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Constraint Satisfaction Adaptive Neural Network and
Heuristics Combined Approaches for Generalized
Job-Shop Scheduling

Shengxiang Yang and Dingwei Wang

Abstract—This paper presents a constraint satisfaction adaptive and poor scaling properties due to the use of quadratic energy
neural network, together with several heuristics, to solve the gener- functions [11].

alized job-shop scheduling problem, one of NP-complete constraint Foo and Takefuji [12] first used a neural network to solve

satisfaction problems. The proposed neural network can be easily . b-sh heduli bl Followina that | |
constructed and can adaptively adjust its weights of connections Job-shop scheduling problems. Following that, several neural-

and biases of units based on the sequence and resource constraint§1etwork architectures have been presented to solve job-shop
of the job-shop scheduling problem during its processing. Several scheduling problems [13]-[20]. Willermet al. [18], [19], first
heuristics that can be combined with the neural network are also proposed a constraint satisfaction neural network for solving tra-
presented. In the combined approaches, the neural network is used ditional job-shop scheduling problems with no free operations.

to obtain feasible solutions, the heuristic algorithms are used to im- L . . . ]
prove the performance of the neural network and the quality of Yu, in his Ph. D. dissertation [20], developed Willems’s neural

the obtained solutions. Simulations have shown that the proposed Network by adding a block (called the job constraint block),
neural network and its combined approaches are efficient with re- which is structurally similar to the RC-block of Willems'’s net-

spect to the quality of solutions and the solving speed. work but its function is to deal with the problem of accomo-
Index Terms—Adaptive neural network, constraint satisfaction, dating free operations. Additionally, Haibin introduced the gra-
generalized job-shop scheduling problem, heuristic. dient optimization function into its neural network for job-shop

scheduling problems.
The above mentioned neural networks are basically nonadap-
tive networks, of which the neural units’ connection weights
RODUCTION scheduling is the allocation of resourceand biases must be prescribed in advance before application
over time to perform a collection of tasks [1]. Of all kindsof the networks to a particular problem. In this paper we pro-
of production scheduling problems, the job-shop schedulipgse a constraint satisfaction adaptive neural network (CSANN)
problem is one of the most complicated and typical. It aims for the generalized job-shop scheduling problem, accomodating
allocatern machines to performn jobs in order to optimize free sequence operation pairs or free operations of each job.
certain criterion [2]. The proposed CSANN has the ability to easily map the con-

Traditionally there are three kinds of approaches for thgraints of a scheduling problem into its architecture and remove
solution of job-shop scheduling problems: priority ruleshe violation of the mapped constraints during its processing
combinatorial optimization, and constraints analysis [3]. Morgnd as such is based on “constraint satisfaction.” Additionally
recently intelligent knowledge-based scheduling systems ha¥8ANN has ability to adaptively adjust its connection weights
been presented [4], [5]. Since Hopfield first used a neural nefrd bias of neural units according to the actual constraint vio-
work to solve an optimization problem [6], Hopfield networksations present during processing. This removes the violations
have been successfully applied to a variety of problems, sughan adaptive manner. To improve the performance of CSANN
as the analog-to-digital conversation problem [7], the travelirigr job-shop scheduling problems a mechanism of combining
salesman problem [8], the resource allocation problem [9], tBeveral heuristic algorithms with CSANN is presented. In these
linear and nonlinear programming problems [10]. Howevegombined approaches CSANN is used to obtain feasible solu-
Hopfield networks have drawbacks such as failing to convergens and heuristic algorithms are used to improve the perfor-
to a valid solution, an inability to locate the global minimunmance of CSANN and the quality of obtained solutions. Sim-

ulations have shown that CSANN has good performance with
respect to the quality of solutions and the computing speed, es-
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connections between neural units, its architecture, and its spackeduling problem is much more complicate than the tradi-
complexity. In Section IV we describe the heuristic algorithmisonal job-shop scheduling problem and obviously belongs to
that can be combined with CSANN for better performace, thiéP-complete problems.

combined approaches for the job-shop scheduling problem ard@ he notation system of Conway [2] will be used to represent
also described in this section. Section V presents the compute job-shop scheduling problem. This notation system uses four
simulation results with several examples to show the perfqrarameters of the form/m/A/B to represent a scheduling
mance of the proposed combined approaches for job-sheystem, in which is the number of jobsy. is the number of ma-
scheduling. Section VI is devoted to the empirical study of thehines,A is the operation pattern (e.@¢/,means job-shop), and
computational complexity analysis of CSANN. Finally SectioB is the optimization criterion (€.9¢,..x Mmeans minimizing

VII concludes this paper. the maximal completion time or makespan).

