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Abstract

Genetic algorithms (GAs) have been broadly studied by a huge amount of researchers
and there have been many variations developed based on Holland’s simple genetic algorithm
(SGA). Inspired by the phenomenon of diploid genotype and dominance mechanism that
broadly exist in nature, in this paper we propose a new genetic algorithm — primal-dual
genetic algorithm (PDGA). PDGA operates on a pair of chromosomes that are primal-dual to
each other through the primal-dual mapping, which works in the sense of Hamming distance
in genotype. The primal-dual mapping improves the exploration capacity of PDGA and
thus its searching efficiency in the search space. We compare the performance of PDGA
over SGA based on the Royal Road functions, which are especially designed for testing
GA’s performance. The experiment results show that PDGA outperforms SGA for different
performance measures.

Keywords: Genetic algorithm, primal-dual mapping, diploidy, dominance, building blocks,
fitness landscape, search space, hitchhiking, Royal Road functions.

1 Introduction

During the last thirty years, there has been a growing interest in developing problem solving
systems based on natural principles, such as evolution and heredity. These evolution-based sys-
tems, commonly called Evolutionary Algorithms (EAs) [16], maintain a population of candidate
solutions to a given problem which are evaluated according to a problem-specific fitness function
that defines the environment for the evolution. New population is created by selecting relatively
fit members of the present population and recombining them through genetic operations us-
ing various genetic operators. Evolutionary algorithms can be briefly classified into four main
categories: FEwvolution Strategies (ES) [40, 44], Evolutionary Programming (EP) [12], Genetic
Algorithm (GA) [24], and Genetic Programming (GP) [29]. Of these four categories, GA is the
best known and has been widely studied by a huge amount of researchers.

Genetic algorithms (GAs) were first proposed by Holland [24], usually called Holland’s canon-
ical or simple genetic algorithm (SGA), and then developed by Holland and his colleagues and
students in the 1960s and the 1970s. Due to GA’s characteristics of easy-to-use, great robust-
ness and good parallel processing capacity, it has been used in a great number of scientific and
engineering problems and models, such as numerical function optimization [9], combinatorial
optimization (e.g., the knapsack problem [23], the job-shop scheduling problem [8, 15], and the
traveling salesman problem [17]), automatic programming [3], machine learning [20], economics



[1], automatic control [28], and signal processing [32]. Recently, multiobjective genetic algo-
rithms for multiobjective optimization problems have become a very hot research area among
GA’s community [49], such as the vector evaluated genetic algorithm (VEGA) [42], the mul-
tiobjective optimization genetic algorithm (MOGA) [13], the niched pareto genetic algorithm
(NPGA) [26], and the nondominated sorting genetic algorithm (NSGA) [45].

Based on Holland’s SGA, there have been many improvements, variations and extensions
developed, involving GA’s macro-structure and micro-structure. GA’s macro-structure varia-
tions include hybrid GAs [9], Master-slave GAs [9], and parallel GAs (e.g., massively parallel
GAs [38], parallel island GAs [47], and parallel hybrid GAs [22]). In the aspect of GA’s micro-
structure, variations appear on every aspect of GA’s process, including chromosome represen-
tation schemes (e.g., binary coding [20], real coding [2, 21] versus problem-specific coding [34],
haploid versus diploid [4, 7, 19]), selection strategies (e.g., the elitist model [9], the ranking model
[5], the stochastic universal sampling model [6], and several scaling strategies [4, 20, 34]), mating
policies (e.g., sharing function [18], seduction [41], incest prevention technique [11]), crossover
operators (e.g., one-point, two-point and uniform crossover [20]), and mutation operators (e.g.,
bit flip mutation and inverse mutation [20]).

Most GAs studied so far are haploidy-based, i.e., they operates on a set of single-stranded
chromosomes. Haploid genotype is the simplest genotype found in nature. GA’s researchers have
also studied diploid genotype (pairs of chromosomes) and dominance mechanism (an important
genotype-to-phenotype mapping mechanism) for a long history [4, 7, 19, 31, 39]. In Section 2 of
this paper, we will further discuss diploid genotype and dominance mechanism.

In this paper, inspired by the phenomenon of diploid genotype and dominance mechanism
that broadly exist in nature, we propose a new genetic algorithm based on primal-dual chro-
mosomes, called primal-dual genetic algorithm (PDGA in brief). PDGA operates on a pair of
chromosomes which are primal-dual to each other in the sense of Hamming distance in genotype.
Through the primal-dual mapping of operated pair of chromosomes, the exploration capacity
of PDGA in the search space is improved and thus the searching efficiency of PDGA as well
as its convergence speed is improved. In the present study, we provide a comparison of the
performance of PDGA over SGA based on the Royal Road functions [14, 35, 36, 37]. These
functions are especially designed for testing the performance of GAs and thus can act as good
test problems. The experiment results show that PDGA outperforms SGA on the Royal Road
functions for different performance criteria, such as function evaluations to optimum, capacity
of achieving optimum, efficiency of function evaluation, and dynamic performance of schema
recombination.

The rest of this paper is organized as follows. Section 2 first briefly reviews the conventional
simple genetic algorithm (SGA), then presents in detail the proposed PDGA including the
concept of primal-dual chromosomes, the framework of PDGA, the motivation and property
of PDGA. Section 3 briefly reviews the building block hypothesis and schema theorem and
describes the Royal Road functions that are used to test and analyze the performance of PDGA
over SGA. Section 4 presents the computer experiment results with several performance criteria.
Based on the experiment results of section 4, Section 5 gives some analyses and discussions on
the inside mechanism of PDGA which leads to PDGA’s outperforming SGA. Finally Section 6
concludes this paper and points out some potential directions for our future research.

2 Primal-Dual Genetic Algorithm

In this section, we describe the proposed PDGA in detail. For the sake of comparison, before
introducing PDGA, we first briefly describe the conventional simple genetic algorithms. Then
we give out the concept of primal-dual chromosomes and the framework of PDGA. Finally we
explain the motivation of PDGA and discuss its haploidy nature instead of diploidy.



Procedure SGA:

begin
parameterize(N, P., Py, tmaz);
t:=0;
initializePopulation(P(0));
for each individual z in P(0) do {evaluate P(0)}
evaluate x;
endfor;
repeat
P’ := selectForReproduction(P(t));
recombine(P');
mutate(P');
for each individual z in P' do  {evaluate P’}
evaluate x;
endfor;
P(t + 1) := selectForSurvival(P(t), P');
t:=t+1;
until terminated = true; {e.g-, t > timaz}
end;

Figure 1: Pseudocode for SGA.

2.1 Simple Genetic Algorithm

The simple genetic algorithm, as one kind of generation-based evolutionary algorithms, main-
tains a population of candidate solutions or haploid chromosomes to a given problem which are
evaluated according to a problem-specific fitness function that defines the environment for the
evolution. New population is created by selecting relatively fit members of the present popu-
lation and recombining them through crossover and mutation operations. The pseudocode of
SGA is shown in Figure 1.

When applying SGA to solve a specific problem, such as an optimization problem, we must
first select a problem-specific chromosome coding scheme (binary coding or real coding) and
corresponding selection, crossover and mutation operators, and set values for such parameters
as the population size N, the crossover probability P,., the mutation probability P,,, and the
maximum allowable generation number ¢,,,,. Then we can run the specific SGA to solve the
given problem.

