
Genetic Algorithms Based on Primal-Dual Chromosomes for Royal
Road Functions

SHENGXIANG YANG

Department of Mathematics and Computer Science
University of Leicester

University Road, Leicester LE1 7RH
UNITED KINGDOM

s.yang@mcs.le.ac.uk http://www.mcs.le.ac.uk/~syang

Abstract: Genetic algorithms (GAs) have been broadly studied by a huge amount of researchers and there are
many variations developed based on Holland’s simple genetic algorithm (SGA). Inspired by the idea of diploid
genotype and dominance mechanisms that broadly exists in nature, we propose a primal-dual genetic algorithm
(PDGA). PDGA operates on a pair of chromosomes that are primal-dual to each other in the sense of Hamming
distance in genotype. We compare the performance of PDGA over SGA based on the Royal Road functions,
which are specially designed for testing GA's performance. The experiment results show that PDGA
outperforms SGA on the Royal Road functions for different performance measures.

Key-Words: Genetic algorithm, primal-dual chromosomes, schema, diploid, dominance, royal road functions.

1 Introduction
Genetic algorithms (GAs) were first proposed by
Holland [6], usually called Holland's canonical or
simple genetic algorithm (SGA), and then developed
by Holland and his colleagues and students in the
1960s and the 1970s. Thereafter, there have been
many variations and extensions developed based on
Holland's SGA [5, 7, 9], including macro-structure
and micro-structure variations.
 GA's macro-structure variations include hybrid
GAs, master-slave GAs, and parallel GAs. In GA's
microstructure aspect, variations appear on every
aspect of GA's components, including chromosome
representation schemes, selection strategies (e.g., the
elitist model, the ranking model, and several scaling
strategies), mating policies (e.g., sharing function,
niche, and seduction techniques), crossover operators
(e.g., one-point, two-point and uniform crossover
operators), and mutation operators [5, 7, 9].
 Though most GAs studied so far are based on the
haploid or single-stranded chromosome, which is the
simplest genotype found in nature, GA's researchers
have also studied diploid genotypes (pairs of
chromosomes) and dominance mechanisms for a
long history [1, 2, 4, 10]. In the diploid form a
genotype carries one pair of chromosomes (called
homologous chromosomes). Each position or locus
in the genome has two or multiple allele values. A
dominance mechanism for determining which allele
value for a gene will be expressed is required to
adjudicate when the allele values do not agree [5].

An issue of great concern about GA is the balance
between exploration (the investigation for new,
useful adaptations in the search space) and
exploitation (the use and propagation of these
adaptations). An efficient algorithm is one that uses
both techniques. In this paper, inspired by the idea of
diploid genotype and dominance mechanisms that
broadly exist in nature, we present a primal-dual
genetic algorithm (PDGA) based on the concept of
primal-dual chromosomes. PDGA operates on a pair
of chromosomes that are primal- dual to each other in
the sense of Hamming distance in genotype. Through
the primal-dual or Hamming distance mapping
between a pair of chromosomes, GA's performance
of exploration in the search space is improved and
thus its total searching efficiency is improved.

In our present study, we provide a comparison of
the performance of PDGA over SGA based on the
Royal Road functions [3, 8, 9]. These functions are
specially designed for testing the performance of
GAs and thus can act as good test problems. The
experiment results show that PDGA outperforms
SGA for different performance measures.

2 Primal-Dual Genetic Algorithms

2.1 Definition of Primal-Dual Chromosomes
Here we consider binary bit string representation of
genotype and define a pair of chromosomes to be
primal-dual to each other if their Hamming distance
(the number of locations at which corresponding bits

differ) is the maximum (equal to their length). That
is, given a chromosome L

L Ixxx }1,0{),...,(1 =∈=
of fixed length L, its dual chromosome is defined as

Ixxx L ∈=),...,(1 where)..1(1 Lixx ii =−= .
Given above definition, we can say that x is

mapped to x by primal-dual mapping or Hamming
distance mapping, vice versa. And the dominance
mechanism works on the primal-dual pair by taking
whichever has higher fitness as the dominant
chromosome, i.e., the dominance is phenotype-based.

