
5

Genetic Algorithms with Self-Organizing

Behaviour in Dynamic Environments

Renato Tinós1 and Shengxiang Yang2

1 Departamento de F́ısica e Matemática, FFCLRP, Universidade de São Paulo
(USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
rtinos@ffclrp.usp.br

2 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
s.yang@mcs.le.ac.uk

Summary. In recent years, researchers from the genetic algorithm (GA) commu-
nity have developed several approaches to enhance the performance of traditional
GAs for dynamic optimization problems (DOPs). Among these approaches, one
technique is to maintain the diversity of the population by inserting random im-
migrants into the population. This chapter investigates a self-organizing random
immigrants scheme for GAs to address DOPs, where the worst individual and its
next neighbours are replaced by random immigrants. In order to protect the newly
introduced immigrants from being replaced by fitter individuals, they are placed in
a subpopulation. In this way, individuals start to interact between themselves and,
when the fitness of the individuals are close, one single replacement of an individ-
ual can affect a large number of individuals of the population in a chain reaction.
The individuals in a subpopulation are not allowed to be replaced by individuals of
the main population during the current chain reaction. The number of individuals
in the subpopulation is given by the number of individuals created in the current
chain reaction. It is important to observe that this simple approach can take the
system to a self-organization behaviour, which can be useful for GAs in dynamic
environments.

5.1 Introduction

A significant part of optimization problems in real world is dynamic optimiza-
tion problems (DOPs), where the evaluation function and the constraints of
the problem are not fixed [24]. When changes occur in the problem, the so-
lution given by the optimization procedure may be no longer effective, and a
new solution should be found [4]. The optimization problem may change for
several factors, like faults, machine degradation, environmental or climatic
modifications, and economic factors. In fact, the natural evolution, which is
the inspiration for genetic algorithms (GAs) , is always dynamic. The occur-
rence of natural cataclysms, geological modifications, competition for natural

106 Renato Tinós and Shengxiang Yang

resources, coevolution between species, and climatic modifications are only a
few examples of changes related to natural evolution.

The simplest approach to deal with DOPs is to start a new optimization
process whenever a change in the problem is noticed. However, the optimiza-
tion process generally requires time and substantial computational effort. If
the new solution after the change in the problem is, in some sense, related to
the previous solution, the knowledge obtained during the search for the old
solution can be utilized to find the new solution [16]. In this case, the search
for new solutions based on the old solutions can save substantial processing
time. Evolutionary algorithms are particularly attractive to such problems as
individuals representing solutions of the problem before the changes can be
transferred into the new optimization process.

However, in GAs, the population of solutions generally converges in the
fitness landscape to points close to the best individual of the population. If
the fitness landscape abruptly changes, the actual population can be trapped
in local optima located close to the old solution. In fact, the premature con-
vergence of the solution to a local optima is not a problem exclusive to DOPs,
but it can be a serious problem in stationary optimization problems too [20].
In order to avoid the premature convergence, several approaches where the
diversity level is re-introduced or maintained throughout the run have ap-
peared in literature over the past years (see the surveys [4, 16, 24]). Typical
examples of such approaches are the random immigrants GA (RIGA) [14],
the sharing or crowding mechanisms [5], the variable local search [25], the
thermodynamical genetic algorithm [21], and the use of hypermutation [6].

RIGA, which is inspired by the flux of immigrants that wander in and
out of a population between two generations in nature, is very interesting
and simple [7, 14]. In RIGA, some individuals of the current population are
replaced by randomly generated individuals in each generation of the run.
A replacement strategy, like replacing random or worst individuals of the
population, defines which individuals are replaced by the immigrants. The
RIGA tries to maintain the diversity level of the population, which can be very
useful to prepare the population for possible fitness landscape changes [7].

However, in some cases, when the number of genes in the individual is
high and the local optimum where the population is found has fitness much
higher than the mean fitness of all possible solutions of the search space, the
survival probability of the new random individuals is generally very small. This
occurs because the selection methods employed in GAs preserve, directly or
indirectly, the best individuals of the population, and the probability that the
fitness of the new random individuals is higher than (or close to) the fitness
of the current individuals is generally small.

In this work, instead of substituting the worst individuals or the random
individuals in each generation like in the standard RIGA, the worst individual
and its next neighbours are replaced. In order to protect the newly introduced
immigrants from being replaced by fitter individuals, they are placed in a
subpopulation. In this way, individuals start to interact between themselves

5 GAs with Self-Organizing Behaviour in Dynamic Environments 107

and, when the fitness of the individuals are close, as in the case where the
diversity level is low, one single replacement of an individual can affect a large
number of individuals of the population in a chain reaction. The individuals
in the subpopulation are not allowed to be replaced by individuals of the main
population during the current chain reaction. The number of individuals in
the subpopulation is not defined by the programmer, but is given by the
number of individuals created in the current chain reaction. It is important to
observe that this simple approach can take the system to a self-organization
behaviour, which can be useful in DOPs.

The experimental results suggest that the proposed GA presents a kind of
self-organizing behaviour, known as self-organized criticality (SOC) [1], which
is described in Section 5.2. The proposed GA is presented in Section 5.3, and
the experimental results are presented in Section 5.4. In Section 5.4.3, the
proposed GA and the experimental results are analyzed. Finally, Section 5.5
concludes the work with discussions on relevant future work.

5.2 Self-Organized Criticality

Systems consisting of several interacting constituents may present an interest-
ing kind of self-organizing behaviour known as SOC [2], [15]. Researchers have
suggested that several phenomena exhibit SOC, like sand piles, earthquakes,
forest fires, electric breakdowns, and growing interfaces [1].