First, an initial population is created randomly, usually with no fitness or structural bias
and the running generation counter ¢ is initialized to 0. Then, in the main loop, a temporary
population P’ is selected from the current population P(t) to generate the mating pool using
the chosen selection strategy, which is called selection for reproduction. Afterwards, the recom-
bination and mutation genetic operators are applied to some or all individuals (or members)
of the temporary population. Usually, the main loop is repeated until ¢ > %,,,, or some other
termination condition such as the time limit or convergence criterion is satisfied. The newly
created individuals are evaluated by calculating their fitnesses. Before a new generation is pro-
cessed, the new population P(¢+ 1) is selected from the old population P(¢) and the temporary
population PI, which is called selection for survival. And now, SGA can continue by building a
new temporary population.



Procedure PDGA:

begin
parameterize(N, P., Py, tmaz);
t:=0;
initializePopulation(P(0));
for each individual z in P(0) do {evaluate P(0)}
evaluate x and 7;
if f(z) > f(x) then x := z; {replace}
endfor;
repeat
P’ := selectForReproduction(P(t));
recombine(P');
mutate(P');
for each individual z in P’ do {evaluate P'}
evaluate x and z;
if f(z) > f(x) then z := z; {replace}

endfor;
P(t +1) := selectForSurvival(P(t), P');
t:=1t+1;
until terminated = true; {e.g., t > timaz}
end;

Figure 2: Pseudocode for PDGA.

2.2 Primal-Dual Genetic Algorithm

Inspired by the phenomenon of diploidy genotype and dominance mechanism that broadly exist
in nature, we propose a new primal-dual genetic algorithm (PDGA). PDGA operates on a pair of
chromosomes which are primal-dual to each other in the sense of Hamming distance in genotype.

Here we first define the concept of primal-dual chromosomes. We only consider binary bit
string representation of genotype and define a pair of chromosomes to be primal-dual to each
other if their Hamming distance (the number of locations at which corresponding bits differ)
is the maximum (equal to their length). That is, for a chromosome =z = (z1,z9,...,z1) € I =
{0,1}* of fixed length L, its dual chromosome is defined as z = (Zy,Zs,...,Z1) € I where
z; =1 —x; (1 = 1..L). For example, given a chromosome z = 110000 of fixed length 6, its
dual chromosome is Z = 001111. Given this definition we say that x is mapped to Z by the
primal-dual mapping or Hamming distance mapping, vice versa.

PDGA is quite simple relative to other genetic algorithm variants. With above definition
of primal-dual chromosomes, we can now give out the framework of PDGA in the form of
pseudocode in Figure 2, where f(z) denotes the fitness of an individual z. Comparing Figure 1
and Figure 2, we can see that PDGA differs from SGA only in the evaluation of chromosomes in
the population. The genetic operations including selection, crossover and mutation are all the
same for both PDGA and SGA.

2.3 Exploration and Exploitation

An important concept that helps understand GA’s dynamic behavior is that of fitness landscape,
which was originally defined by the biologist Swell Wright [48] in the context of population



genetics. Fitness landscape has been proven to be very powerful in the analyses of behaviors
of combinatorial optimization algorithms and evolutionary algorithms. A fitness landscape is
a representation of the space of all possible genotypes along with their fitnesses. Viewing the
search space (i.e., the set of all candidate solutions) as a landscape, the plot of fitness values
can form ”hills,” "peaks” and ”valleys”, which are analogous to those of physical landscapes;
the height of a point in the search space reflects the fitness of the solution associated with that
point. An optimization algorithm can be thought of as navigating through the search space in
order to find the highest peak in the fitness landscape. Several properties of a fitness landscape
are known to have important influence on the performance of optimization algorithms, such as
the number of local optima (peaks) in the landscape, the distribution of peaks in the search
space, and the landscape ruggedness (i.e., the correlation between neighboring points in the
search space) [27, 33].

For an optimization algorithm to work efficiently, it should use the following two techniques:
exploration and exploitation. Exploration is used to investigate new, useful areas in the search
space and exploitation is used to make use of knowledge acquired by exploration to reach bet-
ter positions on the search space. In Figure 3 we illustrate both exploration (by dashed and
dash-dotted arrows) and exploitation (by solid arrows) in a fitness landscape for different meth-
ods including the GA and two class of broadly used heuristic algorithms random search and
hillclimbing (also known as neighborhood search or local search [30]).

Valid primal-dual mapping _._ 27 Exploration

Global optimum — Exploitation
Hillclimbing (local search)

Random search
Genetic operation /

Invalid primal-dual mapping

Fitness

Search Space

Figure 3: Exploration and exploitation in the fitness landscape.

Random search method starts from a randomly created point (called current best point)
in the search space and then makes a random ”jump”. If the new point jumped at is better,
it becomes the current best point, otherwise the algorithm keeps jumping randomly until a
better point is achieved. And from the new obtained current best point, the algorithm will
make new random jumps. This process continues until the termination condition is satisfied,
e.g., the number of evaluations reaches the prescribed maximum limit. Hillclimbing also starts
from a random point (called current point) and then select a new point from the neighborhood
of the current point. If the new point has fitness higher than the current point, it becomes
the new current point. Otherwise some other neighbor is selected and tested. The method
stops if no further improvement is possible (i.e., local optimum is achieved). Random search is a
typical strategy that explores the search space while neglecting the exploitation of the promising
regions of the space; while hillclimbing is a strategy that exploits the best solution for possible
improvement and neglects exploration of the search space.



As a class of general purpose (domain independent) meta-heuristic search methods, GAs
strike a good balance between exploration and exploitation of the search space. GAs achieve
this balance through selection, reproduction and replacement mechanism, genetic operators and
multi-point search via a population of solutions. GAs are more robust than hillclimbing and
pure random search methods because GAs are probabilistic algorithms that combine elements
of directed search via recombination and stochastic search via mutation. The recombination
and mutation operators are aimed to explore (or exploit) the search space by jumping to new
regions (or local regions), as illustrated in Figure 3. GAs also perform multidirectional search
by maintaining a population of potential solutions and encourage information gathering and
exchange between these directions.

The motivation of PDGA is to improve GA’s exploration capacity in the search space through
the primal-dual mapping between the operated pair of chromosomes. As shown in Figure 3, the
primal-dual mapping can be thought of as long distance jumping (maximal distance jumping
in the sense of Hamming distance) that explores the fitness landscape. There are two types
of primal-dual mapping: one that jumps upward the fitness landscape from a low fitness point
(primal chromosome) to a high fitness point (dual chromosome), as illustrated by the dashed
arrow in Figure 3, and the other that jumps downward the fitness landscape from a high fitness
point to a low fitness point, as illustrated by the dash-dotted arrow in Figure 3. The former
primal-dual mapping replaces the primal chromosome with its dual peer and thus is called
valid primal-dual mapping, the latter mapping does nothing and is called invalid primal-dual
mapping. It is the valid primal-dual mappings that are expected to improve the efficiency of
PDGA'’s searching in the search space.

2.4 Haploidy over Diploidy

Dominance in nature is usually associated with genetic material presented using diploid chro-
mosomes. In the general diploid form a genotype carries two sets of chromosomes (called ho-
mologous chromosomes), each containing information for the same functions. Each position in
the genotype has two or multiple allele values. In nature each allele might represents a different
phenotypic characteristic. When building a body the genes from one set compete with those
in the other set. Genes that are dominant are expressed in the phenotype of an organism and
those that are less likely to be expressed are recessive. Here a genetic operator, called domi-
nance mechanism by geneticists, is required for determining which allele value for a gene will
be expressed when the allele values do not agree [20]. In nature the donimance mechanism is
determined by and also evolve with the environment.

