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Abstract. In recent years dynamic optimization problems have attracted
a growing interest from the community of genetic algorithms with sev-
eral approaches developed to address these problems, of which the mem-
ory scheme is a major one. In this paper an associative memory scheme is
proposed for genetic algorithms to enhance their performance in dynamic
environments. In this memory scheme, the environmental information is
also stored and associated with current best individual of the population
in the memory. When the environment changes the stored environmental
information that is associated with the best re-evaluated memory solution
is extracted to create new individuals into the population. Based on a series
of systematically constructed dynamic test environments, experiments are
carried out to validate the proposed associative memory scheme. The en-
vironmental results show the efficiency of the associative memory scheme
for genetic algorithms in dynamic environments.

1 Introduction

Genetic algorithms (GAs) have been applied to solve many optimization prob-
lems with promising results. Traditionally, the research and application of GAs
have been focused on stationary problems. However, many real world opti-
mization problems are actually dynamic optimization problems (DOPs) [4]. For
DOPs, the fitness function, design variables, and/or environmental conditions
may change over time due to many reasons. Hence, the aim of an optimization
algorithm is now no longer to locate a stationary optimal solution but to track
the moving optima with time. This challenges traditional GAs seriously since
they cannot adapt well to the changing environment once converged.

In recent years, there has been a growing interest in investigating GAs for
DOPs. Several approaches have been developed into GAs to address DOPs,
such as diversity maintaining and increasing schemes [5, 7, 11], memory schemes
[2, 14, 17], and multi-population approaches [3]. Among the approaches devel-
oped for GAs in dynamic environments, memory schemes have proved to be
beneficial for many DOPs. Memory schemes work by storing useful information,
either implicitly [6, 9, 12] or explicitly, from the current environment and reusing
it later in new environments. In [17, 19], a memory scheme was proposed into
population-based incremental learning (PBIL) [1] algorithms for DOPs, where
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the working probability vector is also stored and associated with the best sample
it creates in the memory. When the environment changes, the stored probability
vector can be reused in the new environment.

In this paper, the idea in [17] is extended and an associative memory scheme is
proposed for GAs in dynamic environments. For this associative memory scheme,
when the best solution of the population is stored into the memory, the current
environmental information, the allele distribution vector, is also stored in the
memory and associated with the best solution. When the environment changes,
the stored environmental information associated with the best re-evaluated mem-
ory solution is used to create new individuals into the population. Based on the
dynamic problem generator proposed in [16, 18], a series of DOPs with differ-
ent environmental dynamics are constructed as the test bed and experiments
are carried out to compare the performance of the proposed associative memory
scheme with traditional direct memory scheme for GAs in dynamic environ-
ments. Based on the experimental results we analyze the strength and weakness
of the associative memory over direct memory for GAs in dynamic environments.

2 Overview of Memory Schemes

The standard GA, denoted SGA in this paper, maintains and evolves a popu-
lation of candidate solutions through selection and variation. New populations
are generated by first probabilistically selecting relatively fitter individuals from
the current population and then performing crossover and mutation on them to
create new off-springs. This process continues until some stop condition becomes
true, e.g., the maximum allowable number of generations tmax is reached.

Usually, with the iteration of SGA, individuals in the population will eventu-
ally converge to the optimal solution(s) in stationary environments due to the
pressure of selection. Convergence at a proper pace, instead of pre-mature, may
be beneficial and is expected for GAs to locate expected solutions for stationary
optimization problems. However, convergence becomes a big problem for GAs
in dynamic environments because it deprives the population of genetic diversity.
Consequently, when change occurs, it is hard for GAs to escape from the opti-
mal solution of the old environment. Hence, additional approaches, e.g., memory
schemes, are required to adapt GAs to the new environment.

The basic principle of memory schemes is to, implicitly or explicitly, store
useful information from the current environment and reuse it later in new envi-
ronments. Implicit memory schemes for GAs in dynamic environments depend
on redundant representations to store useful information for GAs to exploit dur-
ing the run [6, 9, 12]. In contrast, explicit memory schemes make use of precise
representations but split an extra storage space where useful information from
current generation can be explicitly stored and reused later [2, 10, 15].