An interesting behaviour appears in systems exhibiting SOC: they self-
organize into a particular critical state without the need of any significant
tuning action from outside. The critical state is described by the response of a
system to external perturbation. In a system exhibiting noncritical behaviour,
the distribution of responses to perturbation at different positions and at
different times is narrow and well described by an averaged value. In a system
exhibiting critical behaviour, no single characteristic response exists, i.e., the
system exhibits scale invariance. A small perturbation in one given location
of the system may generate a small effect on its neighbourhood or a chain
reaction that affects all the constituents of the system.

The statistical distributions describing the response of the system exhibit-
ing SOC are given by power laws in the form

P (s) ∼ s−τ (5.1)

and
P (d) ∼ d−α, (5.2)

where s is the number of constituents of the system affected by the pertur-
bation, d is the duration of the chain reaction (lifetime), and τ and α are
constants. The sand pile model described in [2], where a single grain is added
at a random position in every interval of time ∆t is an example of a system
exhibiting SOC. In order to characterize the response of the sand pile model,

108 Renato Tinós and Shengxiang Yang

one can measure the number of sand grains (s) involved in each avalanche in-
duced by the addition of a single grain and the duration (d) of each avalanche.
In the critical state, the statistical distributions describing the response of the
system to the addition of a single grain are given by Eqs. 5.1 and 5.2, and the
addition of a single grain can affect only a grain in its neighbourhood or can
affect the whole sand pile.

Bak has suggested that SOC occurs in natural evolution too [1]. An evi-
dence of SOC in evolution would be the fact that it does take place through
bursts of activity intercalated by calm periods, instead of gradually at a slow
and constant pace [13]. There are many more small extinction events than
large events, such as the Cretaceous extinction of dinosaurs and many other
species, and extinction events occur on a large variety of length scales [23].
Bak has suggested that extinctions propagate through ecosystems, such as
avalanches in a sand pile, and perturbations of the same size can unleash
extinction events of a large variety of sizes [1]. In such hypothesis, species
coevolve to a critical state [17].

A very simple simulation model to study the connection between evolu-
tion and SOC was proposed by Bak and Sneppen [1]. In the one-dimensional
version of the model, the individuals (or species in the authors’ terminology)
are placed in a circle, and a random value of fitness is assigned to each one of
them. In each generation of the simulation, the values of fitness of the individ-
ual with the lowest fitness in the current population, one individual located
in its right position, and one located in its left position are replaced by new
random values. An analogy of the connection between neighbours in this sim-
ple model is the interaction between species in nature: if a prey is extinct, the
fitness of its predators will change. The Bak-Sneppen Model is summarized
in Fig. 5.1.

begin

Find the index j of the individual with the lowest fitness
Replace the fitness of the individuals with index j, j − 1, and j + 1 by random
values drawn with uniform density

end

Fig. 5.1. The Bak-Sneppen model

The Bak-Sneppen model presents an interesting behaviour. In the begin-
ning of the simulation, the mean fitness of the population is low, but, as the
number of generation increases, the mean fitness increases too. Eventually, the
mean fitness ceases to increase, and the critical state is reached. In the Bak-
Sneppen Model, a replacement of the fitness of the worst individual causes
the replacement of its two next neighbours. In the critical state, the values
of fitness of the neighbours are very often replaced by random numbers with

5 GAs with Self-Organizing Behaviour in Dynamic Environments 109

smaller values. The new worst individual can be then one of these two neigh-
bours, which are replaced with its two next neighbours, originating a chain
reaction, called replacement event in this work, that can affect all the individ-
uals of the population. The replacement events exhibit scale invariance and
their statistical distributions are given by power laws in the form of Eqs. 5.1
and 5.2. Large replacement events generally occur when almost all individuals
of the population have similar high values of fitness.

It is important to observe that SOC avoids the situation where the species
get trapped in local optima in the fitness landscape in the Bak-Sneppen evolu-
tion model. The idea is interesting and relatively simple, and soon researchers
proposed the use of SOC in optimization processes. Boettcher and Percus [3]
proposed the optimization with extremal dynamics, a local-search heuristic for
finding solutions in problems where constituents of the system are connected,
e.g., the spin glass optimization problem. Løvbjerg and Krink [19] extended
Particle Swarm Optimization with SOC in order to improve the optimization
process and to maintain the diversity level.

In GAs, Krink and Thomsen [18] proposed the use of the sand pile model
previously discussed to generate power laws to be utilized to control the size of
spatial replacement zones in a diffusion model. When an individual is extinct,
a mutated version of the best individual of the population is created in its
place. It is important to observe that, in the algorithm proposed in [18], SOC
appears in the sand pile model utilized to control the size of the replacements,
and not as a result of the self-organization of the constituents of the system
(individuals of the GA).

5.3 Random Immigrants Genetic Algorithm with

Self-Organizing Behaviour

In the standard RIGA, randomly chosen individuals of the current popula-
tion Pt are replaced by randomly generated individuals. A replacement rate
specifies the number of individuals replaced in each generation. The standard
RIGA can be summarized in Fig. 5.2, which differs from the generational
standard GA (SGA) only by the inclusion of the procedure “replace(Pt)”,
where randomly chosen individuals of the current population are replaced by
randomly generated individuals.

In this work, we propose the replacement of the individual with the lowest
fitness of the current population and its two next neighbours for new randomly
generated individuals in RIGA. The indices of the individuals are used to
determine the neighboring relations. In each generation of the algorithm, the
individual with the lowest fitness in the current population (index j), one
individual located in its right position (index j + 1), and one located in its
left position (index j − 1) are replaced by new random individuals. One can
observe that, as the proposed GA is not spatially distributed, the neighbouring
relations are random.

