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Abstract: Genetic algorithms (GAs) have been broadly studied by a huge amount of researchers and there are 
many variations developed based on Holland’s simple genetic algorithm (SGA). Inspired by the idea of diploid 
genotype and dominance mechanisms that broadly exists in nature, we propose a primal-dual genetic algorithm 
(PDGA). PDGA operates on a pair of chromosomes that are primal-dual to each other in the sense of Hamming 
distance in genotype. We compare the performance of PDGA over SGA based on the Royal Road functions, 
which are specially designed for testing GA's performance. The experiment results show that PDGA 
outperforms SGA on the Royal Road functions for different performance measures. 
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1   Introduction 
Genetic algorithms (GAs) were first proposed by 
Holland [6], usually called Holland's canonical or 
simple genetic algorithm (SGA), and then developed 
by Holland and his colleagues and students in the 
1960s and the 1970s. Thereafter, there have been 
many variations and extensions developed based on 
Holland's SGA [5, 7, 9], including macro-structure 
and micro-structure variations.  
     GA's macro-structure variations include hybrid 
GAs, master-slave GAs, and parallel GAs. In GA's 
microstructure aspect, variations appear on every 
aspect of GA's components, including chromosome 
representation schemes, selection strategies (e.g., the 
elitist model, the ranking model, and several scaling 
strategies), mating policies (e.g., sharing function, 
niche, and seduction techniques), crossover operators 
(e.g., one-point, two-point and uniform crossover 
operators), and mutation operators [5, 7, 9]. 
     Though most GAs studied so far are based on the 
haploid or single-stranded chromosome, which is the 
simplest genotype found in nature, GA's researchers 
have also studied diploid genotypes (pairs of 
chromosomes) and dominance mechanisms for a 
long history [1, 2, 4, 10]. In the diploid form a 
genotype carries one pair of chromosomes (called 
homologous chromosomes). Each position or locus 
in the genome has two or multiple allele values. A 
dominance mechanism for determining which allele 
value for a gene will be expressed is required to 
adjudicate when the allele values do not agree [5]. 

An issue of great concern about GA is the balance 
between exploration (the investigation for new, 
useful adaptations in the search space) and 
exploitation (the use and propagation of these 
adaptations). An efficient algorithm is one that uses 
both techniques. In this paper, inspired by the idea of 
diploid genotype and dominance mechanisms that 
broadly exist in nature, we present a primal-dual 
genetic algorithm (PDGA) based on the concept of 
primal-dual chromosomes. PDGA operates on a pair 
of chromosomes that are primal- dual to each other in 
the sense of Hamming distance in genotype. Through 
the primal-dual or Hamming distance mapping 
between a pair of chromosomes, GA's performance 
of exploration in the search space is improved and 
thus its total searching efficiency is improved. 

In our present study, we provide a comparison of 
the performance of PDGA over SGA based on the 
Royal Road functions [3, 8, 9]. These functions are 
specially designed for testing the performance of 
GAs and thus can act as good test problems. The 
experiment results show that PDGA outperforms 
SGA for different performance measures. 
 
 
2   Primal-Dual Genetic Algorithms 
 
2.1 Definition of Primal-Dual Chromosomes 
Here we consider binary bit string representation of 
genotype and define a pair of chromosomes to be 
primal-dual to each other if their Hamming distance 
(the number of locations at which corresponding bits 



differ) is the maximum (equal to their length). That 
is, given a chromosome L

L Ixxx }1,0{),...,( 1 =∈=  
of fixed length L, its dual chromosome is defined as 

Ixxx L ∈= ),...,( 1  where )..1(1 Lixx ii =−= .  
Given above definition, we can say that x is 

mapped to x  by primal-dual mapping or Hamming 
distance mapping, vice versa. And the dominance 
mechanism works on the primal-dual pair by taking 
whichever has higher fitness as the dominant 
chromosome, i.e., the dominance is phenotype-based. 
 
2.2 Framework of PDGA 
PDGA is quite simple compared to other genetic 
algorithm variations. It can be described in a 
step-by-step format as follows: 
 
Step 1. Set parameters such as population size N, 

crossover probability cP , mutation probability mP , 
and maximum allowable generation number maxt . 
Initialise a random population. Set counter 0=t . 