B. Mathematical Formulation of Job-Shop Scheduling

To map job-shop scheduling problems onto neural networks,
several pure and mixed integer programming models have been
used to represent job-shop scheduling problems [14]-[17], [17],
[19], and [20]. In this paper we have used the pure integer mathe-

Traditionally, the job-shop scheduling problem can be stategatical model to translate the sequence constraints, the resource
as follows [2]: giverw jobs to be processed @n machines in a constraints, the release date, and due date constraints of jobs into
prescribed order under certain restrictive assumptions. The afteger linear inequalities. This model can easily map job-shop
jective of job-shop scheduling is to optimally arrange the pracheduling problems onto CSANN as described in Section IlI.
cessing order and the start times of operations to optimize cerfirst some notations are defined for the convenience of for-
tain criteria. In general, there are two types of constraint for theulating the job-shop scheduling problem as follows: we de-
job-shop scheduling problem. The first type of constraint stataste N = {1,---,n} andM = {1,--.,m} as the job set and
that the precedence between the operations of a job shouldi machine set, where andm are the numbers of jobs and
guaranteed, this is sequence constrainThe second type of machines, respectively. Let be the operation number of jab
constraint is that no more than one job can be performed on,, represents operatidnof job : to be processed on machine
a machine at the same time, this igesource constraintA ¢, S;;, andT;;, represent the starting time and processing time
job-shop scheduling problem is completely solved if the startig/hich is known in advance) oP;,, respectively,S;.,, and
times of all operations are determined, and the sequence andltg-, represent the starting time and processing time of the last
source constraints are not violated. Of course, the schedule operation of jok, respectively. Denoting; andd; as the release
tained should also optimize certain manufacturing system cdate (earliest starting time) and due date (latest ending time) of
terion, such as the stocksize to be maintained, the due datejoe-:. Let P, denote the set of operation paif3;s,,, O;;,] With
liability, the mean lead time, and the makespan (the time rgrecedence restriction of jabwhere operatio®;;, must pre-
quired to process all of the given set of jobs) [23]. Minimizingede operatiorD;;,, and @, denote the set of operation pairs
the makespan will be considered as the optimization criterion[i®,,,, O;;,] without precedence restriction of jabwhere op-
this paper. erationO;;,, and operatior(;;, of job ¢ can be processed in

For atraditional job-shop scheduling problerthere are se- any orders. Let?, be the set of operationS;., that will be
guence constraints for the operations of each job [21], that is, fmocessed on machie We also assume that the starting times
any two operations of a job there is a sequence constraint. In thigl the processing times of all operations are integer, and that
paper we consider thigeneralized job-shop scheduling probtlemoperations cannot be interrupted once started.
there may be free sequence operation pairs or free operationsaking minimizing the makespan as the optimization crite-
for each job; there may be different number of operations faon, the mathematical formulation of the job-shop scheduling
each job; there may be a release date or due date restrictiongiablem considered is presented as follows:
each job; and there may exist the situation that each machindlinimize £ = max;e n (Sie,q + Liciq)
can process more than one operation of a job. A free sequencsubject to
operation pair of qjob is a pair of tyvo operguong that have no Sitg = Sitp > Tinp,  [Oinp, Oitg] € P,
sequence constraint. A free operation of a given job means that

Il. DESCRIPTION ORJOB-SHOP SCHEDULING

A. Basic Concepts of Job-Shop Scheduling

the operation has no sequence constraints with other operations Ble{l,oni}, €N (1)
of that particular job and can be processed before or after any
other operations of the job. Sitg — Sikp = Tinp OF Sip — Sitg > Tiyy
Generally speaking, traditional job-shop scheduling belongs [Oitp, Oig] € Qi Ele{l,---,n;}, ieN (2)
to a large class of NP-complete (nondeterministic polynomial
time complete) problems. Because of the NP-complete char-
acteristic of job-shop scheduling, it is difficult to find an op- Sjig = Sing = Ting OF Sing — Sjig = Tjig
timal solution. However an optimal solution in the mathemat- Oikg, Ojiy € Ry, ,jeEN, geM 3

ical sense is not always required at the practical level. Thus
research has concentrated on searching its near-optimal solu-
tions using heuristic algorithms [21]. The generalized job-shop Sijq = T, teN,je{l,---,n;}, geM (4
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and activation function, such as linear threshold function, linear-seg-
. . mented function and S-shaped function [25]. In this paper two