110 Renato Tinós and Shengxiang Yang

Require: N : population size; pc: crossover rate; pm: mutation rate
begin

t← 1
initialize(Pt,N)
evaluate(Pt)
while (stop criteria are not satisfied) do

Pt ← replace(Pt)
for i = 1 to N do

Pt+1(i)← selection(Pt,i)
end for

crossover(Pt+1,pc)
mutation(Pt+1,pm)
evaluate(Pt+1)
t← t + 1

end while

end

Fig. 5.2. The random immigrants genetic algorithm (RIGA)

A second strategy is still adopted, where the new immigrants created dur-
ing the current chain reaction (called replacement event in this work), which
occurs along the generations, are preserved in a subpopulation. The size of
this subpopulation is not defined by the programmer, but is given by the num-
ber of individuals created in the current replacement event. The individuals
in the current population that do not belong to the subpopulation are not
allowed to replace individuals present in the subpopulation. The individuals
that belong to the subpopulation are allowed to evolve, i.e., they are sub-
mitted to selection, crossover, and mutation. It is important to observe that
selection and crossover are allowed only among individuals that belong to the
subpopulation.

We hope that, with such strategies, the system can exhibit SOC in order
to increase the diversity level of the population in a self-organized way and,
then, to avoid the situation where the individuals get trapped in local optima
in the fitness landscape when the problem changes.

In the proposed self-organizing random immigrants GA (SORIGA), there
are two major modifications from the standard RIGA. In the first modifica-
tion, the procedure “replace(Pt)” is modified as presented in Fig. 5.3. The
current size (or duration) of each replacement event, i.e., the number of times
that we replace the worst individual and its neighbours in the current replace-
ment event, is recorded and denoted by d, and the minimum and maximum
index values of the replaced individuals (imin − 1 and imax + 1) are employed
to compute the number of individuals affected by the current replacement
event. The number of individuals in the subpopulation, i.e., the size of sub-
population, equals to (imax+1)−(imin−1) = imax−imin+2. When the chain

5 GAs with Self-Organizing Behaviour in Dynamic Environments 111

reaction ceases, i.e., the individual with the lowest fitness does not belong to
the subpopulation, the size of the replacement is set to 1.

Procedure replace(Pt)
begin

Find the index j of the individual with the lowest fitness
Replace the individuals of Pt with indices j, j − 1, and j + 1 by randomly gene-
rated individuals
if (imin − 1 ≤ j ≤ imax + 1) then

d← d + 1
if (j = imin − 1) then

imin ← j

end if

if (j = imax + 1) then

imax ← j

end if

else

d← 1
imin ← j

imax ← j

end if

end

Fig. 5.3. The replace approach

Procedure selection(Pt, i)
begin

if (i < imin − 1) or (i > imax + 1) then

Select an individual from Pt

else

Select an individual from the subset of individuals of Pt with index in [imin−

1, imax + 1]
end if

end

Fig. 5.4. The selection approach

The second modification, which is presented in Fig. 5.4, lies in the selection
approach for each individual in the population. Two cases can occur. If the
index of the new individual was not affected by the current replacement event,
the new individual is selected according to the standard approach. Otherwise,
i.e., if the index was affected by the current replacement, the new individual

112 Renato Tinós and Shengxiang Yang

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

1 2 3 4 5 6 7 8 9 10
0

0.5

1

fit
ne

ss

individual

j i
max

+1i
min

−1

d=1

t=12

t=13

d=2

i
max

+1ji
min

−1

t=14

d=3

i
max

+1ji
min

−1

Fig. 5.5. Fitness of the individuals of the current population at generations 12, 13,
and 14 in a run of the SORIGA on the example problem

is selected from the subpopulation that consists of the individuals replaced in
the current replacement event (individuals with index values from imin − 1 to
imax + 1).

In order to illustrate its working, SORIGA is applied to a simple problem
where the fitness function is defined as

f(x) =
u(x)

l
, (5.3)

where u(x) is the unitation function of a binary vector (individual) x of length
l, which returns the number of ones in vector x. The individuals, which are
randomly generated in the first generation, are selected according to elitism
and the roulette wheel method. Mutation with rate pm = 0.01 and two-point
crossover with rate pc = 0.7 are employed. The number of individuals in the
population is equal to 10 and l = 20. Fig. 5.5 presents the first three steps of an
replacement event in a run of SORIGA on this example. The figure shows the
fitness of all individuals in the current population in generations 12, 13, and 14
respectively. In generation 12, the individual with index 5 (index j in Fig. 5.3)
has the lowest fitness in the population. In this way, individual with index 5
and its two next neighbours (individuals with indices 4 and 6) are replaced by
randomly generated individuals. In the next generation, the individual with
index j = 4 has now the lowest fitness, and it together with its two next

5 GAs with Self-Organizing Behaviour in Dynamic Environments 113

neighbours (individuals with indices 3 and 5) are then replaced. In generation
14, the individual with index j = 3 has the lowest fitness. It can be observed
that the chain reaction is propagated because the remaining individuals have
fitness values higher than the individuals in the subpopulation defined by the
limits imin − 1 and imax + 1 (see Fig. 5.3 and Fig. 5.4). The individuals that
do not belong to this subpopulation are not allowed to replace an individual
of this subpopulation.

