Adaptive Mutation Using Statistics
Mechanism for Genetic Algorithms

Shengxiang Yang
Department of Computer Science
University of Leicester
University Road, Leicester LE1 7TRH, UK
Email: s.yang@mcs.le.ac.uk

Abstract

It has long been recognized that mutation is a key ingredient in genetic
algorithms (GAs) and the choice of suitable mutation probability will
have a significant effect on the performance of genetic search. In this
paper, a statistics-based adaptive non-uniform mutation (SANUM) is
presented within which the probability that each gene will subject to
mutation is learnt adaptively over time and over the loci. As a search al-
gorithm based on mechanisms abstracted from population genetics, GAs
implicitly maintain the statistics about the search space through the pop-
ulation. SANUM explicitly makes use of the statistics information of the
allele distribution in each gene locus to adaptively adjust the mutation
probability of that locus. To test the performance of SANUM, it is com-
pared to traditional bit mutation operator with a number of “standard”
fixed mutation probabilities suggested by other researchers over a range
of typical test problems. The results demonstrate that SANUM performs
persistently well over the range of test problems while the performance of
traditional mutation operators with fixed mutation probabilities greatly
depends on the problem under consideration. SANUM represents a ro-
bust adaptive mutation operator that needs no prior knowledge about
the fitness landscape of the problem being solved.

1 Introduction

The genetic algorithm (GA), as one kind of generation-based evolutionary algo-
rithm, maintains a population of candidate solutions to a given problem, which
are evaluated according to a problem-specific fitness function that defines the
environment for the evolution. New populations are created by selecting rel-
atively fitter members of the present population and evolving them through
recombination and mutation operations [12]. The performance of a GA de-
pends on many factors, such as the encoding scheme, the selection method,
the population size, the crossover and mutation operators. This makes it diffi-
cult, if not impossible, to choose operators and relevant parameters for optimal
performance. In this paper we focus on the mutation operator.

Holland [15] introduced the mutation operator as a “background operator”
that changes bits of individuals only occasionally, with a rather small mutation
probability p,, € [0,1] per bit. Mutation is used to ensure that all possible
alleles can enter the population and provide variation in a GA population. This

is done by having one allele replaced by another. For example, in a binary string
representation, mutation on a parent to produce a child is done by flipping each
bit randomly according to a mutation probability. Based on Holland’s simple
GA, there has been much work, both practically [20] and theoretically [23] on
the relative merits of mutation as a search mechanism. Much of the work has
been concerned with finding globally “optimal” mutation probability for GAs.
Common settings of static mutation probability recommended by researchers
are as follows: pp, = 0.001 by De Jong [7], p,, = 0.01 by Grefenstette [11], and
Pm € [0.005,0.001] by Schaffer et al [20]. Based on the result of Schaffer et al
[20], Biick [3] proposed an expression of p,, = 1.75/(N * L'/?) where N is the
population size and L denotes the string length. Miihlenbein [19] derived that
Pm = 1/L should be generally ‘optimal’, which was further verified by Smith
and Fogarty [22]. These settings were obtained by experimental investigations
and are consistent with Holland’s proposal of using mutation as a background
operator. However, there is an increasing body of both empirical [10] and
theoretical [3] evidence showing that the optimal mutation probability will not
only depend on the problem being solved but also vary with the progress of
evolutionary searching.

In this paper, a statistics-based adaptive non-uniform mutation (SANUM) is
proposed for GAs. As a search algorithm based on mechanisms abstracted from
population genetics, GAs implicitly maintain the statistics about the search
space through the population. GAs use the selection, crossover and mutation
operations to extract the implicit statistics from the population to reach the
next set of points in the search space. This implicit statistics can be used
explicitly to enhance GA’s performance. SANUM explicitly makes use of the
statistics information of the distribution of alleles in a gene locus over the
population to adjust the mutation probability for that locus adaptively with
the progress of the GA.