Step 2. In the population, evaluate each chromosome 
x’s fitness and its dual chromosome x ’s fitness. If 
x  is better, replace x with x . 

Step 3. If maxtt >  or some other termination 
condition is satisfied, stop. 

Step 4. Select chromosomes with some policy from 
the population to generate the mating pool. 

Step 5. Perform crossover on chromosome pairs 
randomly chosen from the mating pool.  

Step 6. Perform mutation on each chromosome. 
Step 7. In the new population, evaluate each 

chromosome x’s fitness and its dual chromosome 
x ’s fitness. If x  is better, replace x with x . 

Step 8. Perform elitist selection. This step is optional. 
Step 9.  Set 1+= tt , and go to Step 3. 

Here we can see that PDGA differs from SGA 
only in Step 2 and Step 7, i.e., in the evaluation of 
chromosomes in the population. The genetic 
operations including selection, crossover and 
mutation are all the same for both PDGA and SGA. 
 
2.3 Haploid or Diploid? 
From the above description of PDGA, it seems that it 
is diploidy-based since it works on a pair of 
primal-dual chromosomes. However, further 
thinking will make it a haploid-like genetic algorithm 
since in fact we needn't explicitly keep track of each 
chromosome's dual chromosome. That is, a dual 
chromosome can be looked as the shadow of its 
primal chromosome and only shows its body 
(through the primal-dual mapping) when the primal 
chromosome is evaluated. Of course, if the dual 
chromosome proves to be better, it will embody itself 

and throw the primal chromosome into its shadow. In 
this sense, we can call PDGA a pseudo-diploid or 
implicitly diploid genetic algorithm. 

Here we must also note that PDGA is different 
from those genetic algorithms [1, 2, 4] that are based 
on diploidy and dominance in the following three 
aspects: First, in those GAs dominance is gene 
oriented and thus needs special dominant scheme 
while in PDGA dominance is phenotype oriented and 
thus needs no special dominant scheme. Second, in 
those GAs the chromosomes undergoing dominance 
operation are chosen randomly while in PDGA 
dominance operates on the primal-dual pair of 
chromosomes. Finally, in those GAs genetic 
operations perform on the pair of chromosomes while 
in PDGA only the winner or dominant of the 
primal-dual pair goes through genetic operations. 
 
 
3   Building Blocks and Royal Road 
 
3.1 Building Blocks and Schema Theorem 
The building block hypothesis and schema theorem 
of Holland are the theoretical foundations of GA [6]. 
Holland first proposed the notation of schema to 
describe a subset of all binary vectors of fixed length 
that have similarities at certain positions. A schema is 
typically specified by a vector over the alphabet {0, 
1, ∗}, where the “∗” denotes a “wildcard” matching 
both 0 and 1. Given a schema S, its order )(So  is 
simply the number of fixed positions within S and its 
defining length )(Sl  is the maximum distance 
between fixed positions within S. For example, 
given 1**01=S , 3)( =So  and 4)( =Sl . 

The building block hypothesis states that the GA 
works best when short, low-order, high-fit schemas 
that contain the optimum or desired near-optimum 
recombine to form even more highly fit higher-order 
schemas. The schema theorem states that short, 
low-order, better than average schemas (also called 
building blocks) receive an exponentially increasing 
number of trials in the subsequent generations. 
 
3.2 Royal Road Functions 
The schema theorem does not state how crossover, 
the major source of the search power of GAs, works 
to recombine highly fit schemas. The building block 
hypothesis states that crossover combines short, 
observed high-fit schemas into increasingly fit 
candidate solutions, but doesn’t give any detailed 
description of how this combination occurs.  

To investigate schema processing and 
recombination in detail, Mitchell, Forrest and 



Holland designed a class of fitness landscapes, called 
Royal Road functions, to capture the essence of 
building blocks in an idealized form [3, 8, 10]. For 
example, Fig.1 and Fig.2 show the Royal Road 
functions 1R  and 2R  respectively.   
 
 S1   = 11111111********************************************************
 S2   = ********11111111************************************************
 S3   = ****************11111111****************************************
 S4   = ************************11111111********************************
 S5   = ********************************11111111************************
 S6   = ****************************************11111111****************
 S7   = ************************************************11111111********
 S8   = ********************************************************11111111
Sopt = 1111111111111111111111111111111111111111111111111111111111111111  
 
Fig.1  Royal Road Function 1R . 

