Adaptive Non-Uniform Crossover Based on Statistics for Genetic
Algorithms

Shengxiang Yang

Department of Mathematics and Computer Science
University of Leicester
University Road, Leicester LE1 7TRH, UK
Email: s.yang@mcs.le.ac.uk

Abstract

The genetic algorithm (GA) is a meta-
heuristic search algorithm based on mech-
anisms abstracted from population genet-
ics. Through the population, the GA implic-
itly maintains the statistics about the search
space. This implicit statistics can be used
explicitly to enhance GA’s performance. In
this paper, a new statistics-based adaptive
non-uniform crossover (SANUX) is proposed.
SANUX uses the statistics information of the
allele distribution in each locus to adaptively
adjust the crossover operation. Our prelim-
inary experiment results show that SANUX
is more efficient than traditional one-point,
two-point, and uniform crossover across a
representative set of search problems.

1 INSTRUCTIONS

Based on Holland’s simple genetic algorithm (Holland,
1975), there have been many variations developed both
in GA’s macro-structure and micro-structure (Gold-
berg, 1989). The GA, as one kind of generation-
based evolutionary algorithm, maintains a population
of candidate solutions to a given problem, which are
evaluated according to a problem-specific fitness func-
tion that defines the environment for the evolution.
New population is created by selecting relatively fit
members of the present population and evolving them
through recombination and mutation operations. The
performance of a GA is dependent on many factors,
such as encoding scheme, selection method, population
size, crossover and mutation operators. This makes
it difficult, if not impossible, to choose operators for
optimal performance. In this paper we focus on the
recombination operator.

In most GAs, recombination operators act on a pair of
individuals (parents) to produce new offsprings (chil-
dren) by exchanging segments of the parents’ corre-
sponding genetic material. This kind of two-parent
recombination is usually called “crossover”. The num-
ber of crossover points determines how many segments
are exchanged. Traditionally, GAs have used the one-
point crossover and two-point crossover that choose
crossing points uniformly at random. This decision
was supported theoretically and empirically by early
work of GA’s researchers (De Jong, 1975; Holland,
1975). However, researchers have also carried out
experiments with multi-point crossover: the m-point
crossover (Eshelman, 1989) which exchanges n—1 seg-
ments of the two parents and the uniform crossover
(Reed, Toombs and Barricelli, 1967; Syswerda, 1989)
which generates offsprings by swapping each bit of the
parents with a fixed probability p = 0.5. Spears and
De Jong (1991) proposed that the swapping proba-
bility under uniform crossover could be fixed to val-
ues other than 0.5. Recently, researchers have applied
adaptation techniques to recombination to enhance
GA’s capabilities and have made the adaptation of re-
combination operators and/or their parameters one of
the most promising research areas in GAs.

As a search algorithm based on mechanisms abstracted
from population genetics, the GA implicitly maintains
the statistics about the search space via the popula-
tion. It uses the selection, crossover and mutation to
explicitly extract the implicit statistics from the pop-
ulation to reach the next set of points in the search
space. This implicit statistics can be used explicitly
to enhance GA’s performance. In this paper, a new
statistics-based adaptive non-uniform crossover oper-
ator, called SANUX, is proposed. SANUX explicitly
uses the statistics information of the distribution of
alleles in each gene locus over the population to adap-
tively guide the process of crossover. With SANUX,
the probability of swapping alleles of the parents for

each locus is derived from the distribution of alleles
in that locus over the population and thus is adap-
tively adjusted with the progress of the GA. In the rest
of this paper, we first briefly review previous relevant
work, then describe SANUX in detail, finally present
our experiment study that compares SANUX over tra-
ditional one-point, two-point and uniform crossover
based on a representative set of test problems.