5.4 Experimental Study

In order to evaluate the performance of proposed SORIGA, two sets of ex-
periments are carried out. In the first set of experiments, the dynamic test
environment for GAs proposed by Yang [26] is employed (Subsection 5.4.1). In
the second set of experiments, evolutionary robots are simulated in dynamic
environments (Subsection 5.4.2). In the experiments, SORIGA is compared
to SGA, and two versions of RIGA. In the first version, denoted RIGA1,
three individuals randomly chosen from the current population are replaced
by randomly generated individuals in each generation. In the second version,
denoted RIGA2, the three worst individuals, i.e., the individuals with the
lowest fitness, are replaced by randomly generated individuals. The analysis
of the results is presented in Subsection 5.4.3.

5.4.1 Dynamic Test Environment

In order to evaluate the performance of different GAs in DOPs, Yang [26]
proposed a dynamic environment generator based on unitation and trap func-
tions. A trap function is defined as follows

f(x) =

{

a

z
(z − u(x)), if u(x) ≤ z

b

l−z
(u(x) − z), otherwise,

(5.4)

where u(x) is the unitation function of a binary vector x of length l, a is
the local and possibly deceptive optimum, b is the global optimum, and z
is the slope-change location which separates the attraction basin sizes of the
two optima. A trap function can be a deceptive function for GAs, i.e., a
function where there exist low-order schemata that, instead of combining to
form high-order schemata, forms schemata resulting in a deceptive solution
that is sub-optimal [11]. A trap function is deceptive on average if the ratio of
the fitness of the local optimum to that of the global optimum is constrained
by the following relation [9]

r =
a

b
≥

2 − 1/(l − z)

2 − 1/z
(5.5)

114 Renato Tinós and Shengxiang Yang

Deception is not the only element that can generate difficulty to a GA.
The problem difficulty can also be caused by exogenous noise and scaling.
The scaling problem arises in functions that consist of several schemata with
different worth to the solution [12]. A scaling problem can be simulated using
additively decomposable functions as follows

f(x) =
m

∑

i=1

ci fi(xIi
), (5.6)

where m is the number of schemata that are juxtaposed and summed together,
Ii is the set of the fixed bit positions that form schema i, and ci is the scaling
factor for each sub-function fi.

z l
iu(

Ii
)x

f(
Ii
)x

b

0

A
min

A
max

non−deceptive

deceptive

Fig. 5.6. Illustration of the trap function f(x). The global optimum changes be-
tween b and Amax in every δt generations.

Employing Eqs. 5.4 and 5.6, it is possible to create different dynamic envi-
ronments where the problem difficulty can be adjusted. In this work, dynamic
environments where the deception difficulty is modified by changing the peak
heights of optima are employed [26]. In these dynamic environments, the fit-
ness of an individual x is given by additively decomposable trap functions
defined as follows

f(x) =

m
∑

i=1

ci fi(xIi
, t) (5.7)

f(xIi
, t) =







ai(t)
zi

(zi − u(xIi
)), if u(xIi

) ≤ zi

bi

li−zi

(u(xIi
) − zi), otherwise,

(5.8)

5 GAs with Self-Organizing Behaviour in Dynamic Environments 115

where i = 1, . . . , m, xT = [xT
I1

. . . xT
Im

], xIi
= [x(i−1)li+1 · · ·x(i−1)li+li

]T,

bi = b=1.0, zi = z, the scaling is given by ci = 2i−1, and ai switches between
Amin > 0 and Amax > bi in every δt generations. The parameter Amin is
constrained by Eq. 5.5. That is, it is chosen in order that the trap functions are
deceptive on average. In this way, in every δt generations, the global optimum
changes between b and ai = Amax, and the problem changes between deceptive
and non-deceptive (Fig. 5.6).

Three dynamic environments are generated as the test bed for all GAs
in this work. In the first (Environment 1), l = 36, z = 5, m = 6, li=6,
Amin = 0.6, and Amax = 1.4. In the second (Environment 2), l = 36, z = 4,
m = 6, li=6, Amin = 0.9, and Amax = 1.9. In the third (Environment 3),
l = 45, z = 4, m = 9, li=5, Amin = 0.6, and Amax = 1.4.

Experimental Design

For each run of an algorithm in a dynamic environment, the individuals of the
initial population are randomly chosen. The individuals are selected in each
generation according to elitism and the roulette wheel method. Mutation with
rate pm and two-point crossover with rate pc are utilized. Nine experiments
with different parameters are presented in this section. Table 5.1 presents the
parameters utilized in each experiment.

Table 5.1. Experimental Setttings - Dynamic Test Environments

Experiment Environment Population Size pm pc δt

1a 1 100 0.01 0.7 5000
1b 1 20 0.01 0.7 5000
1c 1 300 0.01 0.7 5000
1d 1 100 0.001 0.7 5000
1e 1 100 0.05 0.7 5000
1f 1 100 0.01 0.2 5000
1g 1 300 0.01 0.7 10000
2 2 100 0.01 0.7 5000
3 3 100 0.01 0.7 5000

The comparison of the results obtained by different algorithms on DOPs
is more complex than the same comparison on stationary problems [24]. For
DOPs, it is necessary to evaluate not the final result, but rather the opti-
mization process itself. Here, the measure adaptability, proposed in [24] and
based on a measure proposed by De Jong [8], is utilized to evaluate the GAs.
Adaptability is computed as the difference, averaged over the entire run, be-
tween the fitness of the current best individual of each generation and the
corresponding optimum value. The best results for the adaptability measure
are those with the smallest values.

