Statistics-based Adaptive Non-Uniform
Mutation for Genetic Algorithms

Shengxiang Yang

Department of Mathematics and Computer Science
University of Leicester
University Road, Leicester LE1 TRH, UK
s.yang@mcs.le.ac.uk

Abstract. A statistics-based adaptive non-uniform mutation (SANUM)
is presented for genetic algorithms (GAs), within which the probability
that each gene will subject to mutation is learnt adaptively over time and
over the loci. SANUM uses the statistics of the allele distribution in each
locus to adaptively adjust the mutation probability of that locus. The
experiment results demonstrate that SANUM performs persistently well
over a range of typical test problems while the performance of traditional
mutation operators with fixed rates greatly depends on the problems.
SANUM represents a robust adaptive mutation that needs no advanced
knowledge about the problem landscape.

1 Introduction

Holland’s schema theorem states that building blocks receive an exponentially
increasing trials in the subsequent generations. Usually with the progress of the
GA, the frequency of 1’s in the alleles of these loci where building blocks reside
will eventually converge to 1 (or 0). SANUM makes use of this convergence
information as feedback information to control the mutation by adjusting the
mutation probability for each locus. Let f1(i,t) (4 = 1...L where L is the string
length) denote the frequency of 1’s in the alleles in locus ¢ over the population
at time (generation) ¢t and p,,(i,t) (i =1...L) denote the mutation probability
of locus 4 at time ¢. Then, p,,(i,t) can be calculated from f;(4,t) as follows:

pm(i;t) = Pma:c - 2% |f1(i;t) - 05| * (Pmaw - szn) (1)

where |.| is an absolute function, P4, and Py, are the maximum and minimum
allowable mutation probabilities for a locus respectively. Now during the evolu-
tion of the GA, after a new population ¢ has been generated, we first calculate
f1(i,t) for each locus 7 over the population and from this obtain p,,(7,t) for gene
locus i. Then we can perform SANUM operations similarly as traditional bit
mutation except that SANUM uses p,,(i,t) for each locus ¢ instead of a global
mutation probability p,, for all the loci.

The motivation behind SANUM lies in the fact that with the progress of
the genetic search SANUM helps protecting building blocks found so far while

still exploiting new building blocks. With the progress of the GA, when building
blocks are partially found, SANUM decreases the mutation probabilities of those
loci where these building blocks reside according to Equation (1). In this way,
SANUM can protect building blocks found so far. While on the other hand, for
those unconverged loci the mutation probabilities remain high within SANUM.
This is useful because there may be building blocks not expressed on these loci
yet. SANUM strikes to balance the construction of new building blocks and
protection of found building blocks with time adaptively.

As the population converges, with traditional bit mutation fewer and fewer
offsprings generated by mutating converged loci survive the next generation.
That is, many mutation operations are wasted on converged loci. SANUM can
save these wasted mutations and hence wasted fitness evaluations through adap-
tively decreasing p., (i,t) from P4z to Ppin for those converged loci.

2 Experimental Results

In order to test SANUM, it is compared with traditional bit mutation with a
series of recommended fixed probabilities: 1/L, 0.01, 1.75/(N * L'/?) where N
is the population size, and 0.001 over a range of typical test problems. Within
SANUM, p,,(i,t) varied adaptively between Ppq; = 1/L and P, = 107% ac-
cording to Equation (1). In the experiment all GAs are generational and use the
fitness proportionate selection with the stochastic universal sampling and eli-
tist model, 2-point crossover with crossover probability 0.6, and the population
size of 100. For each run, the best-so-far fitness was recorded every 100 evalu-
ations. SANUM performs persistently well on the test problems. SANUM per-
forms much better than traditional mutation operators on royal road functions
R; and R, (see Figure 1) due to the strong building blocks built in them. After
certain evaluations, when the GA has built up some useful schemas, SANUM
efficiently avoids mutating those converged loci, i.e., found building blocks.

64 192
60 + 180 +
160 +
§ s s
¥ o120 |
g L
o SANUM ——— o 1001
@ 30 L Bit Mut ———] ® gl ~"SANUM —— |
g 0.01 Bit Mut - g UL Bit Mut ———
< ool 1.75/(N*L~(1/2)) Bit Mut] < 80 Lol 0.01 Bit Mut - 1
0.001 Bit Mut - a0 L 1.75/(N*L~(1/2)) Bit Mut |
! 0.001 Bit Mut -
10 - - : : : 20
0 100 200 300 400 500 600 0O 100 200 300 400 500 600
Evaluations (x 100) Evaluations (x 100)

Fig. 1. Average best-so-far fitness against evaluations on Royal Road Functions (Left)
R: and (Right) R». Experiment results were averaged over 100 independent runs