In the rest of this paper, we first briefly review relevant work, next de-
scribe SANUM in detail, and then present our experiment study that compares
SANUM over traditional bit mutation based on a typical set of test problems,
finally give out our conclusions as well as discussions on potential future work
relevant to SANUM.

2 Adapting the Mutation in GAs

The adaptation of genetic operators and relevant parameters was first intro-
duced into Evolutionary Strategies (ESs) where the mutation step size is suc-
cessfully controlled by self-adaptation, e.g., see Schwefel [21]. In recent years
with the interaction between the GA and the ES communities, there has been
an increasing interest in the use of adaptive operators within the GA to en-
hance GA’s performance [9]. Based on how the strategy parameters are changed
adaptation in GAs can be classified into three categories: deterministic mech-
anism where the value of a strategy parameter is altered according to some
deterministic rule, adaptive mechanism where there is some form of feedback

information from the search process that is used to direct the change of a strat-
egy parameter, and self-adaptive mechanism where the parameter to be adapted
is encoded into the chromosomes and undergoes genetic operations (hence, also
called co-evolution).

There has been much work on adaptation in mutation for GAs [4]. Generally
speaking, adaptation in mutation happens at two levels. At the top level, the
ratio between mutation and crossover is adapted during the run of a GA. Davis
[6] proposed that the GA can select from a set of operators to perform on a
chosen parent, each with a fixed probability. Julstrom [16] adaptively adapted
the ratio between mutation and crossover based on their performance. Corne
et al. [5] devised the COst Based operator Rate Adaptation (COBRA) method
where the GA periodically swaps given k fixed probabilities between k operators
by giving the highest probability to the operator that has been producing the
most gains in fitness. Tuson and Ross [24] extended the COBRA method
by co-evolving the mutation and crossover probabilities (one-normalized real
numbers) with each individual.

At the bottom level, the probability of mutation is adapted during the run
of a GA, uniformly or non-uniformly over the loci. Béck [3] proposed a self-
adaptation scheme by adding a probability vector ' = {p1,...,pn} (n is the
number of object variables) for each individual. The mutation scheme first
mutates the mutation probability p; with p; itself and then uses the resulting
p; to mutate the ith object variable. Hesser and Ménner [14] derived a general
expression that deterministically varies the mutation probability with time by

pu(t) = (a/ B)'? x ewp(—t/2)/ (N x L'/?)

where a, 3, v are constants, N is the population size, L is the string length,
and ¢ is the time (generation counter). Fogarty [10] used a deterministic scheme
that decreases p,, over time exponentially, such that lim;_,oo P, (t) = 0. Fog-
arty [10] also used a scheme that decreases the mutation probability over bit
representation and gives bits of different significance different schedules. In this
paper a new mechanism is proposed that adapts the mutation probability over
the loci but needs no knowledge in advance about the bit representation of the
problem, such as the significance of a bit position as in Fogarty’s scheme [10].

3 Statistics-based Adaptive Non-Uniform
Mutation

For the convenience of description and analysis, we introduce the concepts of
intrinsic attribute and extrinsic tendency of allele valuing for a gene locus. In
the binary-encoded optimal solution(s) of a given problem, a gene locus is called
1-intrinsic if its allele is 1, 0-intrinsic if its allele is 0, or neutral if its allele can
be either 0 or 1. Whether a locus is 1-intrinsic, O-intrinsic, or neutral depends
on the problem under consideration and encoding scheme, e.g., whether introns
are inserted [17]. During the running of a GA, a gene locus is called 1-inclined
if the frequency of 1s in its alleles over the population tends to increase (to the

limit of 1.0) with time (generation), 0-inclined if the frequency of 1s tends to
decrease (to the limit of 0.0), or non-inclined if there is no tendency of increasing
or decreasing. Whether a locus is 1-inclined, 0-inclined, or non-inclined depends
on the problem under consideration, encoding scheme, genetic operators and
initial conditions.