116 Renato Tinós and Shengxiang Yang

Table 5.2. Adaptability - Dynamic Test Environments

Experiment SGA RIGA1 RIGA2 SORIGA

1a 0.1882 (15.68%) 0.0177 (1.47%) 0.0217 (1.81%) 0.0086 (0.72%)
1b 0.1996 (16.63%) 0.0267 (2.22%) 0.0325 (2.71%) 0.0173 (1.44%)
1c 0.1622 (13.52%) 0.0137 (1.15%) 0.0132 (1.10%) 0.0068 (0.57%)
1d 0.2001 (16.67%) 0.0198 (1.65%) 0.0263 (2.19%) 0.0106 (0.88%)
1e 0.0368 (3.07%) 0.0071 (0.59%) 0.0076 (0.63%) 0.0064 (0.54%)
1f 0.1924 (16.03%) 0.0370 (3.08%) 0.0414 (3.46%) 0.0200 (1.67%)
1g 0.1491 (12.42%) 0.0071 (0.59%) 0.0073 (0.61%) 0.0036 (0.30%)
2 0.1956 (13.49%) 0.0143 (0.98%) 0.0166 (1.15%) 0.0084 (0.58%)
3 0.1655 (13.79%) 0.0090 (0.75%) 0.0104 (0.87%) 0.0052 (0.43%)

Table 5.3. Mean Fitness of the Population - Dynamic Test Environments

Experiment SGA RIGA1 RIGA2 SORIGA

1a 0.9286 1.0559 1.0755 1.0174
1b 0.9610 1.0340 1.0796 0.8730
1c 0.9198 1.0480 1.0569 1.0368
1d 0.9891 1.1356 1.1534 1.0865
1e 0.8590 0.8614 0.8729 0.8342
1f 0.9263 1.0566 1.0694 1.0330
1g 0.9323 1.0544 1.0631 1.0405
2 1.1519 1.2914 1.3199 1.2360
3 0.9503 1.0726 1.0930 1.0321

Experimental Results

Tables 5.2 and 5.3 respectively present the experimental results regarding
the adaptability and the mean fitness of all individuals of the population
averaged over 20 trials, each one with a different random seed. In Table 5.2, the
percentage inside the parentheses indicates the adaptability over the optimum
fitness values.

Hypothesis tests, considering the Student’s t-distribution, indicate that
the measure adaptability is smaller for SORIGA with a level of significance
equal to 0.01 in all experiments except Experiment 1e, where the level of
significance equals 0.095.

Fig. 5.7 shows the fitness of the best individuals averaged over the 20 trials
for SGA and SORIGA in Experiment 1a.

5.4.2 Evolutionary Robotics

Robots in which artificial evolution is used as a fundamental form of adapta-
tion or design are known as evolutionary robots [22]. In the experiments pre-
sented in this section, mobile robots are simulated in DOPs using a modified
version of the Evorobot simulator developed by S. Nolfi [22]. In the simulator

5 GAs with Self-Organizing Behaviour in Dynamic Environments 117

0.5 1 1.5 2 2.5 3

x 10
4

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

generation

fitn
es

s

Fig. 5.7. Averaged fitness of the best individual in Experiment 1a (dynamic test
environment). The solid and dashed lines represents the results for SORIGA and
SGA respectively.

utilized in the experiments presented in this section, the robots are controlled
by a recurrent artificial neural network (Elman Network). GAs have been
employed to perform several tasks in artificial neural networks (ANNs), such
as architecture design, synaptic weight adjustment, learning rule adaptation,
and synaptic weight initialization [27]. In the experiments presented here, the
synaptic weights of the ANN used to control the robot are adjusted by GAs.

Two evolutionary robot experiments are presented in this section. The
two experiments are inspired by the experiment proposed by Floreano and
Mondada [10], where a Khepera robot with eight infrared distance sensors
(six sensors in one side and two in another side of the robot), two ambient
light sensors, and one floor brightness sensor navigates in an arena. The robot
has a measurable limited energy, which is recharged every time the robot
crosses a battery recharge area. The battery recharge area is indicated by a
different color of the floor and by a light source mounted in a tower inside the
area.

Experimental Design

In the experiments presented in this section, the fitness function is given
by the accumulated averaged rotation speed of the two wheels of the robot
during its life time, i.e., while the battery has energy and while the robot
does not crash into a wall or an obstacle, considering a maximum limit of
60 seconds. A fully charged battery allows the robot to move for 20 seconds.
The fitness is not computed while the robot remains in the battery recharge
area. Although the fitness function does not specify that the robot should

118 Renato Tinós and Shengxiang Yang

return to the battery recharge area, the individuals that develop the ability
to find it and periodically return to it while exploring the arena without hitting
the obstacles accumulate more fitness. The neural network utilized to control
the robots has 17 inputs (8 infrared sensors, 2 ambient light sensors, 1 floor
brightness sensor, 1 sensor for the battery energy, and 5 recurrent units), 5
hidden neurons, and 2 outputs (2 motors).

Two experiments with 2000 generations each are presented in this section.
In the first experiment (Experiment 4), the environment where the robot is
evolving is changed after 1000 generations. Environment changes frequently
occur in real problems, where some aspects of the environment are frequently
modified. Besides, robots are frequently evolved in simulations to avoid dam-
age, and, when a satisfactory behaviour is reached, the neural networks em-
ployed to control the simulated robot are transferred to the real ones. In the
experiments, the robot evolves in an arena of 40cm × 45cm free of obstacles
during the first 1000 generations, and in an arena of 60cm × 35cm with four
cylindrical obstacles during the last 1000 generations.

In the second experiment (Experiment 5), the robot is affected by a failure
after 1000 generations. The responses of the six infrared sensors located in
one side of the robot are set to zero when it is affected by this failure. We
are interested in investigating the reconfiguration of the robot after an abrupt
failure. The robot should evolve in an arena of 60cm × 35 cm with three
cylindrical obstacles.