 
 S1   = 11111111********************************************************
 S2   = ********11111111************************************************
 S3   = ****************11111111****************************************
 S4   = ************************11111111********************************
 S5   = ********************************11111111************************
 S6   = ****************************************11111111****************
 S7   = ************************************************11111111********
 S8   = ********************************************************11111111
 S9   = 1111111111111111************************************************
 S10 = ****************1111111111111111********************************
 S11 = ********************************1111111111111111****************
 S12 = ************************************************1111111111111111
 S13 = 11111111111111111111111111111111********************************
 S14 = ********************************11111111111111111111111111111111
Sopt = 1111111111111111111111111111111111111111111111111111111111111111  

 
Fig.2  Royal Road Function 2R . 

 
Royal Road functions 1R  and 2R  contain 

tailor-made building blocks and thus are good test 
problems to investigate GA’s performance with 
respect to schema processing and recombination. 
They are defined using a list of schemas is . Each is  
is given a coefficient ic  equal to its order (i.e., 

)( ii soc = ). From Fig. 1 and Fig. 2, it can be seen that 

for 1R , 8=ic  for all is  (i = 1..8) while for 2R , 
8=ic  for is  (i = 1..8), 16=ic  for is  (i = 9..12), 

and 32=ic  for is  (i = 13, 14). The fitness of a bit 
string x for both )(1 xR  and )(2 xR  is computed by 
summing the coefficients ic  corresponding to each 
of the given schema is  of which x is an instance, 
shown as follows: 

)()(
8

11 xcxR
i

i ii∑ =

=
= δ , )()(

14

12 xcxR
i

i ii∑ =

=
= δ  

where )(xiδ = {1, if isx∈ ; 0, otherwise}. For 
example if x is an instance of exactly two of the 
order-8 schemas of 1R , 16)(1 =xR . Similarly, 

64)1..11()( 11 == RsR opt , 192)1..11()( 22 == RsR opt . 
For Royal Road functions, with PDGA we can 

evaluate the primal-dual chromosome pair at the 

same time with only a few extra instructions than 
when we evaluate one single chromosome with SGA. 
For example, the pseudo-code of procedure )(1 xR  
that evaluates a bit string ),..,,( 21 Lxxxx =  of fixed 
length L is shown as follows.  

 
Procedure )(1 xR :  

1   onesCount :=0, dualFitness :=0,  primFitness := 0; 
2   for i := 1 to L do 
3      if ix =1 then onesCount := onesCount +1; endif; 
4      if (i MOD 8) = 0 then  
5          if onesCount = 8 then  
6              primFitness := primFitness + 8; 
7          else if onesCount = 0 then 
8              dualFitness := dualFitness + 8; 
9          endif; 
10        onesCount := 0;   /* clear the counter */  
11     endif; 
12  endfor; 
13  if dualFitness > primFitness then  /* replace */ 
14     primFitness := dualFitness; 
15     for i := 0 to L do ix  :=  1 - ix ; endfor; 
16  endif; 

 
From above pseudo-code it can be seen that only 

lines 7, 8, 13 to 16 are extra for PDGA than SGA. 
Here we gain an almost free lunch in the sense of 
function evaluation number. And for this reason we 
count the evaluations of the primal-dual pair as one 
evaluation in our following experiments. 
 
 
4   Computer Experiment Study 
In all our experiments, we use sigma truncation 
scaling and elitism selection schemes, one-point 
crossover and bit mutation for both PDGA and SGA. 
 
4.1 Performance Measures 
Here the performance measures have twofold 
functions: one is to test the absolute performance of 
PDGA itself as a genetic algorithm; the other is to 
compare the relative performance of PDGA over 
SGA. With this consideration, we use the following 
performance measures: function evaluations to 
optimum, percentage of achieving optimum over a 
number of runs against generations, percentage of 
optimal members in the population for a run against 
generations.  
 