For explicit memory there are three technical considerations: what to store
in the memory, how to update the memory, and how to retrieve the memory.
For the first aspect, usually good solutions are stored in the memory and reused
directly when change occurs. This is called direct memory scheme. It is also
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interesting to store environmental information as well as good solutions in the
memory and reuse the environmental information when change occurs [8, 13, 17].
This is called associative memory scheme, see Section 3 for more information.
For the second consideration, since the memory space is limited, it is necessary
to update memory solutions to make room for new ones. A general strategy
is to select one memory point to be replaced by the best individual from the
population. As to which memory point should be updated, there are several
strategies [2]. For example, the most similar strategy replaces the memory point
that is the closest to the best individual from the population. For the memory
retrieval, a natural strategy is to use the best individual(s) in the memory to
replace the worst individual(s) in the population. This can be done periodically
or only when the environment change is detected.

The GA with the direct memory scheme studied in this paper is called direct
memory GA (DMGA). DMGA (and other memory based GAs in this study) uses
a randomly initialized memory of size m = 0.1∗n (n is the total population size).
When the memory is due to update, if any of the randomly initialized points still
exists in the memory, the best individual of the population will replace one of
them randomly; otherwise, it will replace the closest memory point if it is better
(the most similar memory updating strategy). Instead of updating the memory
in a fixed time interval, the memory in DMGA is updated in a stochastic time
pattern as follows. Suppose the memory is updated at generation t, the next
memory updating time tM is given by: tM = t+ rand(5, 10). This dynamic time
pattern can smooth away the potential effect that the environmental change
period coincides with the memory updating period (e.g., the memory is updated
whenever the environment changes).

The memory in DMGA is re-evaluated every generation to detect environmen-
tal changes. The environment is detected as changed if at least one individual
in the memory has been detected changed its fitness. If an environment change
is detected, the memory is merged with the old population and the best n − m
individuals are selected as an interim population to undergo standard genetic
operations for a new population while the memory remains unchanged.

3 Associative Memory for Genetic Algorithms

As mentioned before, direct memory schemes only store good solutions in the
memory and directly reuse the solutions (e.g., combining them with the current
population) when change occurs. In fact, in addition to good solutions we can
also store current environmental information in the memory. For example, Ram-
sey and Greffenstette [13] studied a GA for robot control problem, where good
candidate solutions are stored in a permanent memory together with information
about the current environment the robot is in. When the robot incurs a new en-
vironment that is similar to a stored environment instance, the associated stored
controller solution is re-activated. This scheme was reported to significantly im-
prove the robot’s performance in dynamic environments. In [17, 19], a memory
scheme was proposed into PBIL algorithms for DOPs, where the working prob-
ability vector is also stored and associated with the best sample it creates in
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the memory. When the environment is detected changed, the stored probability
vector associated with the best re-evaluated memory sample is extracted to com-
pete with the current working probability vector to become the future working
probability vector for creating new samples.

The idea in [17, 19] can be extended to GAs for DOPs. That is, we can store
environmental information together with good solutions in the memory for later
reuse. Here, the key thing is how to represent current environment. As mentioned
before, given a problem in certain environment the individuals in the population
of a GA will eventually converge toward the optimum of the environment when
the GA progress its searching. The convergence information, i.e., allele distri-
bution in the population, can be taken as the natural representation of current
environment. Each time when the best individual of the population is stored in
the memory, the statistics information on the allele distribution for each locus,
the allele distribution vector, can also be stored in the memory and associated
with the best individual.

The pseudo-code for the GA with the associative memory, called associative
memory GA (AMGA), is shown in Fig. 1. Within AMGA, a memory of size
m = 0.1 ∗ n is used to store solutions and environmental information. Now each
memory point consists of a pair < S, D >, where S is the stored solution and
D is the associated allele distribution vector. For binary encoding (as per this
paper), the frequency of ones over the population in a gene locus can be taken
as the allele distribution for that locus.

