ∼ + − + ∼ + ∼ + + + + +
AHMA2 − AHMA3 ∼ ∼ + − ∼ ∼ ∼ − ∼ ∼ ∼ − − − − −
AHMA2 − AHMA4 + + − − + + − − + + − − ∼ ∼ − +
AHMA3 − AHMA4 + + − + + + − + + + − + + + + +

when Alg. 1 is significantly better than, significantly worse
than, or statistically equivalent to Alg. 2, respectively. From
Tables 2 and 3, several results can be observed and are ana-
lyzed below.

First, AHMA1 always performs a little worse than other
AHMAs on most dynamic problems just except on the Decep-
tive problem when the change severity ρ is very small
(ρ = 0.1). This is because a new environment is close to
the previous one when the value of ρ is very small. For
such instances, executing sufficient LS operations for the
elite individual in the current population may be more benefi-
cial than introducing some population diversity. As AHMA1
requires more “energy” than other AHMAs in maintaining
the population diversity, it is beaten when the value of ρ

is very small. However, AHMA1 begins to exhibit a better
performance with the increasing of the value of ρ. When
ρ = 0.2, AHMA1 always outperforms other AHMAs on
most dynamic problems. When ρ increases to 0.5 or 0.9,
AHMA1 also does well except being beaten by AHMA3
on the Deceptive problems and by AHMA4 on the OneMax
and Plateau problems with ρ = 0.5. Obviously, these results
confirm our expectation of introducing diversity maintaining
methods into AHMA.

Second, AHMA2 performs better just when the change
severity ρ is not very large because its converging population

can only adapt to such changes. However, the situation seems
a little different on the Deceptive problem where AHMA2
performs worse than other AHMAs when ρ is small but per-
forms a little better than AHMA4 when ρ = 0.9. The rea-
son lies in that the deceptive attractor in the Deceptive pro-
blem may mislead the direction of hill climbing in AHMA2,
which may be escaped from by other AHMAs via the diver-
sity maintaining technique. When the environment is subject
to significant changes (ρ = 0.9), the XOR operation may
enable AHMA2 jump out from the deceptive attractor.

Third, AHMA3 always performs better than AHMA2 and
AHMA4 on the OneMax, Plateau and RoyalRoad problems
when ρ = 0.9 and on all Deceptive problems. This is because
the dualism mechanism may help AHMA3 react to signi-
ficant environmental changes rapidly and also enable it to
escape from the deceptive attractor in the Deceptive
problem.

Fourth, AHMA4 always exhibits a better performance
on most dynamic problems when a random environmental
change occurs (ρ = 0.5). This is easy to understand. When
the environment changes with ρ = 0.5, almost all building
blocks found so far are demolished. Obviously, AHMA4 can
adapt to this environmental change more easily as the TRI
method ensures AHMA4 to always maintain a certain popu-
lation diversity level.
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Fig. 10 Experimental results with respect to the diversity of population of AHMAs on DOPs with τ = 50: a OneMax, b Plateau, c RoyalRoad,
and d Deceptive

In order to understand the effect of the two diversity
schemes on the population diversity during the running of
an algorithm, we also recorded the diversity of the popu-
lation every generation. The diversity of the population at
generation t in the k-th run of an MA on a DOP is defined
as:

Div(k, t) =
∑pop_si ze

i=0

∑pop_si ze
j 
=i d(xi , x j )

n · pop_si ze(pop_si ze − 1)
, (14)

where n is the encoding size and d(xi , x j ) is the normalized
Hamming distance between the i th (xi ) and j th (x j ) indivi-
duals in the population. The overall diversity level of a MA
on a DOP over 20 runs is calculated as follows.

Div(k, t) = 1

G

G∑

t=1

1

20

20∑

k=1

Div(k, t), (15)

where G = 10 × τ = 500 is the total number of generations
for a run.

The overall diversity of MAs on DOPs with τ = 50 and
different values of ρ is plotted in Fig. 10. Form Fig. 10, it can
be seen that AHMA4 maintains the highest diversity level on
most DOPs since the random immigrants may be introdu-
ced into the population once converged. AHMA3 maintain a
higher diversity level than AHMA2 only on dynamic Plateau

and RoyalRoad problems with ρ = 0.9 and all dynamic
Deceptive problems. This is because whether its population
diversity is improved depends on whether the elite indivi-
dual makes a long jump to its dual successfully. However,
whether the diversity schemes are helpful or not depends on
the MAs and DOPs. As analyzed before, AHMA1 outper-
forms other AHMAs on most dynamic problems though it
just maintains a middle diversity level, while AHMA2 per-
forms well only in the slight changing environments because
of its poor population diversity.