4.2 Design of Experiments    

In our primary experiments, we consider the 
effects of various parameter settings of N (128, 



1024), cP  (0.6, 0.7, 0.8) and mP  (0.005, 0.01, 0.02) 
on the performance of PDGA over SGA using the 
performance measure of function evaluations to 
optimum. We carried out 200 runs of SGA and 
PDGA on 1R  and 2R  respectively using the same 
200 random seeds for each parameter setting and 
recorded the function evaluations required to obtain 
their optimal solutions. Here only those 
chromosomes changed by crossover and mutation 
operations were evaluated. The statistic results with 
respect to mean and best (or least) evaluations to 
optimum over 200 runs are given in Table 1 and 
Table 2. Fig.3 shows the result more intuitively.  

From Table 1, Table 2 and Fig.3 it can be seen that 
PDGA outperforms SGA on 1R  and 2R  with respect 
to both mean and best evaluations to optimum for 
most parameter settings. The best improvement of 
PDGA over SGA with respect to mean evaluations to 
optimum reaches about 25% with parameter setting 9 
on 1R  and about 28% with parameter setting 18 on 

2R .  
From Table 1, Table 2 and Fig.3, it can also be 

seen that the parameter setting does matter. Generally 
speaking, the effect of parameter setting is similar for 
both 1R  and 2R . The setting of cP  obviously doesn’t 
have much effect and shows little difference between 
0.6, 0.7 and 0.8. However the setting of N and mP  has 
 
Table 1  Statistic results over 200 runs of PDGA vs. 

SGA on 1R  with respect to evaluations to optimum. 

Parameter Setting SGA PDGA 
No. N cP  mP  Mean Best Mean Best 
1 128 0.6 0.005 62439 5063 57273 6818
2 128 0.6 0.01 44328 3094 37707 3834
3 128 0.6 0.02 203417 8133 210281 4834
4 128 0.7 0.005 58598 8091 58301 4164
5 128 0.7 0.01 41927 2846 37167 3883
6 128 0.7 0.02 196284 4578 164347 5487
7 128 0.8 0.005 63944 8272 55604 2926
8 128 0.8 0.01 41134 3733 38391 2754
9 128 0.8 0.02 164875 9105 123666 4961

10 1024 0.6 0.005 21054 12233 17172 11968
11 1024 0.6 0.01 25641 13212 22764 12946
12 1024 0.6 0.02 55531 21173 47431 21463
13 1024 0.7 0.005 20234 11414 17574 12772
14 1024 0.7 0.01 24072 15424 23343 13555
15 1024 0.7 0.02 47036 17593 43530 18248
16 1024 0.8 0.005 21239 12735 18367 10900
17 1024 0.8 0.01 23992 15659 23228 11724
18 1024 0.8 0.02 44040 17624 45797 20126

Table 2  Statistic results over 200 runs of PDGA vs. 
SGA on 2R  with respect to evaluations to optimum. 

Parameter Setting SGA PDGA 
No. N cP mP  Mean Best Mean Best 
1 128 0.6 0.005 84491 4343 67761 2544
2 128 0.6 0.01 86583 5291 76711 3635
3 128 0.6 0.02 365759 10805 471597 9607
4 128 0.7 0.005 76212 5072 73837 4602
5 128 0.7 0.01 70939 5831 79641 3182
6 128 0.7 0.02 332978 7305 389978 11456
7 128 0.8 0.005 85816 5223 71700 3018
8 128 0.8 0.01 72881 4505 69481 2878
9 128 0.8 0.02 292604 7322 276523 5168

10 1024 0.6 0.005 30539 10581 26236 9199
11 1024 0.6 0.01 48487 11825 39295 11733
12 1024 0.6 0.02 348073 18128 329780 15376
13 1024 0.7 0.005 30178 11577 27566 10157
14 1024 0.7 0.01 48701 12754 39277 11577
15 1024 0.7 0.02 369536 17373 316985 17414
16 1024 0.8 0.005 26965 10990 25085 9918
17 1024 0.8 0.01 45463 13438 34698 11300
18 1024 0.8 0.02 329686 15823 235858 14419
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Fig.3 Effects of parameter setting on the perfor- 
mance of mean and best function evaluations to 
optimum of PDGA vs. SGA on (a) 1R  and (b) 2R . 



great effects and correlation exists between N and 
mP . Generally speaking, greater population size 1024 

is much better than smaller population size 128 
(except on 2R  when 02.0=mP ). When 128=N , 
setting mP  to 0.01 is much better than to 0.005 and 
0.02 while when 1024=N , 005.0=mP  is the best. 