There have been numerous explanations and theories proposed for diploidy and dominance.
The most sensable theories state that diploidy provides a mechanism for remembering previ-
ously useful alleles and allele combinations and dominance provides an operator to shield those
remembered alleles from harmful selection in a currently hostile environment. The redundant
memory of diploidy permits multiple solutions to the same problem to be carried along with
only one particular solution expressed [20].

Diploidy and dominance have long been the research topics of the GA community. Bagley
[4] first used a variable dominance map that was coded as part of the chromosome. Hollstien
[25] proposed two simple evolving dominance mechanisms for function optimization: two-locus
dominance scheme and single-locus triallelic dominance scheme. Hollstien’s single-locus triallelic
dominance scheme drew alleles from the 3-alphabet {0, 1, 2} where both 2 and 1 map to ”1,”
but 2 dominates 0 and 0 dominates 1. Holland [24] later studied Hollstien’s triallelic scheme
and introduced the clearer alphabet {0, 1p, 1} instead of Hollstien’s {0, 1, 2}. Brindle in her
dissertation [7] studied six dominance schemes for a number of function optimization problems.
Goldberg and Smith [19] compared the performance of a haploid GA, a diploid GA with fixed



dominance map where 1’s doinate 0’s, and a diploid GA with Holstien-Holland triallelic dom-
inance map on a blind, nonstationary knapsack problem and concluded that Holstien-Holland
triallelic dominance is better than either fixed dominance or haploid structure. Ng and Wong
[39] proposed a diploid representation with simple dominance change for non-stationary func-
tion optimization. More recently Lewis et. al. [31] have compared various diploid GAs with or
without mechanisms for dominance change on non-stationary problems and concluded that some
form of dominance change is essential as a diploid encoding is not flexible enough to respond to
change on these problems.

From above description of PDGA, it seems that PDGA is diploidy-based since it works on a
pair of primal-dual chromosomes. However, further thinking will make it a haploidy-like genetic
algorithm since in fact we needn’t explicitly keep track of each chromosome’s dual chromosome.
That is, the dual chromosome z of a primal chromosome x can be looked as the shadow of z
and only shows its body through the primal-dual mapping when z is evaluated. Of course, if
T proves to be better, it will embody itself and throw z into its shadow and in this case we
say T dominates . That is, each chromosome in PDGA carries intrinsically with itself some
redundant information or memory that can be used as soon as needed. In this sense, we can
call PDGA a pseudo-diploid or implicitly diploid genetic algorithm.

Here we must also note that PDGA is different from those genetic algorithms [4, 7, 19, 31, 39]
that are based on diploidy and dominance in the following three aspects. First, in those GAs
dominance is gene oriented and thus needs special dominant scheme while in PDGA dominance
is phenotype oriented and thus needs no special dominant scheme. Second, in those GAs the
chromosomes undergoing dominance operation are chosen randomly while in PDGA dominance
operates on the primal-dual pair of chromosomes. Finally, in those GAs genetic operations
perform on the pair of chromosomes while in PDGA only the winner or dominant of the primal-
dual pair goes through genetic operations.

3 Building Blocks and Royal Road Functions

In this section, we first briefly review Holland’s schema theorem and building block hypothesis
and then we describe in detail the Royal Road functions, which are chosen as the test problems

of the experiments carried out and reported later on in this paper to compare the performance
of PDGA over SGA.

3.1 Schema Theorem and Building Block Hypothesis

To formally analyze the behavior of genetic algorithms, Holland [24] first proposed the notation
of schema to describe a subset of all binary vectors of fixed length that have similarities at
certain positions. A schema is typically specified by a vector over the alphabet {0, 1, *}, where
the ”7*” denotes a "wildcard” or "don’t care” bit that matches both 0 and 1. For example, the
schema S = 1 * * x x0 represents the set of all 6-bit strings that begin with 1 and end with 0.
If a bit string z fits this template (e.g., x = 100010 or z = 101010), it is said to be an instance
of S or, equivalently, z € S. Given a schema S, its order o(S) is simply defined as the number
of fixed or defined positions within S and its defining length [(S) is defined as the maximum
distance between fixed positions within S or, equivalently, the distance between the outermost
defined bits of S. For example, given S = 01 % x1x, 0o(S) = 3 or, equivalently, S is said to be of
order 3 because there are 3 fixed positions in S and [(S) = 4 for the first fixed position is 1 and
the last is 5, [(S) =5 —1=4.

Given the concept of schema, Holland worked out the schema theorem for GAs using the
fitness proportionate selection, one-point crossover and bit flip mutation operators. The schema,
theorem states that short, low-order, better than average schemas (also called building blocks)



receive an exponentially increasing number of trials in the subsequent generations. An imme-
diate result of the schema theorem is that GAs explore the search space by short, low-order
schemas that are subsequently used for information exchange during crossover. The building
block hypothesis states that a GA seeks near-optimal performance through the juxtaposition of
short, low-order, high-fit schemas into increasingly fit, higher-order schemas.

For a string of length L, there are in total 2% possible schemas. Thus a population of size
N contains somewhere between 2L to N * 2L schemas, depending on the population diversity.
Of these many schemas, those schemas that are usefully processed by the GA are of the order
N3 [20]. That is, while the GA is explicitly processing a population of N individuals during
each generation, it is in fact implicitly processing a much larger number of useful schemas (of
the order N3) and increasing their representation at an exponential rate. This is called GA’s
implicit parallelism.

Holland’s schema theorem and building block hypothesis are the theoretical foundations of
GAs and have been shown to have far reaching influence on GA’s research. However, the schema
theorem and the building block hypothesis do not state how crossover, the major source of the
search power of GA, works to recombine highly fit schemas from short, low-order schemas.

3.2 Royal Road Functions

To investigate schema processing and recombination in detail, Mitchell, Forrest and Holland
designed a class of fitness landscapes, called Royal Road functions, to capture the essence of
building blocks in an idealized form [14, 35, 37]. For example, the Royal Road functions R; and
Ry are shown in Figure 4 and Figure 5 respectively.

Royal Road functions Ry and R, are defined using a list of schemas. Each schema s; is given
a coefficient ¢; which is equal to its order (i.e., ¢; = o(s;)). From Figure 4 and Figure 5, we
can see that for Ry, ¢; = 8 for all s; (¢ = 1..8) while for Ry, ¢; = 8 for s; (i = 1..8), ¢; = 8 for
s; (1 =9..12), and ¢; = 8 for s; (¢ = 13,14). The fitness of a bit string x for both R;(x) and
Ry(x) is computed by summing the coefficients ¢; corresponding to each of the given schema s;
of which z is an instance. That is, Ri(z) and Ra(z) of a bit string = are defined as follows:

=14

i=8
Ri(z) = Zcidi(:v) and Ry(z) = Z cidi(x)
=1

=1

where §;(z) = {1,if z € s;;0,0otherwise}. For Ry, if a string z is an instance of exactly two of
the order-8 schema, e.g., x = 111111110..011111111, Ry(z) = 16 since z is an instance of s;
and sg. However, for Rs a string’s fitness depends not only on the number of 8-bit schemas
to which the string belongs, but also on their positions in the string. For example, the string
£ =111111110..011111111 has a fitness Ry(z) = 16 since z is an instance of s; and sg, while the
string y = 11111111111111110..0 has a fitness Ry (y) = 32 since y is an instance of s1, sg and sg.
Similarly, the optimal solutions for R; and Ry are given as follows: Ri(sepr) = Ri(111..1) = 64
and Ro(sept) = Rp(111..1) = 192.