In the runs, the individuals of the initial population are randomly chosen.
The evolving robot always starts in a fixed position on the environment, but
with a random initial orientation. The individuals are represented by a vector
of real values corresponding to the synaptic weights of the ANN. In each
generation of the GAs, the 20 best individuals are selected and each one
generates 5 children (N = 100). In both experiments, pm = 0.01 and crossover
is not utilized.

Experimental Results

Table 5.4 presents the experimental results with respect to the adaptability
(supposing a maximum fitness equal to 1.0), the mean fitness of all individuals
of the population, and the fitness of the best individual after 2000 generations
averaged over 20 trials, each one with a diffente random seed, which indicates
the performance of the robot after the change in the problem. For most of
the times, a new solution is found, which allows the robot to navigate in the
environment and to return to the battery recharge area only when the battery
level is low. When the problem changes, the fitness values of the robot become
small, and a new solution is searched.

Hypothesis tests, considering the Student’s t-distribution, indicate that
the fitness of the best individual after 2000 generations is higher for SORIGA
in Experiment 4 with the level of significance equal to 0.04, 0.1, and 0.28
when compared to SGA, RIGA1, and RIGA2 respectively. In Experiment 5,

5 GAs with Self-Organizing Behaviour in Dynamic Environments 119

Table 5.4. Experimental Results - Evolutionary Robotics

Measure Algorithm Experiment 4 Experiment 5
(environment changing) (failure reconfiguration)

SGA 0.3614 (36.14%) 0.6002 (60.02%)
Adaptability RIGA1 0.3508 (35.08%) 0.5201 (52.01%)

RIGA2 0.3129 (31.29%) 0.6268 (62.68%)
SORIGA 0.3022 (30.22%) 0.5191 (51.91%)

SGA 0.2991 0.1861
Mean Fitness RIGA1 0.3406 0.2317

RIGA2 0.3540 0.1837
SORIGA 0.3484 0.2301

Fitness of the SGA 0.6380 0.2840
best individual RIGA1 0.6690 0.3880

(end of the RIGA2 0.7270 0.3590
simulation) SORIGA 0.7550 0.4410

200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

generation

fit
ne

ss

SGA
RIGA 1
RIGA 2
SORIGA

Fig. 5.8. Averaged fitness of the best individual in Experiment 4 (evolutionary
robots)

the fitness of the best individual after 2000 generations is higher for SORIGA
with the level of significance equal to 0.1, 0.34, and 0.25 when respectively
compared to SGA, RIGA1, and RIGA2.

Figure 5.8 and Figure 5.9 show the averaged fitness for all GAs in Exper-
iment 4 and Experiment 5 respectively.

120 Renato Tinós and Shengxiang Yang

200 400 600 800 1000 1200 1400 1600 1800 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

generation

fit
ne

ss
SGA
RIGA 1
RIGA 2
SORIGA

Fig. 5.9. Averaged fitness of the best individual in Experiment 5 (evolutionary
robots)

5.4.3 Analysis of the Results

In the experiments presented in Section 5.4.1, the values of adaptability for the
three GAs with random immigrants are smaller than the values for SGA, i.e.,
the averaged fitness of the best individuals is higher for the GAs with random
immigrants. These results can be explained by the fact that it is difficult for
the SGA to escape from the local optima induced by the deceptive problem
and by changing the global optima. However, random immigrants inserted in
every generation provide diversity to the populations of the last three GAs,
which explains their better results.

Let us now analyze the results of the three GAs with random immigrants.
First, let us investigate how the proposed SORIGA works. In the beginning of
the experiments, the individuals of the initial populations generally have low
fitness. In SORIGA, the new individuals that replace the individual with the
lowest fitness and its neighbours generally have low fitness too. Since several
individuals in the population have low fitness, the probability that one of the
neighbours of the current worst individual becomes the new worst is small.
As a consequence, a single replacement of an individual generally does not
generate large chain reactions of replacements. That is, the distribution of the
duration of replacement events is narrow and well described by a small aver-
age value. As the number of generations increases, the mean fitness increases
too. In this situation, several individuals of the current population have fitness

5 GAs with Self-Organizing Behaviour in Dynamic Environments 121

values higher than the average fitness of the new random individuals. Then,
the probability that one of the two neighbours of the old worst individual,
which were replaced in the last generation, becomes the new worst individ-
ual increases. When this new worst individual is replaced with its two next
neighbours, a chain reaction can be developed and the replacement events can
have, then, a large variety of sizes. In this case, the replacement events can
not be characterized by a narrow distribution.

The better results of SORIGA over other RIGA in the experiments pre-
sented here can be explained by two major factors. First, the number of differ-
ent individuals that are replaced in a fixed period of generations is generally
large for SORIGA. In the RIGA where the worst individuals are replaced, it is
common that new individuals replace individuals with the same index in next
generation, because the new individuals usually have small fitness values. In
this way, the number of different individuals that are replaced in a fixed pe-
riod of generations is usually smaller in comparison with SORIGA, and hence
the diversity becomes smaller too. This fact can be observed by analyzing
the results presented in Table 5.2. SORIGA presents the smallest values of
the mean fitness of the population, even though its fitness values of the best
individuals are the highest (i.e., its adaptability values are the smallest).

The second major fact that explains the better results of SORIGA is that
the survival probability of a new random individual, which can be evolved to
become a solution of the problem, is generally smaller in the standard GAs
with random immigrants. This happens because the fitness values for the
current individuals, whose locations are generally located in (or close to) local
maxima after several generations, are generally much higher than the mean
fitness of the search space (i.e., the mean fitness of all possible individuals).
This occurs because the selection methods employed in GAs preserves, directly
or indirectly, the best individuals of the population. An immigrant usually
survives during the evolution only if its fitness is close to the mean fitness of
the population. This is a rare event when the number of parameters in the
solution is high or when the local optimum where the population is found has
fitness values much higher than the mean fitness of the search space. On the
other hand, SORIGA preserves a new potential solution in a subpopulation
and allows it to evolve while the current replacement event is in progress.
When the replacement event ends, evolved versions of possible new solutions
given by fair immigrants are generally present in the current population and
can be combined with the individuals of the main population to generate new
solutions.