Sijg < di = Lijg, teNge{l, i}, a€M () yings of linear-segmented functioh and B [see Fig. 2(a) and
where (1) means that two operations with precedence restrictfod- 2(b)] are used as the activation functions of neural units.The
of a job cannot be processed at the same time and must be pfgPosed CSANN contains three kinds of unit, based on the
cessed according the sequence Constraint; (2), ina disjuncg\%leral neural unit. The first kind of unit are Callﬁﬂ’-units
type, means that two operations without sequence constrainf@@resenting the starting times of all operations. Each ST-unit
a job cannot overlap in time; (3), in a disjunctive type, meari§Presents one operation of the job-shop scheduling problem,
that a machine can only process one operation at a time, this r&h its activation corresponding to the starting time of the par-
resents the resource constraints; (4) represents the release tifatar operation. The second kind of unft¢’-units represent
constraints and (5) represents the due date constraints. The whther the sequence constraints are violated. The third kind of
function E is the ending time of the latest operation or operalnit- RC-units, represent whether the resource constraints are
tions, i.e., the maximal complete time of a given job-shop schegolated.
uling problem. MinimizingEl means minimizing the makespan. The netinput of a ST-unit, e.gS17, is calculated by

From above description and mathematical model, we can se _ . :
that the problem considered is extended above the traditiona{%ST" () = Z (Wi x Asc,(£) + Z Wik x Are (1))

. J k
n/m/J/Cuax Problem where each job passes through each ma- + Aer (t—1) ®)
chine once in a prescribed sequencing order, that is, without free ST
operations or free sequence operation pairs. In the traditiomdiere the net input of the uni7; is the sum of three terms,
problem there is no sequence constraint inequality of equatias shown in the right side of (8). The first term represents the
type (2). With the increase in the free operations or free seeighted activations of SC-units connecting with ufif;,
guence operation pairs, the number of sequence constraintvitrich implements feedback adjustments because of sequence
equalities of equation type (1) decreases, while the numbendlations. The second term represents the weighted activa-
seguence constraint inequalities of equation type (2) increasisns of RC-units connected with the urfit/;, implementing
And to the limit, when all operations become free, the problefeedback adjustments because of resource violations. The third
becomes th®pen-shopscheduling problem without sequencederm represents the previous activation, with the weight being
constraint inequalities of equation type (1). +1, of the unitST; itself.
The activation function of ST-units is a deterministic linear-

[Il. CONSTRAINT SATISFACTION ADAPTIVE NEURAL NETWORK  segmented function of typB [as illustrated in Fig. 2(b)] and is

To solve the job-shop scheduling problem, the integer mat%@ﬁned as follows:

ematical representation has to be mapped to CSANN. In this i Nsr,(t) < 7i

section CSANN will be discussed in detail with respect to its Asz;(t) = § Nor.(t), 7 < Nop(t) < di — Tst,  (9)
basic components of units and connections, its architecture and d; —Tst,, Nst.(t) > di — Tsr,

complexity. wherer; andd; are the release date and due date, respectively, of

. job ¢ to which the operation corresponding to usiif; belongs.

A. Neural Units T'st. is the processing time of the operation corresponding to
Generally a neural network consists of many interconnectggit S7;. This activation function represented by (9) imple-
parallel processing elements called neural units [24]. Thesents the release date and due date constraints described by (4)

units compute from local information stored and transmiteghd (5).

via connections. In general, a unitconsists of two parts: @ The SC-units receive the incoming weighted activations from
linear summator and a nonlinear activation function whicihe connected ST-units, representing operations of the same
are serialized (see Fig. 1). The summator of unieceives job. The RC-units receive the incoming weighted activations
all activationsA;(j = 1,---,n) from connected units, and from the connected ST-units, representing operations sharing
sums the received activations, weighted with correspondifige same machine. The net input of a SC-unit or a RC-unit has
connection weightsV;;, together with a bia#3;. The output of the form of (10).

summator is the net inpu¥; of uniti. This net input is passed

through an activation functioyf(-), resulting in the activation Nei(t) = Z (Wij x As; (1)) + Be, (10)
A; of unit 2. The summator and the activation function are i
respectively defined as follows: whereC; represents a SC-urtC; or a RC-unitRC;, and B¢,
n is the bias o5 C; or RC;. The biasB, is added to the incoming
N, = Z (Wi; x Aj) + B; (6) weighted activations of the connected ST-units and equals to the
=1 processing time of a relative operation.