According to the building block hypothesis, two fitness landscape features are particularly
relevant for the GA: one is the presence of short, low-order, highly fit schemas; the other is the
presence of intermediate ”stepping stones”, i.e., intermediate-order higher-fitness schemas that
result from combinations of the lower-order schemas, and that in turn can combine to form even
higher-order, higher-fitness schemas. The Royal Road functions contain tailor-made building
blocks or schemas of short order and short defining length that contribute to an individual’s
fitness. These schemas are hierarchically structured with pre-defined corresponding fitness values
and build up the fitness landscape into a staircase-like shape with several levels. For example, in
Ry, schemas s; to sg are the lowest level (level 0) schemas. Level 1 schemas sg to s12 comprise
of a combination of adjacent level 0 schemas and in turn they are the stepping stones for level 2
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Figure 4: Royal Road Function R;. Here ¢; = order(s;) and Ri(sept) = 64.
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Figure 5: Royal Road Function Ry. Ra(Sept) = 192.

schemas s13 and s14. And the highest level schema s,p; is the solution of Ry. This stepping-stone
structure lays out a ”royal road” for the GA to follow to the global optimum.

As stated in [14], the Royal Road functions provide an ideal laboratory for studying GA’s
behavior for several reasons. First, the landscape can be altered, e.g., by adding or removing
stepping stones, by changing the size of level 0 schemas, and by increasing or decreasing the
height of the intermediate stepping stones. Second, all possible fitness values including the global
optimum are known in advance, which makes it easy to compare GA’s performance on different
functions. Finally, explicitly building all desired schemas into the functions (thus knowing
them in advance) makes it easy to study GA’s dynamic performance of schema processing and
recombination. For these reasons, we use the Royal Road functions R; and Ry as our test
problems to compare the performance of PDGA over SGA in this paper.

For Royal Road functions, with PDGA we can evaluate the primal-dual chromosome pair at
the same time with only a few extra instructions than when we evaluate one single chromosome
with SGA. For example the pseudocode of procedure R;(z) that evaluates a bit string z =
(z1,22,...,xr) of fixed length L is shown in Figure 6. From Figure 6 we can see that only lines
11, 12, 17 to 22 are extra for PDGA than SGA. Here we gain an almost free lunch in the sense
of function evaluations. And for this reason we count the evaluations of the primal-dual pair as
one evaluation in our following experiments.



Procedure R;(z):
1 begin
2 onesCount := 0;
3 dual Fitness := 0, primalFitness := 0;
4 fori:=1to L do
5 if z; = 1 then
6 onesCount := onesCount + 1;
7 endif;
8 if (1 MOD schemaOrder) =0 then {schemaOrder = 8}
9 if onesCount = schemaOrder then
10 primal Fitness := primal Fitness + schemaQOrder;
11 else if onesCount = 0 then
12 dual Flitness := dual Fitness + schemaOrder;
13 endif;
14 onesCount := 0;  {clear the counter}
15 endif;
16 endfor;
17 if dual Fiitness > primalFitness then  {replace}
18 primal Fitness := dual Flitness;
19 for i :=0to L do
20 T; 1= Iy {53, =1- w,}
21 endfor;
22 endif;
23 end;

Figure 6: Pseudocode for procedure R;(x).

4 Computer Experiment Study

To compare the performance of PDGA over SGA, in this section we will give out the results of
our computer experiment study. In all our experiments, we use the sigma truncation scaling [20]
selection method together with the elitist model [9], one-point crossover and bit flip mutation
operators for both PDGA and SGA. Here the genetic operators used are quite simple and typical
for GAs. With the sigma truncation scaling selection method, an individual x’s expected number
of offspring is 1 + (f(z) — f)/(20), where f(z) is z’s fitness and f is the mean fitness of the
population, and o is the standard deviation. The elitist model retains the best individual in
present generation into next generation.

4.1 Performance Measures

Here the performance measures have twofold functions: one is to test the absolute performance
of PDGA itself as a genetic algorithm; the other is to compare the relative performance of PDGA
over SGA. With this consideration, we use the following performance measures: function eval-
uations to optimum, generations to optimum, percentage of achieving optimum over a number
of runs against generations, percentage of optimal members in the population for a run against
generations. We will also test PDGA and SGA with respect to the performance of efficiency of
function evaluation and schema recombination.
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4.2 Experiments on Parameter Setting

It is well known that the parameter setting, including the population size N, the crossover
probability P, the mutation probability Py, is very important for GAs to work well. And it is
very difficult to optimize the parameter setting for GAs.

In order to investigate the effects of parameter setting on the performance of PDGA over
SGA, in our primary experiments, we consider different combinations of parameters N (128,
1024), P, (0.6, 0.7, 0.8) and P, (0.005, 0.01, 0.02) using the performance measures of func-
tion evaluations to optimum and generations to optimum. We carried out 200 runs of SGA
and PDGA on R; and R, respectively using the same 200 random seeds for each parameter
combination and recorded the function evaluations and generations required to obtain R;’s and
Ry’s optimal solutions. Here for each run only those chromosomes changed by crossover and
mutation operations were evaluated and counted into the total number of function evaluations.
The statistic results over 200 runs of PDGA and SGA on R; and R, with respect to mean,
median and best (or least) evaluations to optimum are given in Table 1 and Table 2 respec-
tively. And the statistic results over 200 runs of PDGA and SGA on R; and Ry with respect
to mean, median and best (or least) generations to optimum are given in Table 3 and Table 4
respectively. The results are shown more intuitively in Figure 7 and Figure 8. In Table 1 to
Table 4 the numbers in parentheses are the standard errors.

From Table 1 to Table 4, Figure 7 and Figure 8 we can see that PDGA outperforms SGA on
R; and Ry with respect to both mean and best function evaluations to optimum and mean and
best generations to optimum for most parameter settings. The best improvement of PDGA over
SGA with respect to mean evaluations to optimum reaches about 25% with parameter setting
9 on R; and about 28% with parameter setting 18 on Rs.

From Table 1 to Table 4, Figure 7 and Figure 8 we can also see that the parameter setting
does matter. Generally speaking the effect of parameter setting is similar for both R; and R».
The setting of P, obviously doesn’t have much effect and shows little difference between 0.6, 0.7
and 0.8. However the setting of N and P, has great effect and correlation exists between N and
P,,. Generally speaking, greater population size 1024 is much better than smaller population
size 128 (except on Ry when P, = 0.02). When N is fixed, the effect of setting P, may be
slightly different for SGA and PDGA.

When N = 1024, setting P, to 0.005 is much better than to 0.01 or 0.02 for both SGA
and PDGA on both R; and Rs. For example, fixing P, = 0.7 with respect to mean function
evaluations to optimum, on R; with P,, = 0.005 SGA gains about 16% improvement over
P,, = 0.01 and about 59% over P,, = 0.02 and PDGA gains about 18% improvement over
P,, = 0.01 and about 57% over P, = 0.02, while on Ry with P,, = 0.005 SGA gains about
38% improvement over P,, = 0.01 and about 92% over P,, = 0.02 and PDGA gains about 30%
improvement over P, = 0.01 and about 91% over P,, = 0.02. While when N = 128, on R;
setting P, to 0.01 is the best for both SGA and PDGA and on R, setting P, to 0.01 is the
best for SGA but setting P, to 0.005 is the best for PDGA. For example, fixing P, = 0.7 with
respect to mean function evaluations to optimum, on R; with P,, = 0.01 SGA gains about 28%
improvement over P, = 0.005 and about 79% over P,, = 0.02 and PDGA gains about 36%
improvement over P, = 0.01 and about 77% over P,, = 0.02, while on Ry with P, = 0.01
SGA gains about 7% improvement over P,, = 0.005 and about 79% over P,, = 0.02 and with
P,, = 0.005 PDGA gains about 7% improvement over P,,, = 0.01 and about 81% over P, = 0.02.