Figures 5.10 and 5.11 show the mean fitness and the duration of the re-
placement events (d) in the first trial of Experiments 1a and 1e respectively. It
can be seen that when the global optimum changes from a smaller to a higher
value, the mean fitness of the population increases. This leads to higher mean
duration values of the replacement events and hence increases the diversity
of the population. Such interesting behaviour is reached by self-organization,
and not by a rule imposed by the programmer. The size of the subpopula-

122 Renato Tinós and Shengxiang Yang

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

generation

d

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

generation

fit
ne

ss

Fig. 5.10. Mean fitness and duration of replacement events (in generations) in the
first trial of Experiment 1a

tion self-organizes according to the population diversity level. This fact can
be seen by comparing Figures 5.10 and 5.11. In Experiment 1e the mutation
rate is higher than in Experiment 1a (see Table 5.1), which results in a higher
diversity level. In this way, it is not necessary to generate large replacement
events to increase the diversity level. It can be observed that the duration of
the larger replacement events is higher in Experiment 1a. This fact explains
the worse results of SORIGA when compared to other GAs in Experiment 1e
(Table 5.2).

The same analysis can be done to the evolutionary robot experiments
(Table 5.4). In experiments 4 and 5, the changes in the problems are so strong
that new solutions completely different from the old ones should be found.
One can consider, as an example, the experiment where a failure is introduced
in the robots (Experiment 5). In the experiments with evolutionary robots,
navigation strategies where the robot always moves in the same direction are
initially developed. Most of the times, the developed direction of moving is
that one that provides more sensing capabilities to the robot, i.e. that one
where the front of the robot is the side with more infrared sensors (6). When
a failure in the 6 infrared sensors is introduced, the current navigation strategy
is no longer interesting. Moving the robot in the developed former direction
generally causes collision since it can not detect walls and obstacles in its
front side. In this case, a new navigation strategy should be developed, where

5 GAs with Self-Organizing Behaviour in Dynamic Environments 123

0 0.5 1 1.5 2 2.5 3

x 10
4

0

5

10

15

20

25

30

generation

d

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

generation

fit
ne

ss

Fig. 5.11. Mean fitness and duration of replacement events (in generations) in the
first trial of Experiment 1e

the side originally chosen as the rear of the robot, i.e., the side with the two
infrared sensors that are working, is now in the front of the robot. Such changes
causes a drastic modification to the ANN responsible for the robot control. In
the SGA, the probalibity to find a new solution with such characteristics after
the introduction of the failure is generally smaller, as the SGA can became
trapped in local optima given by the old solution. The old solution is generally
better than most new solutions, where the robot generally does not know how
to navigate in a straight way.

However, SORIGA can eventually generate new solutions far from the lo-
cal optima and develop them in the subpopulation. These facts can explain
the better results of SORIGA regarding the final fitness of the best individu-
als presented in Table 5.4. Fig. 5.12 presents the fitness of the best individual
and the duration of the replacement events for SORIGA in the tenth trial of
this experiment. One can observe that, after the introduction of the failure at
generation 1000, the fitness of the best individual becomes low. After some
replacement events, a new solution is found (after generation 1800). This solu-
tion allows the robot to navigate in the environment and return to the battery
recharge area only when the battery level is low, even with the presence of 6
faulty infrared sensors. One can still observe that, like in the results shown
in Fig. 5.10, higher mean values for the duration of the replacement events
occur for higher fitness values.

124 Renato Tinós and Shengxiang Yang

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

generation

d

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

generation

fit
ne

ss

Fig. 5.12. Fitness of the best individual and duration of replacement events in the
tenth trial of the evolutionary robots Experiment 5 (failure reconfiguration)

In the experiments presented in the last section, like in the fossil recorded
data for the replacement events in nature [23], there are more small than
large replacement events, and the replacement events occur on a large variety
of length scales. In Figures 5.13 and 5.14, the distribution of the number of
replacement events against each size is plotted in a log-log scale for trials of
the dynamic test environment Experiment 1g and evolutionary robots Ex-
periment 5 respectively. One can observe that the results exhibit power laws
(see Section 5.2) even without any apparent tuning, indicating the presence of
SOC. This kind of self-organization behaviour arises in systems where many
degrees of freedom are interacting and the dynamics of the system is dom-
inated by the interaction between these degrees of freedom, rather than by
the intrinsic dynamics of the individual degrees of freedom [15]. In SORIGA,
the population self-organizes in order to allow the occurrence of replacement
events with a large variety of length scales. Large replacement events gener-
ally occur when the mean fitness of the population is high and the diversity
level of the population is low. The population diversity is controlled by self-
organization, allowing the GA to escape from local optima when the problem
changes.