As in DMGA, the memory in AMGA is re-evaluated every generation. If an
environmental change is detected, the allele distribution vector of the best mem-
ory point < SM (t), DM (t) >, i.e., the memory point with its solution SM (t)
having the highest re-evaluated fitness, is extracted. And a set of α ∗ (n − m)
new individuals are created from this allele distribution vector DM (t) and ran-
domly swapped into the population. Here, the parameter α ∈ [0.0, 1.0], called
associative factor, determines the number of new individuals and hence the im-
pact of the associative memory to the current population. Just as sampling a
probability vector in PBIL algorithms [1], a new individual S = {s1, · · · , sl} is
created by DM (t) = {dM

1 , · · · , dM
l } (l is the encoding length) as follows:

si =
{

1, if rand(0.0, 1.0) < dM
i

0, otherwise
(1)

The memory replacement strategy in AMGA is similar to that in DMGA.
When the memory is due to update, if there are still any randomly initialized
memory points in the memory, a random one will be replaced by <SP (t),DP (t)>,
where SP (t) and DP (t) are the best individual and allele distribution vec-
tor of the current population respectively; otherwise, we first find the memory
point < Sc

M (t), Dc
M > with its solution Sc

M (t) closest to SP (t). If SP (t) is fit-
ter than Sc

M (t), i.e., f(SP (t)) > f(Sc
M (t)), the memory point is replaced by

<SP (t), DP (t)>.
The aforementioned direct and associative memory can be combined into GAs.

The GA with hybrid direct and associative memory schemes, denoted DAMGA,
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t := 0 and tM := rand(5, 10)
initialize P (0) randomly and empty memory M(0)
evaluate population P (0)
repeat

evaluate memory M(t)
if environmental change detected then

denote the best memory point <SM (t),DM (t)>
I(t) := create α ∗ (n − m) individuals from DM (t)
P ′(t) := swap individuals in I(t) into P (t) randomly

if direct memory combined then // for DAMGA
P ′(t) := retrieveBestMembersFrom(P ′(t),M(t))

else P ′(t) := P (t)

if t = tM then tM := t + rand(5, 10) // time to update memory
denote the best individual in P ′(t) by SP (t)
extract the allele distribution vector DP (t) from P ′(t)
if still any random point in memory then

replace a random one by <SP (t), DP (t)>
else find memory point <Sc

M (t),Dc
M (t)> closest to <SP (t), DP (t)>

if f(SP (t)) > f(Sc
M (t)) then <Sc

M(t), Dc
M >:=<SP (t), DP (t)>

// standard genetic operations
P ′(t) := selectForReproduction(P ′(t))
crossover(P ′(t), pc) // pc is the crossover probability
mutate(P ′(t), pm) // pm is the mutation probability
replace elite from P (t − 1) into P ′(t) randomly
evaluate the interim population P ′(t)

until terminated = true // e.g., t > tmax

Fig. 1. Pseudo-code for the AMGA and DAMGA

is also shown in Fig. 1. DAMGA differs from AMGA only as follows. After new
individuals have been created and swapped into the population, the original
memory solutions M(t) are merged with the population to select n − m best
ones as the interim population to go though standard genetic operations.

4 Dynamic Test Environments

The DOP generator proposed in [16, 18] can construct random dynamic envi-
ronments from any binary-encoded stationary function f(x) (x ∈ {0, 1}l) by a
bitwise exclusive-or (XOR) operator. We suppose the environment changes ev-
ery τ generations. For each environmental period k, an XORing mask M(k) is
incrementally generated as follows:

M(k) = M (k − 1) ⊕ T (k), (2)

where “⊕” is the XOR operator (i.e., 1 ⊕ 1 = 0, 1 ⊕ 0 = 1, 0 ⊕ 0 = 0) and
T (k) is an intermediate binary template randomly created with ρ × l ones (ρ is
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a parameter) for environmental period k. For the first period k = 1, M(1) is set
to a zero vector. Then, the population at generation t is evaluated as below:

f(x, t) = f(x ⊕ M(k)), (3)

where k = �t/τ� is the environmental period index. With this generator, the
parameter τ controls the change speed while ρ ∈ (0.0, 1.0) controls the severity
of environmental changes. Bigger ρ means severer environmental change.