Another interesting result we can see from our experimental tables and figures is that both
SGA and PDGA perform much better on R; than on Ry. This result was also observed and
reported by Forrest and Mitchell in [14]. This result is opposite from what was expected that GA
would perform better on Ry than on R; because in Ry there is a very clear path via crossover from
pairs of the eight order-8 bottom schemas (s; — sg) to the four intermediate order-16 schemas
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Table 1: Statistics of running PDGA and SGA on Ry with respect to evaluations to optimum.

Parameter Setting SGA PDGA
No. | | P. | P, | Mean(StdErr) | Median | Best | Mean(StdErr) | Median | Best
1 128 | 0.6 | 0.005 62439(4335) 43500 | 5063 57273(3010) 44558 | 6818
2 128 | 0.6 | 0.01 44328(2331) 34887 3094 37707(2122) 28906 3834
3 128 | 0.6 | 0.02 | 203417(28625) | 83795 8133 || 210281(24972) | 86854 4834
4 128 | 0.7 | 0.005 58598(4005) 42903 | 8091 58301(3939) 38869 | 4164
5 128 | 0.7 | 0.01 41927(2499) 29922 | 2846 37167(2310) 29445 | 3883
6 128 | 0.7 | 0.02 || 196284(20432) | 85383 | 4587 | 164347(20127) | 75300 | 5487
7 128 | 0.8 | 0.005 63944(3624) 49869 | 8272 55604(3222) 45380 | 2926
8 | 128 | 0.8 | 0.01 || 41134(2220) | 31776 | 3733 | 38391(2909) | 27299 | 2754
9 128 | 0.8 | 0.02 | 164875(19121) | 71462 9105 || 123666(14773) | 58861 4961
10 | 1024 | 0.6 | 0.005 21054(807) 17550 | 12233 17548(471) 16529 | 11968
11 | 1024 | 0.6 | 0.01 25641(816) 22654 | 13212 22581(528) 21270 | 12946
12 | 1024 | 0.6 | 0.02 55531(2919) 46181 | 21173 49221(1716) 43516 | 21463
13 | 1024 | 0.7 | 0.005 20234(543) 18485 | 11414 18328(406) 17254 | 12772
14 | 1024 | 0.7 | 0.01 24072(444) 22860 | 15424 22246(340) 21258 | 13555
15 | 1024 | 0.7 | 0.02 47036(1281) 41808 | 17593 42714(1257) 38513 | 18248
16 | 1024 | 0.8 | 0.005 21239(729) 18786 | 12735 18306(336) 17698 | 10900
17 | 1024 | 0.8 | 0.01 23992(373) 23199 | 15639 22811(405) 21868 | 11724
18 | 1024 | 0.8 | 0.02 44040(1199) 40813 | 17624 40948(1134) 36949 | 20126

Table 2: Statistics of running PDGA and SGA on R»

with respect to evaluations to optimum.

Parameter Setting SGA PDGA
No. ‘ ‘ P, ‘ P, Mean(StdErr) ‘ Median ‘ Best || Mean(StdErr) ‘ Median ‘ Best
1 128 | 0.6 | 0.005 84491(6252) 60954 | 4343 67761(5494) 44491 | 2544
2 128 | 0.6 | 0.01 86583(11694) 47717 5291 76711(6422) 45221 3635
3 128 | 0.6 | 0.02 | 365759(43165) | 138923 | 10805 || 471597(58060) | 159367 | 9607
4 128 | 0.7 | 0.005 76212(5030) 57177 | 5072 73837(6965) 46326 | 4602
5 128 | 0.7 | 0.01 70939(6159) 45167 5831 79641(6978) 48161 3182
6 128 | 0.7 | 0.02 || 332978(35330) | 140991 | 7305 || 389978(47715) | 136044 | 11456
7 128 | 0.8 | 0.005 || 85816(10783) 53175 | 5223 71700(5477) 45047 | 3018
8 128 | 0.8 | 0.01 72881(6184) 43320 | 4505 69481(5014) 41624 | 2878
9 128 | 0.8 | 0.02 | 292604(40655) | 120687 | 7322 || 276523(31078) | 134745 | 5168
10 | 1024 | 0.6 | 0.005 30539(1594) 20456 | 10581 26236(1330) 17815 | 9199
11 | 1024 | 0.6 | 0.01 48487(2761) 33633 | 11825 39295(2492) 26419 | 11733
12 | 1024 | 0.6 | 0.02 || 348073(38911) | 126787 | 18128 || 329780(33468) | 144649 | 15376
13 | 1024 | 0.7 | 0.005 30178(1719) 19559 | 11577 27566(1656) 17194 | 10157
14 | 1024 | 0.7 | 0.01 48701(2946) 31890 | 12754 39277(2939) 22236 | 11577
15 | 1024 | 0.7 | 0.02 || 369536(39997) | 188213 | 17373 | 316985(36096) | 121280 | 17414
16 | 1024 | 0.8 | 0.005 26965(1288) 18988 | 10990 || 25085(1397) 17468 | 9918
17 | 1024 | 0.8 | 0.01 45463(2688) 29968 | 13438 34698(1852) 22869 | 11300
18 | 1024 | 0.8 | 0.02 || 329686(36216) | 138917 | 15823 | 235858(25614) 72413 | 14419
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Table 3: Statistics of running PDGA and SGA on R; with respect to generations to optimum.

Parameter Setting SGA PDGA
No.| N | P.| P, | Mean(StdErr) | Median | Best || Mean(StdErr) | Median | Best
1 128 | 0.6 | 0.005 689(47) 481 95 631(33) 492 74
2 | 128 | 0.6 | 0.01 438(23) 345 | 30 373(21) 286 | 37
3 128 | 0.6 | 0.02 1785(251) 736 71 1846(219) 761 42
4 | 128 | 0.7 | 0.005 586(40) 428 | 81 583(39) 380 | 41
) 128 | 0.7 | 0.01 389(23) 277 26 344(21) 273 36
6 | 128 | 0.7 | 0.02 || 1671(174) 728 | 38 1399(171) 641 | 46
7 128 | 0.8 | 0.005 585(33) 456 76 509(29) 416 26
8 | 128 | 0.8 | 0.01 359(19) 277 | 32 335(25) 238 | 24
9 128 | 0.8 | 0.02 1363(158) 590 75 1022(122) 487 41
10 | 1024 | 0.6 | 0.005 28(1) 23 16 23(0) 22 16
11 | 1024 | 0.6 | 0.01 30(1) 27 16 27(0) 26 15
12 | 1024 | 0.6 | 0.02 60(3) 50 23 53(1) 47 23
13 | 1024 | 0.7 | 0.005 24(0) 22 14 22(0) 21 15
14 | 1024 | 0.7 | 0.01 27(0) 26 17 25(0) 24 15
15 | 1024 | 0.7 | 0.02 49(1) 44 18 44(1) 40 19
16 | 1024 | 0.8 | 0.005 23(0) 21 14 20(0) 20 12
17 | 1024 | 0.8 | 0.01 25(0) 25 16 24(0) 23 12
18 | 1024 | 0.8 | 0.02 44(1) 42 18 41(1) 38 20

Table 4: Statistics of running PDGA and SGA on Ry with respect to generations to optimum.