5 GAs with Self-Organizing Behaviour in Dynamic Environments 125

10
0

10
1

10
0

10
1

10
2

10
3

10
4

log(d)

lo
g(

 n
(d

))

Fig. 5.13. Number of occurrences for each size of the replacement events in the
first trial of Experiment 1g

10
0

10
1

10
0

10
1

10
2

10
3

log(d)

lo
g(

 n
(d

))

Fig. 5.14. Number of occurrences for each size of the replacement events in the
fourth trial of Experiment 5

5.5 Conclusions

In this work, a GA with random immigrants where the worst individual and
its next neighbors are replaced in every generation is proposed. The new in-
dividuals are preserved in a subpopulation, which size is not defined by the
programmer, but is given by the number of individuals created in the cur-
rent replacement event. In SORIGA, the individual starts to interact between
themselves and, when the fitness of the individuals are close, as in the case

126 Renato Tinós and Shengxiang Yang

where the diversity level is low, one single replacement can affect a large num-
ber of individuals in an replacement event. It is important to observe that this
simple approach can take the system to a self-organization behaviour, which
can be useful for DOPs to maintain the diversity of the solutions and, then,
to allow the GA to escape from local optima when the problem changes. In
this way, the proposed GA is interesting for DOPs where the new solution is
located in a peak that is hardly reached from the location of the old solution
by traditional GA operators.

Studying and combining self-organizing behaviours, such as the self-
organized criticality studied in this work, into GAs have shown to be beneficial
for their performance under dynamic environments. Further work can be done
in this area. A relevant future work is to compare the self-organizing property
with other properties, such as the speciation schemes, for GAs under more
comprehensive dynamic environments. Another future work is to investigate
the use of other neighbouring relations in the proposed algorithm.

Acknowledgments

The authors would like to thank FAPESP (Proc. 04/04289-6) for the financial
support.

References

1. P. Bak. How nature works: the science of self-organized criticality. Oxford
University Press, 1997.

2. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. an explanation
of 1/f noise. Physical Review Letters, 59(4):381–384, 1987.

3. S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Com-

plexity, 8(2):57–62, 2003.
4. J. Branke. Evolutionary approaches to dynamic optimization problems - intro-

duction and recent trends. In J. Branke, editor, GECCO Workshop on Evol.

Alg. for Dynamic Optimization Problems, pages 2–4, 2003.
5. W. Cedeno and V. R. Vemuri. On the use of niching for dynamic landscapes. In

Proc. of the 1997 IEEE Int. Conf. on Evolutionary Computation, pages 361–366,
1997.

6. H. G. Cobb. An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuouis, time-dependent nonstation-
ary environments. Technical Report AIC-90-001, Naval Research Laboratory,
Washington, USA, 1990.

7. H. G. Cobb and J. J. Grefenstette. Genetic algorithms for tracking changing
environments. In S. Forrest, editor, Proc. of the 5th Int. Conf. on Genetic

Algorithms, pages 523–530, 1993.
8. K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

PhD Dissertation, University of Michigan, 1975.

5 GAs with Self-Organizing Behaviour in Dynamic Environments 127

9. K. Deb and D. E. Goldberg. Analyzing deception in trap functions. In Foun-

dation of Genetic Algorithms 2, pages 93–108, 1993.
10. D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile

robot. IEEE Trans. on Systems, Man, and Cybernetics - Part B: Cybernetics,
26(3):396–407, 1996.

11. D. A. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley Publishing Company, Inc., 1989.
12. D. A. Goldberg. The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Boston, MA: Kluwer Academic Publishers., 2002.
13. S. J. Gould. Wonderful Life: The Burgess Shale and the Nature of History. W.

W. Norton and Company, 1989.
14. J. J. Grefenstette. Genetic algorithms for changing environments. In R. Maenner

and B. Manderick, editors, Parallel Problem Solving from Nature 2, pages 137–
144. North Holland, 1992.

15. H. J. Jensen. Self-organized criticality: emergent complex behavior in physical

and biological systems. Cambridge University Press, 1998.
16. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments - a

survey. IEEE Trans. on Evol. Computation, 9(3):303–317, 2005.
17. S. A. Kauffman. The origins of order: self-organization and selection in evolu-

tion. Oxford University Press, 1993.
18. T. Krink and R. Thomsen. Self-organized criticality and mass extinction in

evolutionary algorithms. In Proc. of the 2001 Congress on Evolutionary Com-

putation, volume 2, pages 1155–1161, 2001.
19. M. Løvbjerg and T. Krink. Extending particle swarm optimisers with self-

organized criticality. In Proc. of the 2002 Congress on Evolutionary Computa-

tion, volume 2, pages 1588–1593, 2002.
20. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.
21. N. Mori, H. Kita, and Y. Nishikawa. Adaptation to a changing environment

by means of the feedback thermodynamical genetic algorithm. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving

from Nature, number 1498 in LNCS, pages 149–158. Springer, 1998.
22. S. Nolfi and D. Floreano. Evolutionary robotics: the biology, intelligence, and

technology of self-organizing machines. MIT Press/Bradford Books: Cambridge,
USA, 2000.

23. D. M. Raup. Biological extinction in earth history. Science, 231:1528–1533,
1986.

24. K. Trojanowski and Z. Michalewicz. Evolutionary algorithms for non-stationary
environments. In M. A. Klopotek and M. Michalewicz, editors, Intelligent Inf.

Systems, Proc. of the 8th Int. Workshop on Intelligent Inf. Syst., pages 229–240,
1999.

25. F. Vavak, T. C. Fogarty, and K. Jukes. A genetic algorithm with variable range
of local search for tracking changing environments. In H.-M. Voigt, editor,
Parallel Problem Solving from Nature, number 1141 in LNCS. Springer Verlag
Berlin, 1996.

26. S. Yang. Constructing dynamic test environments for genetic algorithms based
on problem difficulty. In Proc. of the 2004 Congress on Evolutionary Computa-

tion, volume 2, pages 1262–1269, 2004.
27. X. Yao. Evolving artificial neural networks. Proc. of the IEEE, 87(9):1423–1447,

1999.