Usually with the progress of the GA, those gene loci that are 1-intrinsic
(or O-intrinsic) will appear to be 1-inclined (or 0-inclined), i.e., the frequency
of 1s in the alleles of these loci will eventually converge to 1 (or 0). SANUM
makes use of this convergence information as feedback information to control
the mutation by adjusting the mutation probability for each locus.

We use the frequency of 1s in the alleles in a locus over the population
(equivalently we can use the frequency of Os as the argument) to calculate
corresponding mutation probability of that locus. The frequency of 1s in a
locus’s alleles can be looked as the degree of convergence to “1” for that locus.
Let fi(i,t) (¢ = 1,...,L) denote the frequency of 1s in the alleles in locus i
over the population at time (generation) ¢t and p,,,(¢,t) (i = 1,..., L) denote the
mutation probability of locus 4 at time ¢. Then, as shown in Figure 1, p,,(7,t)
can be calculated from fi (i,t) as follows:

pm(iat) = Pmaw — 2% |f1(i;t) - 05| * (Pmaw - szn) (1)

where |z| denotes the absolute value of z, P4, and P, are the maximum
and minimum allowable mutation probabilities for a locus respectively, e.g.,
Pras = 1/L and Py, = 1072,

Pmax

Mutation Probability

Pmin :
0.0 <=— O-Inclined 05 1-Inclined — 1.0

Frequency of 1’s in the Alleles in a Locus

Figure 1: Triangular function used for calculating the mutation probability for
a gene locus.

Now during the evolution of the GA, after a new population ¢ has been
generated, we first calculate the distribution of 1s f;(4,t) for each locus 7 over
the population and from this obtain the mutation probability p,,(i,t) for gene
locus i. Then we can perform SANUM operations similarly as traditional bit
mutation except that SANUM uses p,, (¢, t) for each locus i instead of a global
pm for all the loci.

According to the classification of adaptation for GAs reviewed in section 2,
the goal of adaptive mechanism is to use the knowledge dynamically acquired
about the search space to adjust the GA suitably to the problem. SANUM
belongs to the class of adaptive mechanism that occurs at the bottom-level of
mutation. It uses the statistics of allele distribution as feedback information to
adaptively adjust the mutation probability non-uniformly over the loci, hence
the name Statistics-based Adaptive Non-Uniform Mutation (SANUM).

SANUM is simpler than those mechanisms that add one extra value per bit
and co-evolve these values with each individual, such as Back’s self-adaptation
scheme [3]. With SANUM, what we add to traditional bit mutation are spatially
only one real vector of L-dimension that records the frequency of ones for each
locus, and computationally only one statistics per generation that calculates
the frequency of ones over the population (hence the mutation probability) for
each locus. This simple statistics added is well rewarded as discussed below.

The motivation behind SANUM lies in the fact that with the progress of
genetic search SANUM helps protecting building blocks found so far while still
exploiting new building blocks. To formally analyze the behavior of GAs, Hol-
land [15] first introduced the concept of schema to describe a subset of binary
strings of fixed length that have similarities at certain positions. For example,
the schema S = 1 xxx x0 (where “*” denotes a “don’t care” bit) represents the
set of all 6-bit strings that begin with 1 and end with 0. Given a schema S,
its order o(S) is the number of fixed positions within S and its defining length
I(S) is the distance between the outermost fixed bits of S. Building blocks
are short, low-order, better than average schemas. Holland’s schema theorem
states that building blocks receive an exponentially increasing number of trials
in the subsequent generations.