2 REVIEW OF RELATED WORK

2.1 ADAPTATION IN THE GA

The performance of a GA significantly depends on
the operators and relevant parameters used. How-
ever, choosing the right GA operators and appropri-
ate parameters is a difficult task. Traditionally, they
are determined by experience or primary experiments
from a particular domain in advance and then are
fixed during the running of the GA. This kind of con-
stant parameter setting approach is time-consuming,
can lead to sub-optimal performance when parame-
ters are inappropriately set. And what is worse lies
in the nature that the optimal parameter values may
vary with the evolution process of GAs. Hence, re-
searchers have applied many adaptation techniques
into GAs to enhance their performance (Eiben, Hin-
terding and Michalewicz, 1999). Based on the mech-
anism of change, adaptation in GAs can be classified
into three categories: deterministic adaptation where
the value of a strategy parameter is altered accord-
ing to some deterministic rule, adaptive adaptation
where there is some form of feedback information from
the search process that is used to direct the change
of a strategy parameter, and self-adaptive adaptation
where the parameter to be adapted is encoded into
the chromosomes and undergoes genetic operations
(hence, also called co-evolution).

2.2 ADAPTATION IN CROSSOVER

Since crossover is one of the primary genetic opera-
tions in GAs, adaptation in crossover operators has
long been studied and there have been many results
(Spears, 1997). Generally speaking, adaptation in
crossover happens in three levels from top to bottom.

2.2.1 Adapting the Type of Crossover

In this top level, crossover operators are themself
adapted during a run of the GA. Davis (1989) pro-
posed that the GA needn’t apply both crossover and
then mutation to the selected parent, instead it can
select operators from a set of operators, each with a

fixed probability. Eshelman and Schaffer (1994) pro-
posed an adaptive mechanism that uses restarts (when
converged, the population is partially or fully random-
ized except the best individual) and between restarts
switches between two crossover operators based on
their performance. Spears (1995) appended to each
individual one tag bit that co-evolves with the indi-
vidual and is used to switch between two-point and
uniform crossover. If both the tag bits of two parents
are 1, choose two-point crossover; if both are 0, choose
uniform crossover; otherwise, choose either randomly.

2.2.2 Adapting the Rate of Crossover

In this medium level, the rate or probability of
crossover is altered during a run of the GA. Julstrom
(1995) proposed an adaptive mechanism that regulates
the ratio between crossover and mutation based on
their performance. Corne, Ross and Fang (1994) de-
vised the COst Based operator Rate Adaptation (CO-
BRA) method for adapting operator probabilities in
timetabling problems. With COBRA the GA periodi-
cally swaps given k fixed probabilities between k oper-
ators by giving the highest probability to the operator
that has been producing the most gains in fitness. Tu-
son and Ross (1998) extended the COBRA method by
encoding into each individual the crossover and muta-
tion probabilities as real numbers (normalized to one)
that are used by and co-evolve with the individual.

2.2.3 Adapting the Crossing Position or
Swapping Probability in Each Locus

In this bottom level, the position of crossing or swap-
ping probability in each locus is adapted during a run
of the GA. Rosenberg (1967) attached to each locus i
an integer z; € {1,...,7} and calculated the crossing
probability p; of locus ¢ from the probability distribu-
tion defined by p; = z;/ Y z;. Schaffer and Morishima
(1987) proposed an self-adaptive scheme that appends
at the end of each individual a crossover bitmap that
specifies allowable crossing positions and co-evolves
with the individual. Booker (1992) introduced the no-
tion of recombination distributions which describe the
probability of all possible recombination events. Dif-
ferent probability distributions describe different op-
erators. White and Oppacher (1994) developed an
adaptive uniform crossover where each bit string in
the population is augmented at each bit position with
an automation whose state maps to a crossover prob-
ability for that bit location. Levenick (1995) inserted
a metabit before each bit of the individual. If the
metabit was “1” in both parents swapping occurred
with base probability Py, otherwise with reduced prob-
ability P,. Vekaria and Clark (1999) proposed the “se-

lective crossover” which biases alleles that are known
to have increased an individual’s fitness. It attaches
a real vector to an individual to accumulate fitness
information in previous generations and uses this in-
formation to preserve known fit alleles.