2.2 Framework of PDGA
PDGA is quite simple compared to other genetic
algorithm variations. It can be described in a
step-by-step format as follows:

Step 1. Set parameters such as population size N,

crossover probability cP , mutation probability mP ,
and maximum allowable generation number maxt .
Initialise a random population. Set counter 0=t .

Step 2. In the population, evaluate each chromosome
x’s fitness and its dual chromosome x ’s fitness. If
x is better, replace x with x .

Step 3. If maxtt > or some other termination
condition is satisfied, stop.

Step 4. Select chromosomes with some policy from
the population to generate the mating pool.

Step 5. Perform crossover on chromosome pairs
randomly chosen from the mating pool.

Step 6. Perform mutation on each chromosome.
Step 7. In the new population, evaluate each

chromosome x’s fitness and its dual chromosome
x ’s fitness. If x is better, replace x with x .

Step 8. Perform elitist selection. This step is optional.
Step 9. Set 1+= tt , and go to Step 3.

Here we can see that PDGA differs from SGA
only in Step 2 and Step 7, i.e., in the evaluation of
chromosomes in the population. The genetic
operations including selection, crossover and
mutation are all the same for both PDGA and SGA.

2.3 Haploid or Diploid?
From the above description of PDGA, it seems that it
is diploidy-based since it works on a pair of
primal-dual chromosomes. However, further
thinking will make it a haploid-like genetic algorithm
since in fact we needn't explicitly keep track of each
chromosome's dual chromosome. That is, a dual
chromosome can be looked as the shadow of its
primal chromosome and only shows its body
(through the primal-dual mapping) when the primal
chromosome is evaluated. Of course, if the dual
chromosome proves to be better, it will embody itself

and throw the primal chromosome into its shadow. In
this sense, we can call PDGA a pseudo-diploid or
implicitly diploid genetic algorithm.

Here we must also note that PDGA is different
from those genetic algorithms [1, 2, 4] that are based
on diploidy and dominance in the following three
aspects: First, in those GAs dominance is gene
oriented and thus needs special dominant scheme
while in PDGA dominance is phenotype oriented and
thus needs no special dominant scheme. Second, in
those GAs the chromosomes undergoing dominance
operation are chosen randomly while in PDGA
dominance operates on the primal-dual pair of
chromosomes. Finally, in those GAs genetic
operations perform on the pair of chromosomes while
in PDGA only the winner or dominant of the
primal-dual pair goes through genetic operations.

3 Building Blocks and Royal Road

3.1 Building Blocks and Schema Theorem
The building block hypothesis and schema theorem
of Holland are the theoretical foundations of GA [6].
Holland first proposed the notation of schema to
describe a subset of all binary vectors of fixed length
that have similarities at certain positions. A schema is
typically specified by a vector over the alphabet {0,
1, ∗}, where the “∗” denotes a “wildcard” matching
both 0 and 1. Given a schema S, its order)(So is
simply the number of fixed positions within S and its
defining length)(Sl is the maximum distance
between fixed positions within S. For example,
given 1**01=S , 3)(=So and 4)(=Sl .

The building block hypothesis states that the GA
works best when short, low-order, high-fit schemas
that contain the optimum or desired near-optimum
recombine to form even more highly fit higher-order
schemas. The schema theorem states that short,
low-order, better than average schemas (also called
building blocks) receive an exponentially increasing
number of trials in the subsequent generations.

3.2 Royal Road Functions
The schema theorem does not state how crossover,
the major source of the search power of GAs, works
to recombine highly fit schemas. The building block
hypothesis states that crossover combines short,
observed high-fit schemas into increasingly fit
candidate solutions, but doesn’t give any detailed
description of how this combination occurs.