In fact building blocks can be looked as the combination of non-neutral (1-
intrinsic or O-intrinsic) genes. When the population is randomly initialized, the
frequency of 1s in the alleles in each locus is statistically about 0.5 and hence
Pm(i,t) = Ppaq for all the loci. However, with the progress of the GA, when
building blocks are partially found, that is, some l-intrinsic and O-intrinsic
loci tend to converge to 1 and 0 respectively, SANUM decreases the mutation
probabilities of these loci according to Equation (1). In this way, SANUM
can protect building blocks found so far that are located on these partially or
totally converged loci. While on the other hand, for those unconverged loci
the mutation probabilities are remained to be high within SANUM. This is
useful because there may be building blocks not expressed on these loci yet.
From these discussions, it can be seen that SANUM strikes to balance the
construction of new building blocks and protection of found building blocks
over the loci with time adaptively.

Traditional bit mutation keeps a constant mutation probability over all the
loci. As the population converges, with traditional bit mutation, in fact fewer
and fewer offsprings generated by mutating those converged loci will survive in
the next generation. That is, many mutation operations are wasted on those
converged loci. Most of these wasted mutation operations and hence wasted
fitness evaluations are saved by SANUM through adaptively decreasing p,, (i, t)

to Ppyin for those converged loci.

4 The Test Problems

In order to compare the performance of SANUM, a wide range of typical bench-
mark problems is selected as the test set. These problems represent different
difficulty levels for GAs. They are described as follows.

4.1 The One-Max Problem

The One-Max problem [1] simply counts the ones contained in a binary string
as the fitness of that string. The aim is to obtain a string containing all ones,
that is, to maximize ones in a string. A string length of 100 bits was used for
our study.

4.2 The Royal Road Functions

The Royal Road functions R; and Ry were devised by Mitchell, Forrest and
Holland [18] to investigate GA’s performance with respect to schema process-
ing and recombination in an idealized form. Royal Road functions contain
tailor-made building blocks (schemas) based on 64-bit binary strings. They are
defined using a list of schemas. Each schema s; is given a coefficient ¢; which is
equal to its order o(s;) (a schema’s order is the number of fixed positions within
that schema). Ry consists of 8 disjunctive order-8 schemas of which each has
8 adjacent ones. R» consists of four levels of schemas: level 0 (bottom level)
is the same as Ry, level 1 has 4 order-16 schemas of which each combines two
adjacent schemas in level 0, level 2 contains 2 order-32 schemas each combining
two adjacent schemas in level 1, and finally level 3 (the optimal schema) com-
bines the 2 schemas in level 2. The fitness of a bit string z for R; (z) and Rz (x)
is computed by summing the coeflicients ¢; corresponding to each of the given
schema s; of which z is an instance. That is, R;(z) and R2(z) are defined as
follows:

=8 =14

where 0;(z) = {1,if z € s;;0,otherwise}. The optimal solutions for R; and R»
are given as: R;(111...1) = 64 and Ry(111...1) = 192.

4.3 The L-SAT Problem Generator

The random L-SAT problem generator devised by De Jong, Potter and Spears
[8] is a boolean satisfiability problem generator devised to investigate the ef-
fects of epistasis on the performance of GAs. It generates random boolean
expressions in conjunctive normal form of clauses subject to three parame-
ters v (number of boolean variables), ¢ (number of disjunctive or conjunctive
clauses) and ! (the length of the clauses). Each clause is created by selecting /

of v variables uniformly randomly and negating each variable with probability
0.5. For each generated boolean expression, the aim is to find an assignment of
truth values to the v variables that makes the entire expression true. Since the
boolean expression is randomly generated, there is no guarantee that such an
assignment exists. The difficulty and complexity of the problem varies with the
parameters v, ¢ and [. For example, increasing the number of clauses increases
the epistasis. The fitness function for the L-SAT problem is as follows:

f(chrom) = %Zc: f(clause;)
i=1

Where chrom consists of ¢ clauses and the fitness contribution of clause 4,
f(clause;), is 1 if the clause is satisfied or 0 otherwise.

In our experiments we will use the same parameters as in [8]. We fixed the
number of variables v to 100 and the length of the clauses [to 3. The number
of clauses ¢ was varied from 200 (low epistasis) to 1200 (medium epistasis) to
2400 (high epistasis).