A unique topic in this level is the study of gene linkage,
the property of grouping interactive genes to evolve
them together. Fraser (1957a, 1957b) offered one of
the earliest computer simulations of genetic systems
where he suggested a crossover that associates a vari-
able swapping probability for each locus of a string. In-
teraction between genes could be addressed by forming
linkage groups based on their swapping probabilities.
Those genes with small-valued probabilities (i.e., close
to zero) form a linked group because it is unlikely for
crossover to disrupt that group. Goldberg, Korb and
Deb (1989) devised the “messy GA” as an attempt to
explicitly link genes using variable length strings. An
alternative scheme was presented by Harik and Gold-
berg (1996) that attempted to co-evolve the positions
and values of genes using a representation which con-
sider loci as points on a circle with the real-valued
distance between points denoting their linkage. Smith
and Fogarty (1996) developed a Linkage Evolving Ge-
netic Operator (LEGO) that attaches to each gene two
flags, denoting whether it is linked to its neighbours
on the left and right respectively. A pair of genes had
to be bi-directionally linked by setting the right flag
on one and the left flag on the other before they were
considered a block. LEGO allows these blocks to come
together from multi-parents to form new individuals.

2.3 PROBABILITY-BASED
OPTIMIZATION ALGORITHMS

Recently, based on the convergence property of the
GA, a number of GA-like algorithms have been devel-
oped that replace the GA’s population and crossover
operator with a probabilistic representation and gen-
eration method. The Population-Based Incremental
Learning (PBIL) by Baluja (1994) evolves a probabil-
ity vector, the values of which are initialized to 0.5. A
number of solutions are generated based on the prob-
abilities in the vector. The probability vector is then
pushed towards the generated solution with the high-
est evaluation. A new set of solutions are generated
according to the updated vector, and the cycle contin-
ues till terminated. As search progresses, the values in
the vector gradually shift to represent high evaluation
solution vectors. Harik, Lobo and Goldberg (1998)
proposed the compact GA (cGA) that also evolves a
probability vector initialized to 0.5 for each gene locus.
This probability vector is also used to generate a set of
solutions but is updated with a different learning rule

from PBIL.

3 STATISTICS-BASED ADAPTIVE
NON-UNIFORM CROSSOVER

3.1 CANONICAL UNIFORM CROSSOVER

Uniform crossover is the generalization of m-point
crossover (Syswerda, 1989). It creates offsprings by
deciding, for each bit of the parent, whether to swap
the allele of that bit with the corresponding allele of
the other parent. The decision is made using a coin
flip, i.e., the probability of swapping is p = 0.5. Figure
1 shows an example of applying the uniform crossover
operator to two 6-bit string parents.

Swapping Prob.. p p p p p »p
Coin Flipping: | | § ¢ U |
Created Mask: 0 1 0 1 0 1

Applying Mask: (] J 4

Parent P,: 0 1 0 1 1 1
Parent P,: 1 1 1 1 1 0
Swapping: U I 4
ChildC;: 0 1 0 1 1 0
ChildC;: 1 1 1 1 1 1

Figure 1: An example operation of the uniform
crossover where p = 0.5.

When performing uniform crossover on two parents P;
and P,, we first generate a mask bit by bit by flipping
a coin unbiasedly, i.e., generating 0 or 1 with an equal
probability p = 0.5. The generated mask is then used
to guide the crossover by exchanging those bits of P;
and P, that correspond to the positions where there
are a “1” in the mask and leaving the bits of other
loci of P; and P unchanged. As illustrated in Figure
1, the downward arrows marked by “{}” in the lines of
“Applying Mask” and “Swapping” correspond to the
positions where there is a “1” in the mask and where
the alleles of P; and P, are exchanged.

In parameterized uniform crossover (Spears and De
Jong, 1991), the decision for each locus is made by
biased coin flipping, i.e., the swapping probability p
could be other than 0.5. However, the degree of bias,
i.e., the value of p, is the same for all loci and hence
the 1-bits are uniformly distributed over the mask. In
fact, the value of p may be different for each locus,
that is, the 1-bits may be non-uniformly distributed

over the mask. This is realized adaptively in SANUX.