Parameter Setting SGA PDGA
No.| N | P.| P, | Mean(StdErr) | Median | Best || Mean(StdErr) | Median | Best
1 | 128 | 0.6 | 0.005 932(69) 674 47 747(60) 490 27
2 128 | 0.6 | 0.01 857(115) 472 52 759(63) 448 35
3 128 | 0.6 | 0.02 3211(379) 1218 94 4141(390) 1400 84
4 | 128 | 0.7 | 0.005 763(50) 573 49 739(69) 463 46
) 128 | 0.7 | 0.01 658(57) 417 54 739(64) 447 29
6 128 | 0.7 | 0.02 2836(301) 1200 62 3322(239) 1159 97
7 | 128 | 0.8 | 0.005 786(98) 487 47 656(50) 413 27
8 | 128 | 0.8 | 0.01 637(54) 379 39 607(43) 363 25
9 128 | 0.8 | 0.02 2420(72) 998 60 2287(257) 1114 42
10 | 1024 | 0.6 | 0.005 41(2) 27 14 35(1) 24 12
11 | 1024 | 0.6 | 0.01 59(3) 41 14 47(3) 32 14
12 | 1024 | 0.6 | 0.02 381(42) 138 19 361(36) 158 16
13 | 1024 | 0.7 | 0.005 36(2) 24 14 33(2) 21 12
14 | 1024 | 0.7 | 0.01 55(3) 36 14 44(3) 26 13
15 | 1024 | 0.7 | 0.02 392(42) 200 18 336(38) 129 18
16 | 1024 | 0.8 | 0.005 30(1) 21 12 28(1) 19 11
17 | 1024 | 0.8 | 0.01 49(2) 32 14 37(2) 24 12
18 | 1024 | 0.8 | 0.02 340(37) 143 16 243(26) 74 14
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Figure 7: Effects of different parameter settings on the performance of PDGA vs. SGA with
respect to mean and best function evaluations to optimum on (a) R; and (b) Rs.
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Figure 8: Effects of different parameter settings on the performance of PDGA vs. SGA with
respect to mean and best generations to optimum on (a) R; and (b) Ra.

(sg — s12), then to the two higher order-32 schemas (s13 and s14), and finally to the optimum
(8opt)- The presence of this stronger royal road was expected to speed up GA’s searching for
the optimum. The reason to the result opposite to the expectation lies in the phenomenon
of ”spurious correlation” or ”hitchhiking”. Hitchhiking was first discovered by Schaffer et. al.
[43] and then discussed by Forrest and Mitchell [14], Vekaria and Clack [46] among others.
Hitchhiking results from undesirable (less fit) schemas being sampled at rates that are not
justified by their static fitnesses. These undesirable schemas have been coupled or hitchhiked
along with desirable more fit schemas during recombination, thereby producing above average
individuals, which later get sampled at a higher rate during selection. This may produce more
instances of these undesirable schemas together with desirable schemas. Hitchhiking seriously
limits GA’s implicit parallelism and causes premature convergence. We will present further
experiment results on hitchhiking later on in this section.

For our further experiment study, according to our primary experiment results, we fix the
parameters as follows: N = 128, P, = 0.7, P,, = 0.01. We set N to 128 instead of 1024 for
the sake of better analyses and comparisons between PDGA and SGA because when N = 1024
they both converge quite fast with respect to generations to optimum, see Table 3, Table 4 and
Figure 8. For example, when N = 1024, P, = 0.7 and P, = 0.01, SGA and PDGA converge to
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Table 5: Comparison of PDGA vs. SGA with respect to the performance of percentage of
achieving optimal solutions over 1000 runs against generations on R;.

Gen || SGA | PDGA | Gen || SGA | PDGA | Gen || SGA | PDGA || Gen || SGA | PDGA

25 0.1 0.1 275 || 414 46.5 525 || 76.8 80.1 775 || 89.1 91.2
50 0.2 0.3 300 || 47.4 52 550 || 78.6 81.9 800 || 89.4 91.5
75 1 1.8 325 || 52.6 56.8 575 || 79.8 82.8 825 || 89.7 91.9
100 2.5 5.5 350 || 56.5 61.3 600 || 81.8 83.9 850 || 90.3 92.3
125 6.5 10.2 375 || 60.07 | 64.9 625 83 85.2 875 || 90.9 92.7
150 || 11.4 17.3 400 || 64.7 68.3 650 || 84.2 87.2 900 || 91.8 93

175 || 174 24.3 425 || 67.6 71.4 675 85 88.5 925 || 91.9 93.4
200 || 24.6 29.9 450 || 70.4 74.8 700 || 86.2 89.4 950 || 92.1 94

225 || 30.1 36.4 475 || 72.5 77.3 725 || 87.6 90.3 975 || 92.7 94.4
250 | 36.5 42 500 || 74.5 78.6 750 88 91.24 | 1000 93 94.8

Table 6: Comparison of PDGA vs. SGA with respect to the performance of percentage of
achieving optimal solutions against generaions over 1000 runs on Ra.

Gen | SGA | PDGA || Gen || SGA [ PDGA || Gen || SGA | PDGA || Gen || SGA | PDGA

25 0.1 0 275 || 29.3 31.9 525 || 56.7 59.5 775 || 71.8 73.6
50 0.1 0.2 300 | 32.6 35.5 550 59 61.2 800 || 72.2 74.1
75 0.5 0.9 325 || 35.1 38.9 875 || 60.9 62.7 825 || 72.9 74.9
100 1.4 2.9 350 || 38.2 42.6 600 || 62.7 64.7 850 || 74.3 75.8
125 3.6 6.2 375 | 40.9 45.5 625 | 64.1 66.4 875 || 75.7 76.4
150 6.4 9.2 400 || 43.9 48.1 650 || 65.6 67.8 900 | 76.9 77.1
175 11 12.8 425 || 47.1 50.5 675 || 67.2 69.1 925 || 77.9 77.9
200 | 16.2 16.9 450 || 49.3 53.4 700 68 70.5 950 || 78.6 78.4
225 20 22.6 475 || 52.1 55.3 725 || 68.7 717 975 || 79.4 78.9
250 || 24.5 26.6 500 || 55.1 57.6 750 || 70.3 72.7 1000 || 79.9 79.3

optimum on R; with 27 and 25 generations on the average respectively and on Ry with 55 and
44 generations on the average respectively.

4.3 Experiments on Capacity of Achieving Optimum

Capacity of achieving optimum is obviously an important measure for evaluating an optimization
algorithm. To compare the performance of achieving optimum against generations of PDGA over
SGA, we carried out 1000 runs of PDGA and SGA on R; and Ry under the same 1000 random
seeds and with t,,,, set to 1000 for each run. For each run the information about whether
the optimum is achieved and the percentage of optima (if any) in the population by current
generation is reported every 25 generations. The statistic results with respect to the percentage
of achieving optimum over 1000 runs against generations are given in Table 5 and Table 6
respectively. The statistic results with respect to the mean percentage of optimal individuals in
the population over 1000 runs against generations on R; and Ry are given in Table 7 and table
8 respectively. Figure 9 and Figure 10 show the results more intuitively.

From Figure 9 and Figure 10, we can see that PDGA outperforms SGA on both R; and
Ry for both performance measures of achieving optimum. For example, with 500 generations,
out of the 1000 runs PDGA achieved R;’s optimum for 786 runs (78.6%) and Ry’s optimum for
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Table 7: Comparison of PDGA vs. SGA with respect to the performance of mean percentage
of optimal individuals in the population against generaions over 1000 runs on R;.