To investigate schema processing and
recombination in detail, Mitchell, Forrest and

Holland designed a class of fitness landscapes, called
Royal Road functions, to capture the essence of
building blocks in an idealized form [3, 8, 10]. For
example, Fig.1 and Fig.2 show the Royal Road
functions 1R and 2R respectively.

 S1 = 11111111**
 S2 = ********11111111**
 S3 = ****************11111111**
 S4 = ************************11111111********************************
 S5 = ********************************11111111************************
 S6 = **11111111****************
 S7 = **11111111********
 S8 = **11111111
Sopt = 11

Fig.1 Royal Road Function 1R .

 S1 = 11111111**
 S2 = ********11111111**
 S3 = ****************11111111**
 S4 = ************************11111111********************************
 S5 = ********************************11111111************************
 S6 = **11111111****************
 S7 = **11111111********
 S8 = **11111111
 S9 = 1111111111111111**
 S10 = ****************1111111111111111********************************
 S11 = ********************************1111111111111111****************
 S12 = **1111111111111111
 S13 = 11111111111111111111111111111111********************************
 S14 = ********************************11111111111111111111111111111111
Sopt = 11

Fig.2 Royal Road Function 2R .

Royal Road functions 1R and 2R contain

tailor-made building blocks and thus are good test
problems to investigate GA’s performance with
respect to schema processing and recombination.
They are defined using a list of schemas is . Each is
is given a coefficient ic equal to its order (i.e.,

)(ii soc =). From Fig. 1 and Fig. 2, it can be seen that

for 1R , 8=ic for all is (i = 1..8) while for 2R ,
8=ic for is (i = 1..8), 16=ic for is (i = 9..12),

and 32=ic for is (i = 13, 14). The fitness of a bit
string x for both)(1 xR and)(2 xR is computed by
summing the coefficients ic corresponding to each
of the given schema is of which x is an instance,
shown as follows:

)()(
8

11 xcxR
i

i ii∑ =

=
= δ ,)()(

14

12 xcxR
i

i ii∑ =

=
= δ

where)(xiδ = {1, if isx∈ ; 0, otherwise}. For
example if x is an instance of exactly two of the
order-8 schemas of 1R , 16)(1 =xR . Similarly,

64)1..11()(11 == RsR opt , 192)1..11()(22 == RsR opt .
For Royal Road functions, with PDGA we can

evaluate the primal-dual chromosome pair at the

same time with only a few extra instructions than
when we evaluate one single chromosome with SGA.
For example, the pseudo-code of procedure)(1 xR
that evaluates a bit string),..,,(21 Lxxxx = of fixed
length L is shown as follows.

Procedure)(1 xR :

1 onesCount :=0, dualFitness :=0, primFitness := 0;
2 for i := 1 to L do
3 if ix =1 then onesCount := onesCount +1; endif;
4 if (i MOD 8) = 0 then
5 if onesCount = 8 then
6 primFitness := primFitness + 8;
7 else if onesCount = 0 then
8 dualFitness := dualFitness + 8;
9 endif;
10 onesCount := 0; /* clear the counter */
11 endif;
12 endfor;
13 if dualFitness > primFitness then /* replace */
14 primFitness := dualFitness;
15 for i := 0 to L do ix := 1 - ix ; endfor;
16 endif;

From above pseudo-code it can be seen that only

lines 7, 8, 13 to 16 are extra for PDGA than SGA.
Here we gain an almost free lunch in the sense of
function evaluation number. And for this reason we
count the evaluations of the primal-dual pair as one
evaluation in our following experiments.

4 Computer Experiment Study
In all our experiments, we use sigma truncation
scaling and elitism selection schemes, one-point
crossover and bit mutation for both PDGA and SGA.