4.4 Experimental study on comparing AHMA with several
peer EAs on DOPs

In the final experiments, we compare the performance of
AHMA, combining ADM and TRI methods, with several
other existing peer EAs proposed in the literature on the
DOPs constructed in Sect. 3. These peer EAs are SGAr,
RIGA, EIGA and DPBIL3, as described in Sect. 4.1. The
experimental results are plotted in Fig. 11 and the correspon-
ding statistical results are given in Table 4. From Fig. 11 and
Table 4, several results can be observed and are analyzed as
follows.

First, AHMA always outperforms other peer EAs on most
dynamic problems and underperforms some of these EAs
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Fig. 11 Experimental results with respect to the overall offline performance of AHMA and peer EAs on dynamic test problems: a OneMax,
b Plateau, c RoyalRoad, and d Deceptive

on some dynamic problems when the environment changes
slowly, i.e., when τ = 50 or 100. When the environment
changes quickly, i.e., when τ = 10, AHMA can always
locate the optimum (maybe local optimum) more quickly
than other EAs because the LS operator may have a strong
exploitation capacity. This is why AHMA performs best on
all dynamic problems with τ = 10. When τ = 50 or 100,
AHMA performs a little worse than EIGA on dynamic One-
Max problems with ρ = 0.1 or 0.2. This is because EIGA
can especially fit such a dynamic environment that changes
slowly and slightly for one thing and the elitism-based immi-
grants can maintain a very high fitness level on the OneMax
problem for the other. AHMA is also beaten by SGAr on
the dynamic Plateau and RoyalRoad problems with ρ = 0.5
and τ = 50 or 100. This happens because the random envi-
ronment always requires algorithms to maintain a sufficient
population diversity (see the relevant analysis in Sect. 4.3)
and the restart scheme in SGAr can introduce the maximum
diversity into the population. The reason why SGAr outper-
forms AHMA only on the Plateau and RoyalRoad problems
lies in the intrinsic characteristics of these problems. The
OneMax problem is simply unimodal, which is very suitable
for a HC search in AHMA. Both the Plateau and RoyalRoad
problems have higher-order building blocks, which take a HC

search much more time to achieve. The Deceptive problem
may mislead SGAr’s evolution due to the existence of decep-
tive attractor, which can be escaped from by AHMA. The
good performance of AHMA over other peer EAs shows that
our investigated AHMA has a strong robustness and adapti-
vity in dynamic environments.

Second, on dynamic OneMax and Plateau problems EIGA
always outperforms SGAr and RIGA when ρ is set to 0.1
or 0.2, but underperforms them when the value of ρ is set
to 0.5 or 0.9. On dynamic RoyalRoad and Deceptive pro-
blems, the situations become a little different. EIGA per-
forms better than RIGA on dynamic RoyalRoad problems
just when τ = 10 and better than both SGAr and RIGA on
all dynamic Deceptive problems. This happens because the
elitism-based immigrants scheme can introduce higher fit-
ness individuals, which can adapt better to the current envi-
ronment, into EIGA’s population on dynamic OneMax and
Plateau problems when the environment changes slightly, on
dynamic RoyalRoad problems when the environment
changes quickly, and on all dynamic Deceptive problems due
to the intrinsic characteristics of these four kinds of functions.

Third, the performance of DPBIL3 is exciting only when
the environment is subject to significant changes. This also
confirms the expectation of the dualism scheme for our
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Table 4 The t-test results of comparing the overall offline performance of AHMA and peer EAs on dynamic test problems

t-Test result OneMax problem Plateau problem RoyalRoad problem Deceptive function

τ = 10, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + + + + + + + + + + +
AHMA − RIGA + + + + + + + + + + + + + + + +
AHMA − EIGA + + + + + + + + + + + + + + + +
AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − ∼ + − − − −
SGAr − EIGA − − + + − − + + − − ∼ − − − − −
SGAr − DPBIL3 − ∼ + − − ∼ + − − + + + ∼ + + ∼
RIGA − EIGA − − + + − − ∼ − − − ∼ − − − − −
EIGA − DPBIL3 + + + − + + + − + + + + + + + +