The above generator can be extended to construct cyclic dynamic environ-
ments1, see [19], as follows. First, we can generate 2K XORing masks M(0), · · ·,
M(2K − 1) as the base states in the search space randomly. Then, the environ-
ment can cycle among them in a fixed logical ring. Suppose the environment
changes every τ generations, then the individuals at generation t is evaluated as:

f(x, t) = f(x ⊕ M (It)) = f(x ⊕ M(k%(2K))), (4)

where k = �t/τ� is the index of current environmental period and It = k%(2K)
is the index of the base state the environment is in at generation t.

The 2K XORing masks can be generated as follows. First, we construct K
binary templates T (0), · · · , T (K −1) that form a random partition of the search
space with each template containing ρ × l = l/K bits of ones2. Let M (0) = 0
denote the initial state, the other XORing masks are generated iteratively as:

M(i + 1) = M(i) ⊕ T (i%K), i = 0, · · · , 2K − 1 (5)

The templates T (0), · · · , T(K−1) are first used to create K masks till M(K)=
1 and then orderly reused to construct another K XORing masks till M (2K) =
M(0) = 0. The Hamming distance between two neighbour XORing masks is the
same and equals ρ× l. Here, ρ ∈ [1/l, 1.0] is the distance factor, determining the
number of base states.

We can further construct cyclic dynamic environments with noise [19] as fol-
lows. Each time the environment is about to move to a next base state M (i),
noise is applied to M (i) by flipping it bitwise with a small probability pn.

In this paper, the 100-bit OneMax function is selected as the base station-
ary function to construct dynamic test environments. OneMax function aims
to maximize the number of ones in a binary string. Three kinds of dynamic
environments, cyclic, cyclic with noise, and random, are constructed from the
base function using the aforementioned dynamic problem generator. For cyclic
environments with noise, the parameter pn is set to 0.05. For each dynamic en-
vironment, the landscape is periodically changed every τ generations during the
1 For the convenience of description, we differentiate the environmental changing pe-

riodicality in time and space by wording periodical and cyclic respectively. The envi-
ronment is said to be periodically changing if it changes in a fixed time interval, e.g.,
every certain GA generations, and is said to be cyclicly changing if it visits several
fixed states in the search space in certain order repeatedly.

2 In the partition each template T (i) (i = 0, · · · , K − 1) has randomly but exclusively
selected ρ × l bits set to 1 while other bits set to 0. For example, T (0) = 0101 and
T (1) = 1010 form a partition of the 4-bit search space.
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run of an algorithm. In order to compare the performance of algorithms in dif-
ferent dynamic environments, the parameters τ is set to 10, 25 and 50 and ρ is
set to 0.1, 0.2, 0.5, and 1.0 respectively. Totally, a series of 36 DOPs, 3 values of
τ combined with 4 values of ρ under three kinds of dynamic environments, are
constructed from the stationary OneMax function.

5 Experimental Study

5.1 Experimental Design

Experiments were carried out to compare the performance of GAs on the dy-
namic test environments. All GAs have the following generator and parameter
settings: tournament selection with tournament size 2, uniform crossover with
pc = 0.6, bit flip mutation with pm = 0.01, elitism of size 1, and population size
n = 100 (including memory size m = 10 if used). In order to test the effect of the
associative factor α on the performance of AMGA and DAMGA, α is set to 0.2,
0.6, and 1.0 respectively. And the corresponding GAs are reported as α-AMGA
and α-DAMGA in the experimental results respectively.

For each experiment of a GA on a DOP, 50 independent runs were executed
with the same set of random seeds. For each run 5000 generations were allowed,
which are equivalent to 500, 200 and 100 environmental changes for τ = 10,
25 and 50 respectively. For each run the best-of-generation fitness was recorded
every generation. The overall performance of a GA on a problem is defined as:

FBOG =
1
G

G∑
i=1

(
1
N

N∑
j=1

FBOGij ), (6)

where G = 5000 is the total number of generations for a run, N = 50 is the total
number of runs, and FBOGij is the best-of-generation fitness of generation i of
run j. The off-line performance FBOG is the best-of-generation fitness averaged
over 50 runs and then averaged over the data gathering period.