For our further experiments, we fix the parameters 
as follows: 128=N , 7.0=cP , 01.0=mP . We set N 
to 128 instead of 1024 for the sake of better analyses 
and comparisons between PDGA and SGA because 
when 1024=N  they both converge quite fast with 
respect to generations to optimum (about 40 to 60 
generations on the average).   

 
4.3 Experiments on Achieving Optimum 
To compare the dynamic performance of achieving 
optimum of PDGA over SGA, we carried out 1000 
runs of PDGA and SGA on 1R  and 2R  under the 
same 1000 random seeds and with maxt  set to 1000 
for each run. For each run the information about 
whether optimum is achieved by current generation is 
reported every 25 generations. The statistic results 
with respect to percentage of achieving optimum and 
average percentage of optimal individuals in the 
population against generations over 1000 runs are 
shown in Fig.4 and Fig.5 respectively. 
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Fig.4  Comparisons of PDGA vs. SGA with respect 
to percentage of achieving optimum over 1000 runs 
against generations on (a) 1R  and (b) 2R .  
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Fig.5  Comparisons of PDGA vs. SGA with respect 
to mean percentage of optimal individuals in the 
population against generations on (a) 1R and (b) 2R . 

 
Fig.4 and Fig.5 show that PDGA outperforms 

SGA on both 1R  and 2R  with respect to both 
percentage of achieving optimum over 1000 runs 
against generations and mean percentage of optimal 
individuals in the population against generations over 
1000 runs, especially during the early generations of 
GA’s searching process. Fig.4 and Fig.5 also show 
that PDGA achieves more improvement over SGA 
on 2R  than on 1R . 

To further compare the dynamic searching 
process of PDGA and SGA, we give out the result of 
a typical run of PDGA and SGA on 1R  and 2R  in 
Fig.6 with respect to mean fitness and best fitness 
achieved against generations. The data are plotted 
every 5 generations. On 1R , PDGA achieves 
optimum at generation 85 with 9252 evaluations 
while SGA at generation 400 with 43264 evaluations. 
On 2R , PDGA achieves optimum at generation 108 
with 11784 evaluations while SGA at generation 578 
with 62360 evaluations. From Fig. 6 it can also be 
seen that PDGA outperforms SGA quite well 
especially during the early generations. 
 
 
5   Conclusions 
In this paper, based on the idea of diploid and 
dominance  phenomenon  widely  existing  in  nature,  
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Fig.6  Mean and best fitness against generations for a 
typical run of PDGA vs. SGA on (a) 1R  and (b) 2R . 

 
we proposed a primal-dual genetic algorithm 
(PDGA) that operates on a pair of primal-dual 
chromosomes in the sense of Hamming distance. We 
compared the performance of PDGA over SGA 
based on the Royal Road functions, specially 
designed for testing the performance of GAs. The 
experiments show that PDGA outperforms SGA for 
different performance criteria, such as function 
evaluations to optimum, percentage of achieving 
optimum over a number of runs, and percentage of 
optimal members in the population for a run. 

PDGA is proposed with the aim of improving 
GA's searching efficiency in the search space through 
primal-dual mapping. Here the mapping function has 
the key role in PDGA's performance. In this paper we 
take the Hamming distance as the primal-dual 
mapping function, which is a static mapping 
function. This mapping function works well during 
the early generations by shortening genetic 
operations performed on low fitness chromosomes 
and thus speed up GA's convergence. However, 
whence the mean fitness of the population becomes 
quite high, it loses its effect. For the future research 
on PDGA, we believe that dynamic mapping 
function that can adapt itself with GA's progressing 
will further improve PDGA's performance. 

From the viewpoint of structure, PDGA shares the 
same framework with SGA, thus there can be many 

variations for PDGA as well as for SGA. Whatever 
variations (for example, the elitist scheme and the 
Sigma truncation scaling scheme used in this paper) 
that work well with SGA should also work well with 
PDGA. Thus combining so far developed advanced 
operators with PDGA is obviously one of the future 
research directions on PDGA. 
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