Gen | SGA | PDGA || Gen || SGA | PDGA || Gen || SGA | PDGA || Gen || SGA | PDGA

25 0.02 0.02 275 || 10.80 | 12.27 || 525 || 20.92 | 21.88 775 || 24.23 | 24.97
50 0.03 0.04 300 || 12.19 | 13.51 550 || 21.69 | 22.21 800 || 24.86 | 24.81
75 0.16 0.38 325 || 13.90 | 14.93 575 || 21.46 | 22.41 825 || 24.62 | 25.26
100 || 0.41 1.06 350 || 15.42 | 16.45 600 || 22.48 | 22.88 850 || 24.42 | 25.55
125 || 1.32 2.24 375 || 16.09 | 17.49 625 || 22.73 | 23.20 875 || 24.53 | 25.05
150 || 2.51 3.65 400 || 17.22 | 18.38 650 || 23.00 | 23.75 900 | 24.71 | 25.31
175 || 4.26 5.86 425 || 18.50 | 19.30 || 675 || 23.48 | 24.17 925 || 25.20 | 25.58
200 | 6.02 7.45 450 || 18.80 | 19.95 700 || 23.87 | 24.18 950 || 25.45 | 25.45
225 || 7.59 9.23 475 || 19.57 | 20.54 725 || 24.21 | 24.88 975 || 25.11 | 25.68
250 || 9.47 | 11.11 500 || 20.57 | 21.55 750 || 23.85 | 24.90 || 1000 || 25.43 | 25.77

Table 8: Comparison of PDGA vs. SGA with respect to the performance of mean percentage
of optimal individuals in the poputlation against generaions over 1000 runs on Rp.

Gen | SGA | PDGA [ Gen || SGA | PDGA || Gen || SGA [ PDGA || Cen || SGA | PDGA

25 0.02 0 275 || 9.55 9.87 525 || 19.1 19.97 775 || 24.05 | 24.87
50 0.02 0.03 300 || 10.97 | 11.33 || 550 || 19.76 | 20.74 800 || 24.73 | 25.27
75 0.09 0.21 325 || 11.71 | 12.62 || 575 || 20.47 | 21.49 825 || 24.89 | 25.06
100 || 0.34 0.73 350 || 12.34 | 13.54 || 600 || 21.28 | 21.54 850 || 25.04 | 25.88
125 || 0.97 1.77 375 || 13.49 | 15.38 || 625 || 21.44 | 22.27 875 || 25.68 | 26.12
150 || 2.01 2.75 400 || 14.79 | 16.15 || 650 || 22.06 | 22.94 900 | 25.86 | 25.91
175 || 3.13 3.82 425 || 15.58 | 16.76 || 675 || 22.43 | 23.20 925 || 26.57 | 26.18
200 | 5.06 9.25 450 || 16.51 | 17.69 700 || 23.06 | 23.86 950 | 26.82 | 26.69
225 || 6.31 6.90 475 || 17.34 | 18.77 || 725 | 23.20 | 24.06 975 || 26.77 | 26.59
250 || 7.85 8.77 500 || 18.48 | 19.20 || 750 || 23.26 | 24.91 || 1000 || 27.49 | 26.71

576 runs (57.6%) while SGA achieved R;’s optimum for 745 runs (74.5%) and Ry’s optimum
for 551 runs (55.1%). And with 500 generations, the percentage of optimal individuals in the
population averaged over 1000 runs for PDGA is 21.55% on R; and 19.20% on Ry while for
SGA it is 20.57% on Ry and 18.48% on R,. From Figure 9 and Figure 10, we can also see that
both PDGA and SGA perform better on R; than on R,. For example, with 1000 generations,
both PDGA and SGA achieve R;’s optimum with a percentage around 94% (93.0% for SGA
and 94.8% for PDGA) while achieve Ry’s optimum with a percentage around 80% (79.9% for
SGA and 79.3% for PDGA).

4.4 Experiments on Efficiency of Evaluation

Efficiency of function evaluation is another important measure that is often used among GA’s
community to compare the dynamic performance of GAs. To compare the efficiency of function
evaluation, we carried out 1000 runs of PDGA over SGA on R; and Rs respectively with the same
1000 random seeds for each combination of algorithm and function. We record the best fitness
found every 100 evaluations for each run. Here, as with our parameter setting experiments, only
those chromosomes that were changed by crossover and mutation operations were evaluated and
counted. The statistic results over 1000 runs are shown in Figure 11. From Figure 11 we can
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Figure 9: Comparisons of PDGA vs. SGA with respect to the performance of percentage of
achieving optimum over 1000 runs against generations on (a) R; and (b) Rs.
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Figure 10: Comparisons of PDGA vs. SGA with respect to the performance of mean percentage
of optimal individuals in the population against generaions over 1000 runs on (a) R; and (b)
Rs.

see again that PDGA overruns SGA quite well, especially during the early generations.

4.5 Experiments on Schema Recombination

In our previous experiments we have seen that both PDGA and SGA perform better on R; than
on Rs. To unveil the reason for this result and further compare the dynamic searching process
of PDGA and SGA, we carried out experiments with respect to the dynamic behavior of schema
processing and recombination. We give out the results of a typical run of PDGA and SGA on
R1 and Rs respectively with respect to mean and best fitness achieved against generations in
Figure 12. For the typical runs, the random seeds used are the same. That is, they started from
the same initial population. The data are plotted every 5 generations.

From Figure 12 we can see that PDGA overruns SGA quite well especially during the early
generations. PDGA obtained R;’s near-optimal fitness 56 (only next to optimum 64) within
only 35 generations and Ry’s near-optimal fitness 136 (only next to optimum 192) within only
45 generations while SGA obtained R;’s near-optimal fitness 56 within 365 generations and
Ry’s near-optimal fitness 136 within 245 generations. From Figure 12 we can also see that both
PDGA and SGA perform better on R; than on Rs. PDGA achieves R;’s optimum at generation
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Figure 12: Mean and best fitness against generations for a typical run of PDGA vs. SGA on
(a) Ry and (b) Rs.

85 with 9252 evaluations while achieves Ry’s optimum at generation 108 with 11784 evaluations.
And SGA achieves Ry’s optimum at generation 400 with 43264 evaluations while achieves Ry’s
optimum at generation 578 with 62360 evaluations.

For the above typical runs, we also traced the evolution of each schema and recorded the
density of each schema (the percentage of individuals in the population that are instances of each
schema) against time (generations). The density of each schema is sampled every 5 generations.
Figure 13 and Figure 14 show the corresponding schema recombination process on R; (of the
same typical run as in Figure 12(a)) and on Ry (of the same typical run as in Figure 12(b))
respectively. From Figure 13 and Figure 14 we can see that both PDGA and SGA really process
useful schemas according to the schema theorem: once a schema is found in the population, its
density in the population rises very fast (exponentially) to about 90% except for some occasions
(e.g., schemas sg and sy with SGA in Figure 13) due to the phenomenon of hitchhiking.

From Figure 13 and Figure 14 we can also see that both PDGA and SGA suffer from
hitchhiking more heavily on Ry than on R;. This result can be observed from the fact that the
schema density curves (e.g., s5 and sg) oscillate much more heavily in Figure 14 than in Figure
13. This heavy oscillation happens because the introduction of intermediate schemas sg to s14 in
Ry gives the hitchhikers (those zeros that live near and co-evolute with the higher-fit schemas)
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Figure 13: Percentage of individuals in the population that are instances of the given schema
against generations of a typical run of PDGA vs. SGA on Rj.
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Figure 14: (CONT'D.) Percentage of the population that is an instance of the given schema
plotted against generations for a typical run of SGA and PDGA on Rs.

chances to hitchhike with them to a much heavier degree.