4.4 Deceptive Functions

Deceptive functions are those functions where the low-order building blocks do
not combine to form higher-order building blocks: instead they form building
blocks resulting in a sub-optimal solution. Deceptive functions are developed as
difficult test functions for comparing different implementations of GAs. Gold-
berg, Korb and Deb [13] have devised an order-3 minimum fully deceptive
problem as follows:

£(000)
£(100)

28 £(001)
14 £(101)

26 £(010)
0 £(110)

22 £(011)
0 f(111)

0
30

where all the order-1 and order-2 building blocks (e.g., “0**” and “*00” where
the wildcard “*” matches both 0 and 1) in the search space are deceptive and
will lead the genetic search away from the global optimum “111” and toward
the deceptive local optimum “000” instead.

Based on an algorithm of constructing fully deceptive functions, Whitley
[25] has also developed an order-4 fully deceptive problem as follows:

£(0000) = 28 £(0001) = 26 £(0010) = 24 £(0011) = 18
£(0100) = 22 £(0101) = 16 £(0110) = 14 £(0111) =0
£(1000) = 20 £(1001) = 12 £(1010) = 10 £(1011) = 2
£(1100) = 8 £(1101) = 4 £(1110) = 6 £(1111) = 30

In this paper, we constructed two 60 bit deceptive functions: one contains
20 copies of Goldberg, Korb and Deb’s 3-bit fully deceptive subfunction (called
Deceptive Function DF}) and another contains 15 copies of Whitley’s 4-bit fully
deceptive subfunction (called Deceptive Function DF3). The optimal solutions
for DFy and DF; have a fitness of 600 and 450 respectively.

5 Experimental Study

5.1 Design of Experiment

In order to test SANUM, in this experimental study it is compared with tra-
ditional bit mutation with a series of recommended “standard” fixed proba-
bilities: 1/L by Miihlenbein [19], 0.01 by Grefenstette [11], 1.75/(N * L'/?)
by Bick [3], and 0.001 by De Jong [7]. Note that for L-SAT and One-Max
problems, 1/L = 0.01. For SANUM, the mutation probability py,(i,t) for each
locus ¢ (i = 1,...,L) varied adaptively with time (generation counter t) be-
tween Ppa; = 1/L and P, = 10~* according to equation (1). For each
experiment of combining different mutation (traditional bit flip mutation with
different mutation rate or SANUM) and test problem, 100 independent runs
were executed. In all the experiments, the fitness proportionate selection with
the stochastic universal sampling [2], 2-point crossover, and elitist model [7]
were used in the GA. The crossover probability was fixed to the typical value
of 0.6, and the population size was set to 100 for each run. In order to have a
strict comparison the same 100 different random seeds were used to generate
initial populations for the 100 runs of each experiment. For each run, the initial
population is randomly created using a technique that generates exactly equal
number of 0s and 1s for each locus!, that is, fi(i,0) = 0.5 for each locus i
(i =1,...,L) in the initial population. In this way the random sampling bias
in the initial population (for example for some locus j, f1(j,0) = 0.8 or 0.2)
that may mislead SANUM is cancelled.

For each run, the best-so-far fitness was recorded every 100 evaluations.
Here, only those chromosomes changed by crossover and mutation operations
were evaluated and counted into the number of evaluations. For each run, the
maximum allowable number of evaluations varies with the test problem and is
suitably set to let all the mutation operators have the chance to express their
power. Each experiment result was averaged over 100 independent runs.

5.2 Experimental Results

The experimental results on different test problems are shown in Figure 2 to
Figure 5 respectively. From these figures, the following observations can be
seen.

First, SANUM performs persistently well on the test problems. In fact,
SANUM performs better than traditional mutation operators with different
“standard” fixed rates on all the test problems except the deceptive functions
DF; and DF5. On the deceptive functions, SANUM is beaten by traditional
mutation operators with p, = 0.001 and p,, = 1.75/(N % L'/?). However,
it also performs better than bit mutation with p,, = 1/L and as well as bit
mutation with p,, = 0.01.