The activation function of a SC-unit or a RC-unit is a
deterministic linear-segment function of type[as shown in
Ai = f(Ni) ) Fig. 2(a)], defined as follows:

whereW;; is the connection weight from unjtto unit <. Dif- o, Ng, (t)

2
ferent unit functions are realised by the use of several types of Acy(t) = { —N¢, (1), Ng(t) <

(11)
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Zero activation of a SC-unit or a RC-unit means that the cor- AWy
responding sequence constraint or resource constraint is satis-
fied and there are no feedback adjustments from this SC-unit

or RC-unit to connected ST-units. While greater than zero acti- 4, > s F(N) _.__ﬁ’
vation of a SC-unit or a RC-unit means that the corresponding :

sequence constraint or resource constraint is violated and there V’

are feedback adjustments from this SC-unit or RC-unit to con- A +1

nected ST-units through the adaptive weighted connections. " B;

B. Adaptive Connection Weights and Unit Biases Fig- 1. General neural unit model.
The connections of a unit transmit the activation of the unit A;

to its connected units. The efficiency of a connection depends

on the weight imposed on the connection. The received input

is multiplied by this weight before it is sent to the computing

unit. The connection weight can have an inhibitory effect for

Ast,
di ~ Tsrf-—------->

i

the computing unit when its value is negative or excitatory effect i !

when its value is positive. The weights of connections have to be L

determined to achieve the desired functionality of the resulting 0 N; 0' 7 di—Tsr, Nsr,
network. Generally for constraint satisfaction neural networks, (a) Kind A (b) Kind B

the determination of weights is executed by the designer of the
neural network and the weights are determined in advance, ifg, 2. Linear-segmented activation functions.
before the network begins to solve a specific constraint satisfac-
tion problem [15], [19], [20]. In the proposed CSANN, the con-

nection weights and biases of neural units are adaptively valued Bsc,,, +!
according to the actual activations of ST-units whilst the net-
work is running, together with the sequence and resource con-
straints of the specific problem.
All units of CSANN, including ST-units, SC-units, and Tikp
RC-units, are connected according to the two kinds of
sequence and resource constraint of a specific job-shop
scheduling problem, resulting in two blocks: SC-block (se-
quence constraints block) and RC-block (resource constraints
block). The SC-block consists of ST-units and SC-units.
The RC-block consists of ST-units and RC-units. Each unit Isty, IsT,,

of an SC-block contains two ST-units, responding to two

operations of a job, and one SC-unit, representing whettrg. 3. A SC-block unit.
the sequence constraint between these two operations is

violated (see Fig. 3). Each unit of an RC-block contains

two ST-units, responding to two operations sharing the BRCyixst

same machine, and one RC-unit, representing whether the

resource constraint between these two operations is violated

(see Fig. 4). Figs. 3 and 4 show how the adaptive weights AsTy,
are valued. Fig. 3 illustrates an example of a SC-block unit,

denoted bySCB;;;, and Fig. 4 an example of a RC-block

unit, denoted byRCB;;. In Figs. 3 and 4,Is7, is

the initial value set for the ST-unif7;,, responding to +1
the initial starting timeS;,,(0) of the operationO;,. In

Fig. 3, the two ST-unitsSTj, and ST;, represent the

two operationsO;;, and Oy, of job 7. Their activations IsTu,
Ast,, and Asr, represent the starting times;, and
Sig Of Oy and Oy, respectively. The SC-unitSCiy,
represents whether the sequence constraint betviggp
and O;;, is violated, with Bsc,, being its bias. Then at Case S1:If [O;,,Oqe € F;, the weights and bias are
time ¢ during the processing of network, the connectiovalued as follows:

weights Wi, W,, the feedback connection weightd’s,

W, and the biasBsc,,, of SCB;, are adaptively valued Wi=-1, Wa=1 Ws=-W,

as shown by the following three cases. Wy =W, Bsc.,, = —Tip (12)

+1

Fig. 4. A RC-block unit.

ikl
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whereW is a positive changeable parameter (e.g., 0.5) used fbe processing of the network, the adaptive weights and bias are
feedback adjustment (the same with following equations wheralued as shown by the following two cases.