4.1 Performance Measures
Here the performance measures have twofold
functions: one is to test the absolute performance of
PDGA itself as a genetic algorithm; the other is to
compare the relative performance of PDGA over
SGA. With this consideration, we use the following
performance measures: function evaluations to
optimum, percentage of achieving optimum over a
number of runs against generations, percentage of
optimal members in the population for a run against
generations.

4.2 Design of Experiments

In our primary experiments, we consider the
effects of various parameter settings of N (128,

1024), cP (0.6, 0.7, 0.8) and mP (0.005, 0.01, 0.02)
on the performance of PDGA over SGA using the
performance measure of function evaluations to
optimum. We carried out 200 runs of SGA and
PDGA on 1R and 2R respectively using the same
200 random seeds for each parameter setting and
recorded the function evaluations required to obtain
their optimal solutions. Here only those
chromosomes changed by crossover and mutation
operations were evaluated. The statistic results with
respect to mean and best (or least) evaluations to
optimum over 200 runs are given in Table 1 and
Table 2. Fig.3 shows the result more intuitively.

From Table 1, Table 2 and Fig.3 it can be seen that
PDGA outperforms SGA on 1R and 2R with respect
to both mean and best evaluations to optimum for
most parameter settings. The best improvement of
PDGA over SGA with respect to mean evaluations to
optimum reaches about 25% with parameter setting 9
on 1R and about 28% with parameter setting 18 on

2R .
From Table 1, Table 2 and Fig.3, it can also be

seen that the parameter setting does matter. Generally
speaking, the effect of parameter setting is similar for
both 1R and 2R . The setting of cP obviously doesn’t
have much effect and shows little difference between
0.6, 0.7 and 0.8. However the setting of N and mP has

Table 1 Statistic results over 200 runs of PDGA vs.

SGA on 1R with respect to evaluations to optimum.

Parameter Setting SGA PDGA
No. N cP mP Mean Best Mean Best
1 128 0.6 0.005 62439 5063 57273 6818
2 128 0.6 0.01 44328 3094 37707 3834
3 128 0.6 0.02 203417 8133 210281 4834
4 128 0.7 0.005 58598 8091 58301 4164
5 128 0.7 0.01 41927 2846 37167 3883
6 128 0.7 0.02 196284 4578 164347 5487
7 128 0.8 0.005 63944 8272 55604 2926
8 128 0.8 0.01 41134 3733 38391 2754
9 128 0.8 0.02 164875 9105 123666 4961

10 1024 0.6 0.005 21054 12233 17172 11968
11 1024 0.6 0.01 25641 13212 22764 12946
12 1024 0.6 0.02 55531 21173 47431 21463
13 1024 0.7 0.005 20234 11414 17574 12772
14 1024 0.7 0.01 24072 15424 23343 13555
15 1024 0.7 0.02 47036 17593 43530 18248
16 1024 0.8 0.005 21239 12735 18367 10900
17 1024 0.8 0.01 23992 15659 23228 11724
18 1024 0.8 0.02 44040 17624 45797 20126

Table 2 Statistic results over 200 runs of PDGA vs.
SGA on 2R with respect to evaluations to optimum.

Parameter Setting SGA PDGA
No. N cP mP Mean Best Mean Best
1 128 0.6 0.005 84491 4343 67761 2544
2 128 0.6 0.01 86583 5291 76711 3635
3 128 0.6 0.02 365759 10805 471597 9607
4 128 0.7 0.005 76212 5072 73837 4602
5 128 0.7 0.01 70939 5831 79641 3182
6 128 0.7 0.02 332978 7305 389978 11456
7 128 0.8 0.005 85816 5223 71700 3018
8 128 0.8 0.01 72881 4505 69481 2878
9 128 0.8 0.02 292604 7322 276523 5168

10 1024 0.6 0.005 30539 10581 26236 9199
11 1024 0.6 0.01 48487 11825 39295 11733
12 1024 0.6 0.02 348073 18128 329780 15376
13 1024 0.7 0.005 30178 11577 27566 10157
14 1024 0.7 0.01 48701 12754 39277 11577
15 1024 0.7 0.02 369536 17373 316985 17414
16 1024 0.8 0.005 26965 10990 25085 9918
17 1024 0.8 0.01 45463 13438 34698 11300
18 1024 0.8 0.02 329686 15823 235858 14419