3.2 STATISTICS-BASED ADAPTIVE
NON-UNIFORM CROSSOVER

For the convenience of description and analysis, we
first introduce the concepts of intrinsic attribute and
extrinsic tendency of allele valuing for a gene locus.
In the optimal solution (encoded in binary string) of
a given problem, for a gene locus if its allele is 1 it
is called I-intrinsic, if its allele is 0 it is called 0-
intrinsic, otherwise if its allele can be either 0 or 1
it is called neutral. Whether a locus is 1-intrinsic, 0-
intrinsic, or neutral depends on the problem solved
and encoding scheme, e.g., whether introns are in-
serted (Levenick, 1995). During the running of a GA,
for a gene locus, if the frequency of 1’s in its alleles
over the population tends to increase (to the limit of
1.0) with time(generation), it is called 1-inclined; if
the frequency of 1’s tends to decrease (to the limit of
0.0), it is called 0-inclined; otherwise, if there is no
tendency of increasing or decreasing, it is called non-
inclined. Whether a locus is 1-inclined, 0O-inclined, or
non-inclined depends on the problem solved, encoding
scheme, genetic operators and initial conditions.

Usually and hopefully as the GA progresses, those gene
loci that are 1-intrinsic (or O-intrinsic) will appear to
be 1-inclined (or 0-inclined), i.e., the frequency of 1’s
in the alleles of these loci will eventually converge to
1 (or 0). SANUX makes use of this convergence infor-
mation as feedback information to direct the crossover
by adjusting the swapping probability for each locus.

We will use the frequency of 1’s in the alleles in a
locus over the population (equivalently we can also
use the frequency of 0’s as the argument) to calculate
corresponding swapping probability of that locus. The
frequency of 1’s in a locus’s alleles can be looked as
the degree of convergence to “1” for that locus. Let L
be the length of binary strings, fi(i,t) (¢ = 1,...,L)
denote the frequency of 1’s in the alleles in locus ¢ over
the population at time (generation) ¢ and ps(4,t) (i =
1,..., L) denote the swapping probability of locus ¢ at
time ¢{. Then, as shown in Figure 2, the calculation
equation from f;(%,t) to ps(3,t) is given as follows:

o f(5,1), if fi(i,t) <0.5 .
ps(la)_ 1—f1(i,t), if fl(i,t) > 05 ()

Now during the evolution of the GA, after a new pop-
ulation has been generated, we first calculate the dis-
tribution of 1’s f;(4,t) (hence the swapping probabil-
ity ps(i,t)) for each locus over the population. Then
we can perform SANUX operations. When applying

©
3]

Swapping Probability

0.0
0.0 =<— 0O-Inclined

0.5 1-Inclined — 1.0

Frequency of 1’s in the Alleles in a Locus

Figure 2: Calculate a locus’s swapping probability.

SANUX, the mask is bit by bit generated by flip-
ping a coin biasedly to generate a “1” with probability
ps(i,t). Finally, the generated mask is used to guide
the crossover the same way as it guides the traditional
uniform crossover. Figure 3 shows an example of ap-
plying SANUX to the same parents as in Figure 1.

1’s Freq. inloci: 04 0.2 06 09 09 0.2
Calculating: | 4 ¢ 4
Swapping Prob.: 04 02 04 01 0.1 0.2
Biased Flipping: | U U Y U U
Created Mask: 1 0 1 0 0 0
Applying Mask: |} (2
Parent P;: 0 1 0 1 1 1
Parent Ps: 1 1 1 1 1 0
Swapping: | ()
Child C;: 1 1 1 1 1 1
Child C3: 0 1 0 1 1 0

Figure 3: An example operation of SANUX.

3.3 DISCUSSIONS ON SANUX

According to the classification of adaptation for GAs
reviewed in section 2, SANUX belongs to the class of
adaptive adaptation that occurs at the bottom-level of
crossover because it uses the feedback information of
allele distribution during the running of the GA and
adjusts the swapping probability for each gene locus.