W appears). In this cas#C B, represents the sequence con- Case R1:For O, andOj iy, € Ry, if Sipg(t) < Sji4(t), we
straint of (1). If there is no sequence constraint violation bget

tween Oy, and Oy, the activation ofSCjy,; equals zero. If

there exists the sequence constraint violation, the activation of Ws=-1 We=1 Wr=-W

SC; is calculated by We =W, Brec,i, = —Tikg (20)
Asc, (t) = —Nsc, (1) = Ast,, () + Tingp — Asty,, (B) In this caseRC Byx i represents a sequence constraint de-
= Sitp(t) + Tinp — Sitg(t) (13) scribed by the first disjunctive equation of (3). If there exists

a violation, the activation ol2C;;;; and the feedback adjust-
and the feedback adjustments fraf; to ST;, and STy, ments fromRC ;.5 to STy, andSTy,, are calculated by

are shown as follows:
ARquka (t) = ASTikq (t) + Tik(l - ASleq (t)
Ast, (t+1) =Sip(t +1) = Sikg(t) + Ting — S;14(2) (22)
=Ast,, (t) + Ws X Asc,,, (1)
= Uﬂ)(t) - Wx ASC{M (t) (14)
ASTikq (t+1)= ASTikq (1) + W7 x ARquka (t)
= Dikq (t) — W x ARqukjl (t) (22)
Asr, (t+1) = Siq(t+ 1)
= Ast,, (1) + Wy x Asc,,, (1)
=8 (t) + W x Asc,,., (£). (15) Asty, (t+1)= Asty, (t) + Ws x ARCy iz ()

=8t) + W X Arc ;.. (). 23

From the above equations we can see that the effect of unit ita(®) R () 23)

SCix to unitST, is inhibitory, which leads the starting time of ~ Case R2: For O;x andOjy, € Ry, if Sig(t) > Sjio(t), we

operationD;,, being put back on the time axis. While the effecget

of SCix to STy, is excitatory, putting forward;;,. Thus the _ _ _
sequence violation betwe&n,,, andO;;, can be removed. Ws=1, We=+1, W7=W

Case S2:If [OikpaOilq] € (; and S7kp(t) < Silq(t), the Wg ==W, BRquka = —Tjig- (24)

adaptive weights and bias are valued the same @ibe S1 ; :
) . In this caseRC B,;;.;; represents a sequence constraint de-
using (12). In this cas&C B;;,; represents the sequence con: aikjt FED g

straint of first disjunctive equation of (2). If there exists the vio§cnb(ad by the second disjunctive equation of (3). If there exists

. o . . a violation, the activation of2C;1;; and the feedback adjust-
lation, the activation o6 C;;,; and its feedback adjustments are onts are calculated by
calculated the same way as wiflase S1using (13)—(15).

Case S3:If [O;xp, Oitg] € Q; and Six,(t) > Siy(t), the ARC, (1) = Asty,, (1) + Tjig — Ast,, (1)
weights and bias are adaptively valued by = 814(t) + Tty — Sing(t) (25)

Wy =1, Wy=-1, W3=W
Wy =-W, Bsc,, = —Tuq. (16)
. . ! ) ASTikq (t + 1) = ASTikq (t) + W7 x ARquka (t)

In this eeseS_CBikl represents the sequence consrrarnr of = Sikg(t) + W x Arc,,pi () (26)
second disjunctive equation of (2). If there exists a violation,
the activation ofSC;;,; and the feedback adjustments are calcu-
lated b
y ASleq (t + 1) = ASleq (t) + Wa x ARquka (t)
ASCikl(t) :ASTNQ (t) +Tiag — ASTikp (t) = jlq(t) - W x ARqu‘ka (t) (27)