5.2 Experimental Results and Analysis

Experiments were first carried out to compare the performance of SGA, DMGA
and α-AMGAs under different dynamic environments. The experimental results
regarding SGA, DMGA and α-AMGAs are plotted in Fig. 2. The major statis-
tical results of comparing GAs by one-tailed t-test with 98 degrees of freedom
at a 0.05 level of significance are given in Table 1. In Table 1, the t-test result
regarding Alg. 1 − Alg. 2 is shown as “+”, “−”, “s+” and “s−” when Alg. 1 is
insignificantly better than, insignificantly worse than, significantly better than,
and significantly worse than Alg. 2 respectively. From Fig. 2 and Table 1 several
results can be observed.

First, both DMGA and AMGAs perform significantly better than SGA on
most dynamic problems. This result validates the efficiency of introducing mem-
ory schemes into GAs in dynamic environments. Viewing from left to right in
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Fig. 2. Experimental results of SGA, DMGA, and α-AMGAs

Fig. 2, it can be seen that both DMGA and AMGAs achieve the largest perfor-
mance improvement over SGA in cyclic environments. For example, when τ = 10
and ρ = 0.5, the performance difference of DMGA over SGA, FBOG(DMGA)−
FBOG(SGA), is 87.6− 58.9 = 28.7, 66.5− 59.8 = 6.7, and 67.0− 65.5 = 1.5 un-
der cyclic, cyclic with noise, and random environments respectively. This result
indicates that the effect of memory schemes depends on the cyclicity of dynamic
environments. When the environment changes randomly and slightly (i.e., ρ is
small), both DMGA and AMGAs are beaten by SGA. This is because under
these conditions, the environment is unlikely to return to a previous state that
is memorized by the memory scheme. And hence inserting stored solutions or
creating new ones according to the stored allele distribution vector may mislead
or slow down the progress of the GAs.
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Table 1. The t-test results of comparing SAG, DMGA and α-AMGAs

t-test Result Cyclic Cyclic with Noise Random

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ + s− s− s+ s+ s+ s− s− s+ s−
0.6-AMGA − DMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+
1.0-AMGA − DMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+

0.6-AMGA − 0.2-AMGA s+ s+ s+ s+ s− s+ s+ s+ s− s− s+ s+
1.0-AMGA − 0.6-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s− s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ s+ s− − s− s+ s+ − − s+ s−
0.6-AMGA − DMGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+
1.0-AMGA − DMGA − s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.6-AMGA − 0.2-AMGA − s+ s+ s+ s− s− s+ s+ s− s− s+ s+
1.0-AMGA − 0.6-AMGA s− s− s+ s+ s− s− s+ s+ s− s− s− s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DMGA − SGA s+ s+ s+ s+ s− s− s+ s+ s− s− s+ s+

0.2-AMGA − DMGA s+ s+ s+ s+ + + s+ s+ − − s+ s+
0.6-AMGA − DMGA s+ s+ s+ s+ − + s+ s+ + s+ s+ s+
1.0-AMGA − DMGA s+ s+ s+ s+ − − s+ s+ − + s+ s+

0.6-AMGA − 0.2-AMGA s+ + s+ s+ − − s+ s+ + s+ s+ s+
1.0-AMGA − 0.6-AMGA − − s+ + + − s+ s+ − s− s− s+

Second, comparing AMGAs over DMGA, it can be seen that AMGAs outper-
form DMGA on many DOPs, especially under cyclic environments. This happens
because the extracted memory allele distribution vector is much stronger than
the stored memory solutions in adapting the GA to the new environment. How-
ever, when ρ is small and the environment changes randomly, AMGAs are beaten
by DMGA for most cases, see the t-test results regarding α-AMGA – DMGA.
This is because under these environments the negative effect of the associative
memory in AMGAs may weigh over the direct memory in DMGA.

In order to better understand the performance of GAs, the dynamic be-
haviour of GAs regarding best-of-generation fitness against generations on dy-
namic OneMax functions with τ = 10 and ρ = 0.5 under different cyclicity
of dynamic environments is plotted in Fig. 3. In Fig. 3, the first and last 10
environmental changes (i.e., 100 generations) are shown and the data were av-
eraged over 50 runs. From Fig. 3, it can be seen that, under cyclic and cyclic
with noise environments, after several early stage environmental changes, the
memory schemes start to take effect to maintain the performance of DMGA and
AMGAs at a much higher fitness level than SGA. And the associative memory
in AMGAs works better than the direct memory in DMGA, which can be seen
in the late stage behaviour of GAs. Under random environments the effect of
memory schemes is greatly deduced where all GAs behave almost the same and
there is no clear view of the memory schemes in DMGA and AMGAs.