Second, p,, = 0.001 suggested by De Jong [7] seems to be a good choice for
bit mutation. It performs better than other fixed probabilities on most of the

11t is possible because the population size is set to an even number, 100.

100

% |

@ 0 |

C

2 &

¢ w

B w5l) |

4 SANUM ——

SR 1Y | UL BitMut |

| LTSI(N'LAL2) BitMut

65 0001 BitMut |
60 ‘ ‘ ‘

0 50 100 15 200
Evauations (x 100)

Figure 2: Experiment results with respect to best-so-far fitness against eval-
uations of GAs with different mutation operators on One-Max problem. The
data were averaged over 100 runs.

test problems. However, its performance is seriously the worst on royal road
functions R, and Rs. This happens because of its worst construction power
for building blocks. This example shows that the performance of traditional
bit mutation with fixed mutation probability heavily depends on the problem
fitness landscape.

Third, SANUM performs much better than traditional mutation operators
on royal road functions R; and Ry (see Figure 3). This is due to the strong
building blocks built in the royal road functions. During the early stage of
searching GAs with traditional bit mutation perform better than the GA with
SANUM. However, after certain evaluations, when some useful building blocks
has been built up the GA with SANUM greatly outperforms GAs with tra-
ditional bit mutation because SANUM efficiently avoids mutating those con-
verged loci where building blocks already found so far reside. Similar results
can be observed on L-SAT problems (see Figure 4) as on royal road func-
tions. The GA with SANUM is beaten by GAs with traditional bit mutation
with p,, = 0.001 and p,, = 1.75/(N % L'/?) during the early stage of searching.
However, after certain evaluations the GA with SANUM outperforms GAs with
traditional bit mutation.

Finally, as recognized by other researchers, the choice of mutation operators
and proper probabilities in genetic algorithms really has a significant effect on
the performance of genetic search. Hence, developing mutation operators that

SR

Best-So-Far Fithess
<] Py)

2]
o

SANUM ——
UL BitMut

0.01 Bit Mut
L75I(NLA(Y2)) Bit Mut

0001 BitMut -~

10

Evaluations(x 100)
(a)

0 100 200 30 40 50 600

Best-So-Far Fitness

190 |
160 |
wl S
201
100 |
0 T ANUM |
UL BitMut ———
60 0.01 Bit Mut -
LTSI(N*LA(L/2) Bit Mut
o 0.001BitMut —— |
ol
0100 0 30 40 50 60

Evaluations (x 100)

(b)

Figure 3: Experiment results with respect to best-so-far fitness against evalu-
ations of GAs with different mutation operators on Royal Road Functions (a)
R; and (b) Ry. The data were averaged over 100 runs.

600

580

520

Best-So-Far Fitness

460

560

50t

500 | |

480 |}

SANUM

1L Bit Mut

0.01 BitMut -~
L75/(N*LA(L/2)) Bit Mut
0.001 Bit Mut

50 100 150
Evaluations (x 100)

(a)

200

Best-So-Far Fitness

0 SANUM —— {
UL BitMut ——
0.0L Bit Mut

sl L75/(N*LA(1/2)) Bit Mut]

0.001 Bit Mut -

320 ‘ ‘ |

0 %0 00 150 200

Evaluations (x 100)

(b)

Figure 4: Experiment results with respect to best-so-far fitness against eval-
uations of GAs with different mutation operators on Deceptive Functions (a)
DF; and (b) DF,. The data were averaged over 100 runs.