SANUX is much simpler than those adaptation mech-
anisms that add extra tag bit (e.g., Schaffer and Mor-
ishima, 1987; Levenick, 1995) or value (e.g., Rosen-

burg, 1967; Fraser, 1957b) per genetic bit and co-
evolves these tag bits or values with each individual.
With SANUX, what we add to traditional uniform
crossover are spacially only one real vector that records
the frequency of ones for each locus, and computa-
tionally only one statistics per generation that calcu-
lates the frequency of ones (hence the swapping prob-
ability) for each locus. This simple extra statistics
added is well rewarded in the sense of computational
complexity. For each crossover operation at genera-
tion ¢, the number of swappings on strings of length
L is L/2 on the average with uniform crossover and
Z:zf ps(i,t) with SANUX. When the population is
randomly initialized, the frequency of 1’s in the al-
leles (hence the swapping probability) in each locus
is statistically about 0.5, which gives on the average
L/2 crossings for SANUX. However, with the running
of the GA, l-intrinsic and O-intrinsic genes tend to
converge to 1 and 0 respectively and their associated
swapping probabilities decrease according to equation
(1). This results in reduced number of crossings with
SANUX, i.e., 3221 ps(i,) < L/2. And there’s more.
As the population converges, with uniform crossover,
in fact, fewer and fewer 1’s in the mask will involve
a change, that is, many crossings are wasted on those
converged bits. Most of these wasted crossings by uni-
form crossover are saved by SANUX. As illustrated in
Figure 1 and 3, after certain generations the distri-
bution of 1’s over loci may be as shown in Figure 3,
uniform crossover made no use of this information and
still generated 3 crossings while SANUX generated 2.

Another more important point of SANUX is its prop-
erty of implicit gene linkage. Similar to Fraser’s
crossover (Fraser, 1957b), SANUX adaptively links
genes based on their swapping probabilities. For ex-
ample, in Figure 3 loci 4 and 5 are more convergent
and implicitly linked because the probability for them
to co-evolve via crossover is 0.1%0.1+0.9%0.9 = 0.82.
SANUX differs from Fraser’s crossover in that SANUX
adapts one probability vector for all individuals based
on one simple statistics per generation while Fraser’s
crossover modifies one probability vector for each indi-
vidual per crossover based on a random learning rule.

Here we must note the relationship between SANUX
and probability-based algorithms (Baluja, 1994; Harik,
1998). They are all based on probability distribution.
However, those algorithms use the explicitly main-
tained probability vector to sample solutions while
SANUX obtains the distribution probability from the
statistics information implicit in the population. In
the sense of applying probability vector, they are dual
algorithms. The motivation of SANUX is to explicitly
use the statistics information implicit in the popula-

tion to guide the crossover.

4 THE TEST PROBLEMS

4.1 THE MAX ONES PROBLEM

The Max Ones problem simply counts the ones con-
tained in a binary string as the fitness of that string.
The aim is to maximize ones in a string. A string
length of 100 bits was used for our study.

4.2 THE ROYAL ROAD FUNCTIONS

The Royal Road functions (Forrest and Mitchell, 1992)
are devised to investigate GA’s performance with re-
spect to schema processing and recombination in an
idealized form. Royal Road functions R; and Rs con-
tain tailor-made building blocks (schemas) based on
64-bit binary strings. Each schema s; is given a coef-
ficient ¢; which is equal to its order o(s;) (a schema’s
order is the number of fixed positions within that
schema). R; consists of 8 disjunctive order-8 schemas
of which each has 8 adjacent ones. Ry consists of four
levels of schemas: level 0 (bottom level) is the same
as Ry, level 1 has 4 order-16 schemas of which each
combines two adjacent schemas in level 0, level 2 con-
tains 2 order-32 schemas each combining two adjacent
schemas in level 1, and finally level 3 (the optimal
schema) combines the 2 schemas in level 2.

The fitness of a bit string z for R;(z) and Ra(z) is
computed by summing the coefficients ¢; correspond-
ing to each of the given schema s; of which z is an
instance. The optimal solutions for R; and R, are
given as: R;(111..1) = 64 and Ry(111..1) = 192.