Third, when examining the effect of α on AMGA’s performance, it can be
seen that 0.6-AMGA outperforms 0.2-AMGA on most dynamic problems, see
the t-test results regarding 0.6-AMGA – 0.2-AMGA. This is because increasing
the value of α enhances the effect of associative memory for AMGA. However,
1.0-AMGA is beaten by 0.6-AMGA on many cases, especially when ρ is small,
see the t-test results regarding 1.0-AMGA – 0.6-AMGA. When α = 1.0, all the
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Fig. 3. Dynamic behaviour of GAs during the (Left Column) early and (Right Column)
late stages on dynamic OneMax functions with τ = 10 and ρ = 0.5

individuals in the population are replaced by the new individuals created by the
re-activated memory allele distribution vector when change occurs. This may be
disadvantageous. Especially, when ρ is small, the environment changes slightly
and good solutions of previous environment are likely also good for the new one.
It is better to keep some of them instead of discarding them all.

In order to test the effect of combining direct memory with associative mem-
ory into GAs for DOPs, experiments were further carried out to compare the
performance of DAMGAs over AMGAs. The relevant t-test results are presented
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Table 2. The t-test results of comparing α-AMGAs and α-DAMGAs

t-test Result Cyclic Cyclic with Noise Random

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA s+ s+ s+ s+ + s+ s+ s+ − + s+ s+
0.6-DAMGA − 0.6-AMGA s+ + s+ s+ + s+ s+ s+ + + s+ s+
1.0-DAMGA − 1.0-AMGA s+ s+ s+ s+ s+ s+ s+ s+ + s+ s+ s+

τ = 25, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA s+ s+ s+ s+ − + s+ s+ + − s+ s+
0.6-DAMGA − 0.6-AMGA s+ + s+ s+ + − + s+ + − s+ s+
1.0-DAMGA − 1.0-AMGA + s+ s+ s+ + s+ + + s+ + s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
0.2-DAMGA − 0.2-AMGA + + − s+ + − s+ s+ + s+ s+ s+
0.6-DAMGA − 0.6-AMGA + + s+ s+ − + + s+ − − s+ s+
1.0-DAMGA − 1.0-AMGA + + + s+ − − − + + − s+ s+

6 Conclusions and Discussions

This paper investigates the introduction of an associative memory scheme into
GAs for dynamic optimization problems. Within this memory scheme, the allele
distribution information is taken as the representation of the current environ-
ment that GAs have searched. The allele distribution vector is stored together
with the best member of the current population in the memory. When the en-
vironmental change is detected, the stored allele distribution vector that is as-
sociated with the best re-evaluated memory solution is extracted to create new
individuals into the population. A series of dynamic problems were systemati-
cally constructed, featuring three kinds of dynamic environments: cyclic, cyclic
with noise, and random. Based on this test platform experimental study was
carried out to test the proposed associative memory scheme.

From the experimental results, the following conclusions can be drawn on
the dynamic test environments. First, memory schemes are efficient to improve
the performance of GAs in dynamic environments and the cyclicity of dynamic
environments greatly affect the performance of memory schemes for GAs in dy-
namic environments. Second, generally speaking the proposed associative mem-
ory scheme outperforms traditional direct memory scheme for GAs in dynamic
environments. Third, the associative factor has an important impact on the per-
formance of AMGAs. Setting α to a medium value, e.g., 0.6, seems a good choice
for AMGAs. Fourth, combining the direct scheme with the associative memory
scheme may further improve GA’s performance in dynamic environments.

For future work, comparing the memory scheme investigated with implicit
memory schemes is now under investigation. And it is also interesting to fur-
ther investigate the interactions between the associative memory scheme and
other approaches, such as multi-population and diversity approaches, for GAs
in dynamic environments.

in Table 2, from which it can be seen that DAMGAs outperform AMGAs under
most dynamic environments. However, the experiments (not shown here) indi-
cate the performance improvement of α-DAMGA over α-AMGA is relatively
small in comparison with the performance improvement of α-AMGA over SGA.
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