= 8i1g(t) + Titg — Sirp(t) (17)
C. Architecture of CSANN

To sum up, the architecture of the network proposed in this

Aszip, (0 +1) = Aszy,, (8) + Wa X Asci,, (B) paper is simpler than those of three-layer networks proposed
=Sirp(t) + W X Asc,y, (1) (18) by Willems et al. [18], [19] and Yu [20]. The architecture of

the proposed network consists of two layers. The bottom layer

consists only of ST-units, corresponding to the starting times

Ast, (t+1) = Ast,, (£) + Wa X Asc,,, (t) of all operations. The top layer contains both SC-units and
= Sug(t) = W x Asc.,, (D). (19) RC—unrt.s, which represent sequence arrd resource constramts,

respectively, and provide feedback information to adjust
Similarly in Fig. 4, RCB,;; represents the resource conST-units for sequence and resource constraints satisfaction

straint betweer®;, andO,;;, on maching;. At time ¢ during through SC-block and RC-block respectively.
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To solve a specific job-shop scheduling problem, CSANN caralculating each RC-unit. This simulation mechanism results in
be built up as follows: first compute the number of ST-unita deterministic unique schedule. That is, under the same initial
are according to the specific problem (the number is given lepnditions of ST-units, the network can converge to the unique
> icn M), then build up the three sets &f, Q; and R, ac- stable state responding to the unique solution. This is an asyn-
cording to the actual sequence and resource constraints, finallyonous processing mode.
form the SC-block and RC-block, resulting in the problem-spe- The second mechanism calculates the activation of units in a

cific neural network. random order during each iteration cycle, which results in non-
_ ) deterministic schedules. That is, under the same initial condi-
D. Network Complexity Analysis tions of ST-units, the network always converges to nondeter-

As previously mentioned in Section Il, there are two limiministic stable state, resulting in a feasible but not the same so-
cases of the generalized job-shop scheduling problem describigidn. This kind of mode is also asynchronous.
by the mathematical model: the traditional job-shop schedulingIn the third mechanism, the activation of units is calculated
problem and the open-shop scheduling problem. Correspoiitia synchronous parallel manner. During the simulation pro-
ingly, there are also two limits for the network complexity ofessing of network, the activation of all units is calculated in
CSANN. a random or fixed order, but the newly calculated activation of
For a traditionaln/m/J/Cpnax problem, we assume thata unit is not sent immediately to its connected units but stored
n; = mforalli € N and each job passes through each machinitil all units have finished their calculations and stored their
once in a prescribed sequencing order. Thererdye — 1) activations. In the next calculation cycle the activation of a unit
sequence constraint inequalities of equation type (1), whithcalculated using the stored activations of the connected units.
requiresn(m — 1) SC-units; there arenn(n — 1) resource
constraint inequalities of equation type (3), which requires IV. COMBINED APPROACHES FORJOB-SHOP SCHEDULING

mn(n — 1) RC-units; there arenn ST-units representing the |, s section the approaches of combining CSANN and
starting times of all operations. Thus the total number of neur,

o . . ﬁ‘éuristic algorithms for job-shop scheduling problems are de-
units isn(mn +m — 1). Because each SC-unit or RC-unit ha J : P ap

> Isnim . '3Zcribed in detail.
two incoming connections from, and two feedback connections

to two ST-units, the number of interconnections in SC-block j@_ Structure of the Scheduling Approaches

4n(m — 1), and the number of interconnections in RC-block is ) ] ) )
4mn(n — 1). Hence the total number of interconnections in the The combined approaches for job-shop scheduling consist
CSANN network isin(mn — 1). of two parts: CSANN and several heuristics presented latter

For an open-shop scheduling problem, we assumerthat in this section. In the combined scheduling approaches, the

mforalli € N and each job passes through each machine onpguristic algorithms can be used individually or all together
There aren x C2, = mn(m — 1) SC-units representing thewith CSANN. CSANN is used to remove the violations for

sequence constraint inequalities of equation typedﬁj(n _sequence and resource constraints resulting in the generation

1) RC-units representing the resource constraint inequalities®f€2sible solutions to the specific problem, and the heuristics

equation type (3)mn ST-units representing the starting time&'€ Used to improve the performance of the CSANN or the
of all operations, resulting in a total numbersfi(m + n — quality of the feasible solutions obtained by CSANN. Fig. 5

1) neural units. Similarly, the number of interconnections iFNOWS the maximal structure of the combined approach where

SC-block isdmn(m — 1), and the number of interconnection!! heyristics are used. In Fig. 5, Alg. is the abbreviation of
in RC-block isdmn(n — 1). Hence the total number of inter- 2/gorithm.
connections in the CSANN network4snn(m + n — 2).