4.3 THE L-SAT PROBLEM GENERATOR

The random L-SAT problem generator (De Jong, Pot-
ter and Spears, 1997) is a boolean satisfiability prob-
lem generator devised to investigate the effects of epis-
tasis on the performance of GAs. It generates ran-
dom boolean expressions in conjunctive normal form
of clauses subject to three parameters V (number of
boolean variables), C' (number of disjunctive or con-
junctive clauses) and L (the length of the clauses).
Each clause is created by selecting L of V' variables
uniformly randomly and negating each variable with
probability 0.5. For each generated boolean expres-
sion, the aim is to find an assignment of truth values
to the V variables that makes the entire expression
true. Since the boolean expression is randomly gen-
erated, there is no guarantee that such an assignment
exists. The complexity of the problem varies with the
parameters V, C and L. For example, increasing the

number of clauses increases the epistasis. The fitness
function for the L-SAT problem is as follows:

C

f(chrom) = % Z f(clause;)

i=1

‘Where chrom consists of C clauses and the fitness con-
tribution of clause ¢, f(clause;), is 1 if the clause is
satisfied or 0 otherwise.

In our experiments we used the same parameters as De
Jong, Potter and Spears. We fixed the number of vari-
ables V to 100 and the length of the clauses L to 3. The
number of clauses C is varied from 200 (low epistasis)
to 1200 (medium epistasis) to 2400 (high epistasis).

5 EXPERIMENTAL RESULTS

For each experiment of combining crossover operators
(1-point, 2-point, uniform crossover and SANUX) and
test problems, 100 independent runs were executed.
In order to have a strict comparison between crossover
operators the same 100 different random seeds were
used to generate populations for the 100 runs of each
experiment. In all the experiments, the GA uses the
fitness proportionate selection with the stochastic uni-
versal sampling (Baker, 1987) and the elitist model
(De Jong, 1975), and bit flip mutation. And typi-
cally the probabilities of crossover and mutation were
fixed to 0.6 and 0.001 respectively and the population
size was set to 100 for each run. For each run, we
recorded the best-so-far fitness every 100 evaluations.
Here, only those chromosomes changed by crossover
and mutation operations are evaluated and counted
into the number of evaluations. Each experiment re-
sult is averaged over the 100 independent runs.

5.1 RESULTS ON MAX ONES PROBLEM

The experiment results for the Max Ones problem are
shown in Figure 4. From Figure 4 it can be seen that
SANUX outperforms all traditional crossover opera-
tors on the Max Ones problem.

5.2 RESULTS ON R; AND R,

The experiment results on royal road functions are
shown in Figure 5 and Figure 6 respectively. From
these figures it can be seen that during the early stage
of GA’s searching, 1-point and 2-point are better than
SANUX. However, after certain evaluations, when the
GA has built up some useful schemas SANUX out-
performs them due to its implicit gene linkage. This
is also proved by SANUX’s consistent advantage over

100
95 t
g 90
=
T 81
E} 80 t
@
75t
g 1-Point
< 70y 2-Point]
/ Uniform =
65 SANUX
60 ‘ ‘ ‘
0 50 100 150 200

Evaluations (x 100)

Figure 4: Average best curves for GAs with different
crossover on Max Ones problem.

50
45|
40 |
35|
30 |
5|

20 ff,
151
10

Average Best Fitness

0 100 200 300 400 500 600
Evaluations (x 100)

Figure 5: Average best curves for GAs with different
crossover on Royal Road function R;.

uniform crossover on both R; and Ry. This is further
proved by the observation that SANUX outperforms
traditional crossover operators much better on Ry than
on R;. This happens because the introduction of in-
termediate schemas into R, increases the epistasis on
which SANUX shows more advantage than traditional
operators due to its implicit gene linkage capability.

5.3 RESULTS ON L-SAT PROBLEMS

The experiment results on L-SAT problems with low,
medium and high epistasis are given in Figure 7, Fig-
ure 8, and Figure 9 respectively. From these figures
it can be seen that during low epistasis all crossover
operators work equally as well with uniform crossover
slightly better than the other operators. However, as
epistasis is increased to medium and high, SANUX
outperforms all traditional crossover operators. This
further shows that SANUX has more advantage over
traditional crossover on problems with high epistasis
due to its implicit gene linkage capability.