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ev
al

ua
tio

ns
 to

 O
pt

im
um

 (L
og

sc
al

e)

Parameter Setting

SGA_Mean
PDGA_Mean

SGA_Best
PDGA_Best

(a)

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ev
al

ua
tio

ns
 to

 O
pt

im
um

 (L
og

sc
al

e)

Parameter Setting

SGA_Mean
PDGA_Mean

SGA_Best
PDGA_Best

 (b)

Fig.3 Effects of parameter setting on the perfor-
mance of mean and best function evaluations to
optimum of PDGA vs. SGA on (a) 1R and (b) 2R .

great effects and correlation exists between N and
mP . Generally speaking, greater population size 1024

is much better than smaller population size 128
(except on 2R when 02.0=mP). When 128=N ,
setting mP to 0.01 is much better than to 0.005 and
0.02 while when 1024=N , 005.0=mP is the best.

For our further experiments, we fix the parameters
as follows: 128=N , 7.0=cP , 01.0=mP . We set N
to 128 instead of 1024 for the sake of better analyses
and comparisons between PDGA and SGA because
when 1024=N they both converge quite fast with
respect to generations to optimum (about 40 to 60
generations on the average).

4.3 Experiments on Achieving Optimum
To compare the dynamic performance of achieving
optimum of PDGA over SGA, we carried out 1000
runs of PDGA and SGA on 1R and 2R under the
same 1000 random seeds and with maxt set to 1000
for each run. For each run the information about
whether optimum is achieved by current generation is
reported every 25 generations. The statistic results
with respect to percentage of achieving optimum and
average percentage of optimal individuals in the
population against generations over 1000 runs are
shown in Fig.4 and Fig.5 respectively.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Pe
rce

nta
ge

 of
 A

ch
iev

ing
 O

pti
mu

m

Generations

SGA
PDGA

(a)

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

Pe
rce

nta
ge

 of
 A

ch
iev

ing
 O

pti
mu

m

Generations

SGA
PDGA

 (b)

Fig.4 Comparisons of PDGA vs. SGA with respect
to percentage of achieving optimum over 1000 runs
against generations on (a) 1R and (b) 2R .

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n P
erc

en
tag

e o
f O

pti
ma

 in
 P

op
ula

tio
n

Generations

SGA
PDGA

(a)

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n P
erc

en
tag

e o
f O

pti
ma

 in
 P

op
ula

tio
n

Generations

SGA
PDGA

 (b)

Fig.5 Comparisons of PDGA vs. SGA with respect
to mean percentage of optimal individuals in the
population against generations on (a) 1R and (b) 2R .

Fig.4 and Fig.5 show that PDGA outperforms

SGA on both 1R and 2R with respect to both
percentage of achieving optimum over 1000 runs
against generations and mean percentage of optimal
individuals in the population against generations over
1000 runs, especially during the early generations of
GA’s searching process. Fig.4 and Fig.5 also show
that PDGA achieves more improvement over SGA
on 2R than on 1R .

To further compare the dynamic searching
process of PDGA and SGA, we give out the result of
a typical run of PDGA and SGA on 1R and 2R in
Fig.6 with respect to mean fitness and best fitness
achieved against generations. The data are plotted
every 5 generations. On 1R , PDGA achieves
optimum at generation 85 with 9252 evaluations
while SGA at generation 400 with 43264 evaluations.
On 2R , PDGA achieves optimum at generation 108
with 11784 evaluations while SGA at generation 578
with 62360 evaluations. From Fig. 6 it can also be
seen that PDGA outperforms SGA quite well
especially during the early generations.