For example, for SGA on Ry, with the rapid rise of s3 and s4 from around generation 80 to
generation 100, s19 (which comprise of s3 and s4) and s13 (which comprise of s; through s4) also
rise rapidly. These rises coincide with the major dips in s5 and sg (sg and s7 aren’t discovered
yet). What happens here is as following: in the first few instances of s13, along with the 32 ones
in positions corresponding to the first through fourth blocks of the eight lowest-level building
blocks are some zeros in the fifth through eighth blocks. Because an instance of s13 has fitness
32+ 2% 16 + 4 * 8 = 96 which is much higher than the fitness of an instance of s5 or sg which
is only 8, this great fitness difference causes s13 to rise very quickly compared to s; and sg, and
instances of s13 with some zeros (hitchhikers) in the fifth or eighth block tend to push out many
of the existing instances of s5 and sg in the population. Similarly, for SGA on Rp, from around
generation 245 schema sg and thus subsequently s;; rise very rapidly together with the major
dip in sg. This happens because some zeros in the eighth block hitchhike with s;; and squash
out many of the existing instances of sg in the population. For SGA on Rs, hitchhiking also
happens with s7 and thus with s19 and s14 that contain s7. Schema s7 is first suppressed by sg
and then by s13, is fleetingly discovered at around generation 460 (see the blip on the x-axis of
s7) due to the minor dips of sg and s11, but then dies out and is depressed due to the rise of s11
and only appears (so do s12 and s14) not until around generation 578 to obtain the optimum.

Hitchhiking also happens with PDGA on Rs. Schema sg is first suppressed by s5 and sz, is
fleetingly discovered at around generation 75 (see the blip on the x-axis of sg) due to the dips
of s5 and s7, but then dies out due to hitchhiking and only appears (so do schemas s1; and s14)
until around generation 108 to obtain the optimum.

As shown in Figure 13, hitchhiking also happens on R; but not as heavily as on Ry. For
example, with SGA sg appears at around generation 70 and generation 350 but is suppressed
by the rapid rise of s3 and s4 respectively and re-appears at around generation 400 to obtain
the optimum.

Now from above analyses we can see that the effect of hitchhiking causes the relatively slower
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times for the PDGA and SGA to find the optimum on Ry than on R;. The power of crossover to
combine lower-level building blocks was hampered since some of the necessary building blocks
were either partially or totally suppressed by the quick rise of disjoint building blocks.

Another result we can observe from Figure 13 and Figure 14 is that SGA suffers more heavily
from hitchhiking than PDGA. For example, on R; for PDGA schema sj3 is first suppressed by
sg and s4 but is discovered around generation 80 to obtain the optimum while for SGA schema
sg is first suppressed by s5 and then by s7, is fleetingly discovered at around generation 70 and
generation 350 but is suppressed by the rapid rise of s3 and s4 respectively and only re-appears
not until around generation 400 to obtain the optimum.

5 Discussions and Analyses

From above experiments we can see that PDGA outperforms SGA, especially during the early
stage of GA’s searching process. In this section, we give out our explanations and analyses to
this result. We have said that PDGA is proposed with the aim of improving GA’s exploration ca-
pacity in the search space through the primal-dual mapping. Here the mapping function has the
key role in improving PDGA'’s performance. We illustrate the effects of the primal-dual mapping
in Figure 15, where the attribute(s) axis represents the combination of different attributes (e.g.,
schemas for Royal Road functions) of a chromosome, and the primal-dual mapping is illustrated
by the virtual mapping curve that maps a primal chromosome into its dual chromosome.
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Figure 15: Illustration of the effects of the primal-dual mapping. (a) original population; (b)
genetic operating without primal-dual mapping; (c) for population in (a), mapping primal chro-
mosomes with fitness left to the virtual mapping curve into their dual ones; (d) after the primal-
dual mapping; (e) genetic operating on the mapped population; (f) after certain generations the
primal-dual mapping has little effect.

Figure 15(a) illustrates an original population during the early generation of GA’s searching
progress, where there are many individuals with low fitness. With SGA the genetic operations
perform directly on the population without the primal-dual mapping, as shown in Figure 15(b);
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while with PDGA before genetic operations the primal-dual mappings (only valid prima-dual
mappings are illustrated) map those chromosomes with fitness left to the virtual mapping curve,
i.e., low fitness, into (and replace them with) their dual ones that have high fitnesses and are
right to the virtual mapping curve (see Figure 15(c)) and the genetic operations now perform
on the mapped better population (see Figure 15(d)), as shown in Figure 15(e).

From Figure 15 (a) to Figure 15(e) we can see that the primal-dual mapping greatly improves
GA’s performance during the early generations. This happens because during the early stage, the
mean fitness of the population is quite low and many primal-dual mappings are valid. However,
after certain generations the primal-dual mapping has little effect because the mean fitness of
the population has become quite high and new chromosomes created by the genetic operations
seldom fall into the left side of the virtual mapping curve, as shown in Figure 15(f). That is, by
now most primal-dual mappings are invalid.

In our experiments another result we observed is that the primal-dual mapping also helps
moderating the hitchhiking phenomenon though PDGA still suffers from it. This is because
the primal-dual mapping improves the diversity of the population via exploration in the search
space during the early stage of GA’s searching progress.

6 Conclusions and Future Directions

In this paper, inspired by the phenomenon of diploid genotype and dominance mechanisms
broadly existing in nature, we propose a new primal-dual genetic algorithm which operates on
a pair of chromosomes that are primal-dual to each other in the sense of Hamming distance.
We have compared the performance of PDGA over SGA based on the Royal Road functions.
The experiment results show that PDGA overperforms SGA on the Royal Road functions for
different performance measures. The Royal Road functions are a class of fitness landscapes
that are designed to test GA’s performance, especially with respect to schema processing and
recombination. In this paper, we take the Royal Road functions as the test problems to make
our first step of testing PDGA. In the future we will further test PDGA’s performance on other
classes of fitness landscapes, such as the NK model [27] and the L-SAT problems [10].

PDGA is proposed with the aim of improving GA’s searching efficiency in the search space
through the primal-dual mapping. Through the primal-dual mapping, PDGA’s performance of
exploration in the search space is improved and thus its total searching efficiency is improved.
Here the mapping function has the key role in PDGA’s performance. In this paper we take
the Hamilton distance as the primal-dual mapping function, which is a static mapping function.
This mapping function works well during the early generations by shortening genetic operations
performed on low fitness chromosomes and thus speed up GA’s convergence. However, whence
the mean fitness of the population becomes quite high, it lose its effect. For the future research
on PDGA, we believe that dynamic primal-dual mapping function instead of the static Hamming
mapping that can adapt itself with GA’s searching progress (e.g., the virtual mapping curve in
Figure 15 moves to the right together with the mean fitness of the population) will further
improve PDGA’s performance.

From the viewpoint of structure, PDGA shares the same framework with SGA, thus there
can be many variations for PDGA as well as for SGA. Whatever improvements and variations
(for example, the elitist model and the Sigma truncation scaling selection method used in this
paper) that work well with SGA should also work well with PDGA. Thus combining advanced
operators developed so far for SGAs with PDGA to achieve even better performance is obviously
one of the future research directions on PDGA.
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