120

100

Average Best Fitness

0 100 200 300 400 500 600
Evaluations (x 100)

Figure 6: Average best curves for GAs with different
crossover on Royal Road function Rs.

0.99 -
8 oes|
s
S
0.97
g
o
o 096
5 ,
| 1-Point]
z 0% 2-Point
Uniform
0.94 SANUX
0.93 - - -
0 50 100 150 200

Evaluations (x 100)

Figure 7: Average best curves for GAs with different
crossover on L-SAT problems with low epistasis.

6 CONCLUSIONS

In this paper, a new statistics-based adaptive non-
uniform crossover operator, SANUX, is proposed. The
motivation of SANUX is to make use of the statis-
tics information implicitly contained in the population
explicitly to guide the crossover operation. SANUX
achieves this by using the statistics information of the
allele distribution in the current population to adjust
the swapping probability for each gene locus adap-
tively during the evolutionary progress of the GA. An
important property of SANUX is its capability of im-
plicitly linking gene groups. SANUX is also computa-
tionally efficient through saving crossings.

The preliminary experiment results of this study show
that SANUX performs better than traditional one-
point, two-point and uniform crossover operators on a
set of typical GA’s test problems. The experiment re-
sults indicate that SANUX may be a good candidate as
a crossover operator for GAs. Since SANUX works at
the bottom-level of crossover, it can be easily combined

095
0945 |
094
0935 |
093
0925 |
092 |
0915 |
091 | 4
0905 [/

0.9

Average Best Fitness

0 50 100 150 200
Evaluations (x 100)

Figure 8: Average best curves for GAs with different
crossover on L-SAT problems with medium epistasis.

0.93

0.925 ¢
0.92
0.915
091 -
0.905 1

Average Best Fitness

09
0.895

0.89

0 50 100 150 200
Evaluations (x 100)

Figure 9: Average best curves for GAs with different
crossover on L-SAT problems with high epistasis.

into the other two levels of adaptation in crossover.
Additionally, SANUX is dual to those probability-
based algorithms in the sense of using probability vec-
tor and thus may act as the basis for analyzing and
designing new related algorithms.

References

J. E. Baker (1987). Reducing bias and inefficiency in
the selection algorithms. In J. J. Grefenstelle (ed.),
Proc. 2nd Int. Conf. on Genetic Algorithms, 14-21.

S. Baluja (1994). Population-based incremental learn-
ing. Technical Report CMU-CS-95-193, Carnegie Mel-
lon University.

L. B. Booker (1992). Recombination distributions for
genetic algorithms. In D. Whitley (ed.), Foundations
of Genetic Algorithms 2, 29-44.

D. Corne, P. Ross and H.-L. Fang (1994). GA research
note 7: fast practical evolutionary timetabling. Tech-
nical Report, Department of Artificial Intelligence,

University of Edinburgh, UK.

L. Davis (1989). Adapting operator probabilities in
genetic algorithms. In D. Schaffer (ed.), Proc. of the
8rd Int. Conf. on Genetic Algorithms, 60-69.

K. A. De Jong (1975). An Analysis of the Behavior of
a Class of Genetic Adaptive Systems. PhD Thesis, De-
partment of Computer and Communication Sciences,
University of Michigan, Ann Abor.

K. A. De Jong, M. A. Potter and W. M. Spears (1997).
Using problem generators to explore the effects of epis-
tasis. In T. Béck (ed.), Proc. of the 7th Int. Conf. on
Genetic Algorithms, 338-345.

A.E. Eiben, R. Hinterding, and Z. Michalewicz (1999).
Parameter control in evolutionary algorithms. IEEE
Trans. on Evolutionary Computation 3(2):124-141.

L. Eshelman, R. Caruana, and J. D. Schaffer (1989).
Biases in the crossover landscape. In Proc. of the 3rd
Int. Conf. on Genetic Algorithms, 10-19.

L. Eshelman and J. D. Schaffer (1994). Produc-
tive recombination and propagating and preserving
schemata. In M. Vose and D. Whitley (eds.), Foun-
dations of Genetic Algorithms 3, 299-313.