5 Conclusions
In this paper, based on the idea of diploid and
dominance phenomenon widely existing in nature,

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450

Fi
tn

es
s

Generations

SGA_Mean
PDGA_Mean

SGA_Best
PDGA_Best

(a)

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600

Fi
tn

es
s

Generations

SGA_Mean
PDGA_Mean

SGA_Best
PDGA_Best

 (b)

Fig.6 Mean and best fitness against generations for a
typical run of PDGA vs. SGA on (a) 1R and (b) 2R .

we proposed a primal-dual genetic algorithm
(PDGA) that operates on a pair of primal-dual
chromosomes in the sense of Hamming distance. We
compared the performance of PDGA over SGA
based on the Royal Road functions, specially
designed for testing the performance of GAs. The
experiments show that PDGA outperforms SGA for
different performance criteria, such as function
evaluations to optimum, percentage of achieving
optimum over a number of runs, and percentage of
optimal members in the population for a run.

PDGA is proposed with the aim of improving
GA's searching efficiency in the search space through
primal-dual mapping. Here the mapping function has
the key role in PDGA's performance. In this paper we
take the Hamming distance as the primal-dual
mapping function, which is a static mapping
function. This mapping function works well during
the early generations by shortening genetic
operations performed on low fitness chromosomes
and thus speed up GA's convergence. However,
whence the mean fitness of the population becomes
quite high, it loses its effect. For the future research
on PDGA, we believe that dynamic mapping
function that can adapt itself with GA's progressing
will further improve PDGA's performance.

From the viewpoint of structure, PDGA shares the
same framework with SGA, thus there can be many

variations for PDGA as well as for SGA. Whatever
variations (for example, the elitist scheme and the
Sigma truncation scaling scheme used in this paper)
that work well with SGA should also work well with
PDGA. Thus combining so far developed advanced
operators with PDGA is obviously one of the future
research directions on PDGA.

Acknowledgements. This work was supported by
the University of Leicester Research Fund 2001
under Grant FP15004, UK.

References:
[1] J. D. Bagley, The Behaviour of Adaptive Systems

Witch Employ Genetic and Correlation
Algorithms, Ph. D. Dissertation, University of
Michigan, 1967.

[2] A. Brindle, Genetic Algorithms for Function
Optimization, Doctoral Dissertation, University
of Alberta, Edmonton, Canada, 1981.

[3] S. Forrest and M. Mitchell, Relative
Building-Block Fitness and the Building-Block
Hypothesis, Foundations of Genetic Algorithms
2, D. Whitley, Ed., 1993, pp. 109-126, Morgan
Kaufmann.

[4] D. E. Goldberg and R. E. Smith, Nonstationary
Function Optimization Using Genetic Algorithms
with Dominance and Diploidy, Proc. of the 2nd
International Conference on Genetic Algorithms
and Their Applications, J. J. Grefenstette, Ed.,
1987, pp. 59-68, Lawrence Eribaum Associates.

[5] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
MA: Addison-Wesley, 1989.

[6] J. H. Holland, Adaptation in Natural and
Artificial Systems, Ann Arbor, University of
Michigan Press, 1975.

[7] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, 3rd edition,
Springer-Verlag, New York, 1996.

[8] M. Mitchell, S. Forrest and J. H. Holland, The
Royal Road for Genetic Algorithms: Fitness
Landscapes and GA Performance, Proc. of the
First European Conference on Artificial Life, F. J.
Varela and P. Bourgine, Eds., 1992, pp. 245-254,
Cambridge, MA: MIT Press.

[9] M. Mitchell, An Introduction to Genetic
Algorithms, Cambridge, MA: MIT Press, 1996.

[10] K. P. Ng and K. C. Wong, A New Diploid
Scheme and Dominance Change Mechanism for
Non-Stationary Function Optimization, Proc. 6th
Int. Conf. on Genetic Algorithms, L. J. Eshelman,
Ed. 1995, pp. 159-166, Morgan Kaufmann.