096 | |

1
099 |
!
£ 09|
5
&
%
i
[ni]
095

097t

0.96
095 | G
é L N
2
£ om|
&
5 o
SANUM —— 0 SANUM ——
UL BitMut ———] J 1L BitMut ———
L75/(N*LA(1/2)) Bit Mut 091 |/ L75/(N*LA(1/2)) BitMut |
0.001 Bit Mut 0.001 Bit Mut
1 1 1 1 1 1 1 09 1 1 1 1 1
0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600
Evaluations(x 100) Evaluations (x 100)
(a) (b)
0.935
093 |
g 095
<
C o om;
5
4
g 0915}
i
o 09t SANUM —— 1
j UL Bit Mut
L[LTS(NFLAY2) Bit Mut -~ |
0.905 1, 0.001 Bit Mt
09 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800
Evaluations (x 100)
(c)

Figure 5: Experiment results with respect to best-so-far fitness against eval-
uations of GAs with different mutation operators on L-SAT problems with
v = 100, I = 3 and (a) low epistasis ¢ = 200, (b) medium epistasis ¢ = 1200,

and (c) high epistasis ¢ = 2400. The data were averaged over 100 runs.

can adjust the mutation probability adaptively with the problem fitness land-
scape and with the progress of genetic searching is really meaningful for improv-
ing GA’s performance. SANUM is obviously a good attempt to this direction.

6 Conclusions

In this paper a statistics-based adaptive non-uniform mutation, SANUM, is
proposed for genetic algorithms The motivation of SANUM is to make use
of the statistics information implicitly contained in the population explicitly
to guide the mutation operation. SANUM achieves this by using the allele
distribution in the current population to adjust the mutation probability for
each gene locus adaptively during the progress of the GA. Through decreasing
the mutation probabilities on those converged loci SANUM can save mutation
operations wasted on them.

The experimental results of this study demonstrate that the GA with SANUM
performs persistently well over a wide range of test problems while the perfor-
mance of GAs with traditional bit mutation with different fixed mutation prob-
abilities greatly depends on the problem under consideration. The experiment
results indicate that SANUM represents a robust adaptive mutation operator
that needs no prior knowledge about the problem fitness landscape and that it
is a good candidate mutation operator for GAs.

Since SANUM works at the bottom-level of mutation, it can be easily com-
bined with other adaptation techniques for mutation and can act as the basis
for analyzing and designing new related algorithms. In this study, a simple
triangular function is used to calculate the mutation probability for each lo-
cus. Other functions such as exponential functions instead may further improve
GA’s performance, which is one future work about SANUM. Comparing ob-
tained SANUM with other adaptation techniques for mutation is another future
work about SANUM.

References

[1] D. H. Ackley (1987). A Connectionist Machine for Genetic Hillclimbing.
Boston, MA: Kluwer Academic Publishers.

[2] J. E. Baker (1987). Reducing bias and inefficiency in the selection algo-
rithms. In J. J. Grefenstelle (ed.), Proc. 2nd Int. Conf. on Genetic Algo-
rithms, 14-21. Lawrence Erlbaum Associates.

[3] T. Back (1992). Self-Adaptation in Genetic Algorithms. In F. J. Varela
and P. Bourgine (eds.), Proc. of the 1st European Conf. on Artificial Life,
263-271. MIT Press.

[4] T. Béck (1997). Mutation Parameters. In T. Béck, D. B. Fogel, and Z.
Michalewicz (eds.), Handbook of Evolutionary Computation, E1.2.1-E1.2.7.
Oxford University Press.

[5] D. Corne, P. Ross and H.-L. Fang (1994). GA Research Note 7: Fast Prac-
tical Evolutionary Timetabling. Technical Report, Department of Artificial
Intelligence, University of Edinburgh, UK.

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

L. Davis (1989). Adapting operator probabilities in genetic algorithms. In
D. Schaffer (ed.), Proc. of the 8rd Int. Conf. on Genetic Algorithms, 60-69.
San Mateo CA: Morgan Kaufmann Publishers.

K. A. De Jong (1975). An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD Thesis, Department of Computer and Communi-
cation Sciences, University of Michigan, Ann Abor.