τ = 50, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + − + + + − + + + + +
AHMA − RIGA + + + + + + + + + + + + + + + +
AHMA − EIGA − − + + ∼ + + + + + + + + + + +
AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − + + − − − −
SGAr − EIGA − − + + − − + + − − + + − − − −
SGAr − DPBIL3 + + + + + + + + + + + + + + + +
RIGA − EIGA − − + + − − + + + ∼ + + − − − −
EIGA − DPBIL3 + + + + + + + + + + + + + + + +

τ = 100, ρ ⇒ 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9 0.1 0.2 0.5 0.9

AHMA − SGAr + + + + + + − + + + − + + + + +
AHMA − RIGA + + + + + + + + + + ∼ + + + + +
AHMA − EIGA − − + + + + + + + + + + + + + +
AHMA − DPBIL3 + + + + + + + + + + + + + + + +
SGAr − RIGA − − + + − − + + − − + + − − − −
SGAr − EIGA − − + + − − + + − + + + − − − −
SGAr − DPBIL3 + + + + + + + + + + + + + + + +
RIGA − EIGA − − + + − − + + + + + + − ∼ − −
EIGA − DPBIL3 + + + + + + + + + + + + + + + +

algorithms in dynamic environments. Of course, the similar
results have been obtained and relevant analysis were also
given in the literature (Yang and Yao 2005). However,
DPBIL3 performs worse than other peer EAs on most other
DOPs. The reason will be explained in the following experi-
mental analysis.

Fourth, the performance of other peer EAs is different
on different dynamic problems. Generally speaking, RIGA
always performs better than SGAr on most dynamic pro-
blems when the value of ρ is small. The performance of
SGAr increases with the value of τ but does not change with
the value of ρ. Similar results have also been observed in
Yang (2007).

Finally, the environmental parameters affect the perfor-
mance of algorithms. The performance of all algorithms
increases when the value of τ increase from 10 to 50 to 100. It
is easy to understand when τ becomes larger, algorithms have
more time to find better solutions before the next change. The
effect of the changing severity parameter ρ is different. For
example, when τ is fixed, the performance curve of AHMA
always declines when ρ increases from 0.1 to 0.2 to 0.5, but
rises when ρ increases from 0.5 to 0.9.

In order to better understand the experimental results,
we make a deeper look into the dynamic behavior of these
algorithms. The dynamic behavior of different algorithms
with respect to the running offline performance is shown in
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Fig. 12 Dynamic behavior of AHMA and peer EAs on dynamic OneMax problems with τ = 50 and ρ is set to: a ρ = 0.1, b ρ = 0.2, c ρ = 0.5,
and d ρ = 0.9

Figs. 12, 13, 14, and 15, where τ is set to 50 and ρ is set
to 0.1, 0.2, 0.5 and 0.9, respectively. From these figures, it
can be easily observed that for the dynamic periods SGAr
always performs almost the same as it did for the stationary
period (the first 50 generations) and AHMA always outper-
forms other peer EAs for the stationary period on all test
problems while their dynamic behaviors are different on dif-
ferent dynamic problems.

On the OneMax problem (see Fig. 12), the dynamic beha-
vior of AHMA for each dynamic period is almost the same as
that for the stationary period when ρ is not very large. When
ρ increases to 0.9, AHMA performs better for the dynamic
periods than it does for the stationary period. This is because
that on the OneMax problem the LS operator can help AHMA
trace the changing optimum quickly during one change per-
iod of environment while LS’s effect is enhanced greatly
by the ADM operation when ρ = 0.9. The dynamic beha-
vior of both RIGA and EIGA is affected by the value of ρ.
With the increment of dynamic periods, their performance
upgrades consistently when ρ = 0.1, while their behavior
for the dynamic periods underperforms that for stationary
period when ρ = 0.5 or 0.9. For DPBIL3, its performance
curve rises continuously on the first several environmental
periods but drops heavier and heavier in the later environ-
mental periods when the value of ρ is set to 0.1, 0.2 or 0.9.

The reason lies in the convergence problem of probability
vectors in DPBIL3. When the environment changes slightly
or significantly, a pair of dual probability vectors in DPBIL3
can always keep its evolutionary process to achieve a high fit-
ness solution. However, this pair of probability vectors may
converge during this course. Once converged, DPBIL3 can
not adapt well to the changing environment. This is the reason
why DPBIL3 is beaten by other peer EAs on most DOPs.