A. S. Fraser (1957a). Simulation of genetic systems
by automatic digital computers. I. Introduction. Aus-
tralian Journal of Biological Sciences 10:484-491.

A. S. Fraser (1957b). Simulation of genetic systems by
automatic digital computers. II. Effects of linkage or
rates of advance under selection. Australian Journal
of Biological Sciences 10:492-499.

S. Forrest and M. Mitchell (1992). Relative building-
block fitness and the building-block hypothesis. In D.
Whitley (ed.), Foundations of Genetic Algorithms 2.

D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley,

G. E. Goldberg, B. Korb and K. Deb (1989). Messy
genetic algorithms: Motivation, analysis and first re-
sults. Complez Systems 3 (5):493-530.

G. Harik and G. E. Goldberg (1996). Learning linkage.
In Foundations of Genetic Algorithms 4, 247-272.

G. Harik, F. Lobo and G. E. Goldberg (1998). The
compact genetic algorithm. In Proc. of the 1998 IEEE
Conference on Evolutionary Computation, 523-528.

J. H. Holland (1975). Adaptation in Natural and Ar-
tificial Systems. University of Michigan Press.

B. Julstrom (1995). What have you done for me

lately? adapting operator probabilities in a steady-
state genetic algorithm. In L. J. Eshelman (ed.), Proc.
of the 6th Int. Conf. on Genetic Algorithms, 81-87.

J. Levenick (1995). Metabits: genetic endogenous
crossover control. In L. J. Eshelman (ed.), Proc. of
the 6th Int. Conf. on Genetic Algorithms, 88-95.

J. Reed, R. Toombs, and N. A. Barricelli (1967). Sim-
ulation of biological evolution and machine learning: I.
Selection of self-reproducing numeric patterns by data
processing machines, effects of hereditary control, mu-
tation type and crossing. Journal of Theoretical Biol-
ogy 17:319-342.

R. S. Rosenberg (1967). Simulation of Genetic Popu-
lations with Biochemical Properties. PhD Thesis, Uni-
versity of Michigan, Ann Abor.

J. D. Schaffer and A. Morishima (1987). An adap-
tive crossover distribution mechanism for genetic al-
gorithms. In J. J. Grefenstelle (ed.), Proc. of the 2nd
Int. Conf. on Genetic Algorithms, 36-40.

J. E. Smith and T. C. Fogarty (1996). Recombination
strategy adaptation via evolution of gene linkage. In
Proc. of the 3rd IEEE Int. Conf. on FEwvolutionary
Computation, 826-831.

W. M. Spears and K. A. De Jong (1991). On the
virtues of parameterized uniform crossover. In Proc.

4th Int. Conf. on Genetic Algorithms, 230-236.

W. M. Spears (1995). Adapting crossover in evolu-
tionary algorithms. In Proc. of the 4th Annual Evolu-
tionary Programming Conference, 367-384.

W. M. Spears (1997). Recombination parameters. In
T. Béck, D. B. Fogel, and Z. Michalewicz (eds.), Hand-
book of Ewolutionary Computation, E1.3.1-E1.3.11.
Oxford University Press.

G. Syswerda (1989). Uniform crossover in genetic al-
gorithms. In J. D. Schaffer (ed.), Proc. of the 8rd Int.
Conf. on Genetic Algorithms, 2-9.

A. Tuson and P. Ross (1998). Adapting operator set-
tings in genetic algorithms. Ewvolutionary Computation
6(2):161-184.

K. Vekaria and C. Clarck (1999). Biases introduced
by the adaptive recombination operators. In T. Back
(ed.), Proc. of the 1999 Genetic and Ewvolutionary
Computation Conference, 670-677. San Mateo, CA:
Morgan Kaufmann.

T. White and F. Oppacher (1994). Adaptive crossover
using automata. In Y. Davidor, H. Schwefel and R.
Ménner (eds.), Proc. of the 8rd Int. Conf. on Parallel
Problem Solving from Nature, 229-238.