K. A. De Jong, M. A. Potter and W. M. Spears (1997). Using problem
generators to explore the effects of epistasis. In T. Béack (ed.), Proc. of the
Tth Int. Conf. on Genetic Algorithms, 338-345. San Mateo, CA: Morgan
Kaufmann Publishers.

A. E. Eiben, R. Hinterding and Z. Michalewicz (1999). Parameter control
in evolutionary algorithms. IEEE Trans. on Evolutionary Computation
3(2):124-141.

T. C. Fogarty (1989). Varying the Probability of Mutation in the Genetic
Algorithm. In J. D. Schaffer (ed.), Proc. of the 3rd Int. Conf. on Genetic
Algorithms, 104-109. San Mateo, CA: Morgan Kaufmann Publishers.

J. J. Grefenstette (1986). Optimization of Control Parameters for Genetic
Algorithms. IEEE Trans. on Systems, Man and Cybernetics, 16(1): 122-
128.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley.

D. E. Goldberg, B. Korb and K. Deb (1989). Messy Genetic Algorithms:
Motivation, Analysis, and First Results. Complex Systems, 4: 415-444.

J. Hesser and R. Méanner (1991). Towards an Optimal Mutation Probabil-
ity in Genetic Algorithms. In H.-P. Schwefel, R. Manner (eds.), Proc. of
the 1st Conf. on Parallel Problem Solving from Nature, 23-32.

J. H. Holland (1975). Adaptation in Natural and Artificial Systems. Ann
Arbor, University of Michigan Press.

B. Julstrom (1995). What have you done for me lately? adapting operator
probabilities in a steady-state genetic algorithm. In L. J. Eshelman (ed.),
Proc. of the 6th Int. Conf. on Genetic Algorithms, 81-87. San Mateo, CA:
Morgan Kaufmann Publishers.

J. Levenick (1995). Metabits: Genetic Endogenous Crossover Control. In
L. J. Eshelman (ed.), Proc. of the 6th Int. Conf. on Genetic Algorithms,
88-95. San Mateo, CA: Morgan Kaufmann Publishers.

M. Mitchell, S. Forrest and J. H. Holland (1992). The Royal Road for
Genetic Algorithms: Fitness Landscapes and GA Performance. In F. J.

Varela and P. Bourgine (eds.), Proc. of the 1st European Conference on
Artificial Life, 245-254. Cambridge, MA: MIT Press.

[19] H. Miihlenbein (1992). How Genetic Algorithms Really Work: I. Mutation
and Hillclimbing. In R. Manner and B. Manderick (eds.), Proc. of the 2nd
Conf. on Parallel Problem Solving from Nature, 15-29.

[20] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das (1989). A
Study of Control Parameters Affecting Online Performance of Genetic Al-
gorithms for Function Optimization. In J. D. Schaffer (ed.), Proc. of the
3rd Int. Conf. on Genetic Algorithms, 51-60. San Mateo, CA: Morgan
Kaufmann Publishers.

[21] H-P. Schwefel (1981). Numerical Optimization of Computer Models. Wiley,
Chichester.

[22] J. E. Smith and T. C. Fogarty (1996). Self-adaptation of Mutation Rates
in a Steady-State Genetic Algorithm. In Proc. of the 8rd IEEE Conf. on
Evolutionary Computation, 318-323. IEEE Press.

[23] W. Spears (1992). Crossover or Mutation. In L. D. Whitley (ed.), Founda-
tions of Genetic Algorithms 2. San Mateo, CA: Morgan Kaufmann Pub-
lishers.

[24] A. Tuson and P. Ross (1998). Adapting Operator Settings in Genetic Al-
gorithms. Evolutionary Computation, 6(2): 161-184.

[25] L. D. Whitley (1991). Fundamental Principles of Deception in Genetic
Search. In G. J. E. Rawlins (ed.), Foundations of Genetic Algorithms 1,
221-241. San Mateo, CA: Morgan Kaufmann Publishers.