On the Plateau and RoyalRoad problems (see Figs. 13
and 14), with the increment of dynamic periods, AHMA’s
performance drops a little when ρ = 0.5, while rises when
ρ = 0.1, 0.2 and 0.9. The reason is that AHMA does not find
the optimum in the stationary period on these two problems.
When the environment changes slightly or very significantly,
AHMA always reruns from the starting points with a higher
fitness in the dynamic periods than that in the stationary per-
iod, while when ρ = 0.5, AHMA can only obtain worse
starting points in the dynamic periods. The dynamic beha-
viors of RIGA, EIGA and DPBIL3 on these problems are
similar to that on the OneMax problem.

On the Deceptive problem (See Fig. 15), with the incre-
ment of dynamic periods, AHMA’s performance maintains
the same when ρ = 0.1 or drops a little when ρ = 0.2 or 0.5.
When ρ is set to 0.9, AHMA’s dynamic behavior is sort of
switching between odd and even environmental periods. The
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Fig. 13 Dynamic behavior of AHMA and peer EAs on dynamic Plateau problems with τ = 50 and ρ is set to: a ρ = 0.1, b ρ = 0.2, c ρ = 0.5,
and d ρ = 0.9
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Fig. 14 Dynamic behavior of AHMA and peer EAs on dynamic RoyalRoad problems with τ = 50 and ρ is set to: a ρ = 0.1, b ρ = 0.2,
c ρ = 0.5, and d ρ = 0.9
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Fig. 15 Dynamic behavior of AHMA and peer EAs on dynamic Deceptive problems with τ = 50 and ρ is set to: a ρ = 0.1, b ρ = 0.2, c ρ = 0.5,
and d ρ = 0.9

reason is that after the stationary period for the following odd
period the environment is in fact greatly returned or repeated
from previous odd period given ρ = 0.9.

5 Conclusions and future work

In this paper, the application of memetic algorithms with
an adaptive hill climbing (AHC) strategy for dynamic opti-
mization problems is investigated. In the proposed memetic
algorithm, two local search methods, the greedy crossover-
based hill climbing (GCHC) and the steepest mutation-based
hill climbing (SMHC), are used to refine the individual that
is selected for local improvements. A learning mechanism,
which gives the more effective LS operator greater chance
for the later individual refinement, is introduced in order
to execute a robust local search. To maintain a sufficient
population diversity for the algorithms to adapt well to the
environmental changes, two diversity maintaining methods,
adaptive dual mapping (ADM) and triggered random immi-
grants (TRI), are introduced into our proposed MA.

From the experimental results, we can draw the following
conclusions on the dynamic test problems.

First, MAs enhanced by suitable diversity methods can
exhibit a better performance in dynamic environments. For
most dynamic test problems, our MA always outperforms
other peer EAs.

Second, the ADM and TRI approaches are both efficient
for improving the performance of MAs in dynamic environ-
ments. However, the two diversity methods have different
effect in different dynamic environments. The ADM method
does better when the environment involves significant
changes (i.e., ρ = 0.9) and the TRI method performs better
when the environmental severity ρ = 0.5. It is a good choice
that the two diversity methods are both introduced into MAs
in dynamic environments.

Third, the LS operator is problem dependent. The AHC
strategy can help MAs execute a robust individual refinement
since it employs multiple LS operators under the mechanism
of cooperation and competition.

Fourth, the difficulty of DOPs depends on the environmen-
tal dynamics, including severity and speed of changes and the
difficulty of the base stationary problems. In our experiments,
MAs perform better with the increasing of the frequency of
changes and the effect of the severity of changes is problem
dependent.

Generally speaking, the experimental results indicate that
the proposed MA, where the adaptive hill climbing opera-
tor is used as a local search technique for individual refi-
nement, with adaptive dual mapping and triggered random
immigrants schemes seems a good EA optimizer for dynamic
optimization problems.

For the future work, it is straightforward to introduce other
mechanisms, such as memory-based methods (Yang 2006)
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and multi-population approaches (Parrott and Li 2006), into
MAs for dynamic optimization problems. Another interes-
ting research work is to extend the triggered immigrants and
dual mapping scheme to other EAs and examine their per-
formance in dynamic environments. In addition, it is also
valuable to carry out the sensitivity analysis on the effect of
parameters, e.g., θ0, α, β, and δ, on the performance of MAs
in the future.
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