For a generalized job-shop scheduling problem, we also oY _ _ _
sume that; = m for all « € N and each job passes through Asshownin Fig.5, inthe combined approach for the job-shop
each machine once, the number of SC-units is betwéen-1)  scheduling, three relative heuristic algorithms that can be used
andmn(m—1) and the total number of the neural units of the réndividually or all together with CSANN are proposed.
sulting CSANN is between(mn+m—1) andmn(m+n—1). Algorithm 1: Exchange the orders of two near operations by
Obviously, the neural unit complexity of CSANN @(mn?). exchanging their starting times. There are two cases when this
Similarly, the number of interconnections in SC-block is bealgorithm works. The first case is when the operation pairs are
tweendn(m — 1) anddmn(m — 1), the number of intercon- of the same job. The second case is when the two operations are
nections in RC-block igmn(n — 1). The total number of inter- of different jobs sharing the same machine.
connections in the CSANN network is betwegr(mn—1)and ~ For the first case, assume the operation pairghg,, Oir,].
4mn(m+n— 2). Hence the connection complexity of CSANNAt time ¢ during the processing of CSANN, [i0;1,,, Oiiy] € F;
is a|SOO(m7’LQ). andSikp(t) > Silq(t) or [Oik]nOilq] € Q; andGikl(t) > G,

the following two equations begin to work:

Asty, (t+1) = Sy (t +1) = Ast,, () = Sue(t)  (28)

B._Heuristic Algorithms

E. Mechanisms of Running CSANN

There are three mechanisms of running CSANN. In the first
mechanism, during each iteration cycle of calculating all units,
the activation of units is calculated in a fixed order of first calcu-
lating each ST-unit, then calculating each SC-unit, and finally Asz, (t +1) = Su(t +1) = Ast,, (t) = Sirp(t)  (29)
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Initial Feasible Improved feasible Let Ny be the number of idle time segments existing in the
SO T vy Loutions solutions feasible solution, anéll; (i € {1, -+, Nrr}) be the time length
of ith idle time segment with the starting point and ending point
o beinglS; andIE;, respectively, then algorithm 2 is presented
New initial foll K
solutions as rollows:
Alg.3 -1
y .
ikp = Sikp — Z 1T}, if IEi_1 < Sup <15 (32)
Fig. 5. The maximal combined approach structure. j=1

wherel € {1,---, Ny}, Sikp IS the starting time of);,, in the
where variable;x,(t) sums up the times that, at timeluring  old feasible solution, and;, , is the new starting time o,
the processing of CSANN, operation pajt3;x,, O;;] € Q; in the improved feasible solution with all idle time segments
have their starting times;;,, and S, continuously changed within S;;,, compacted away.
with the same adjusting effect ever since the previous zero-reseflgorithm 3: Shorten the starting times of those operations
because of sequence confliGt, a prescribed positive integer, iswith maximal complete time in the obtained feasible solution.
used as the judging condition for algorithm 1 to be entriggeretihat is, for the latest operations of all jobs, if the equation of
That is, when7;,,(¢) reacheg7 the algorithm works and resetss,. ,(t) + Tie,; = maxjen (Sje;q + Lje,q) holds, (33) will
Ga(t) to zero meanwhile. work

For the second case, assufig,;, O;;, € 1,. Attime ¢
. . / ;

during the processing of CSANN, #;:(t) > H, the fol- Sieiq = Sieig — 6,1 €N (33)

lowing two equations begin to work: whereS!_ _is the new starting time&) is a positive changeable

1e:q
Asz, (t+1) = Sig(t +1) = Ast,,, () = Sjy(t) (30) Pparameter. | _

Algorithm 3 is originated from literature [20] and is used to
obtain a new initial solution, which can be reused by CSANN in
order to solve better solutions. In fact, the cost functibof the

Aszy, (8 +1) = Sjeg(t+1) = Aszy, (1) = Sing () (31) job-shop scheduling model presented in Section Il can be seen
where variableH,;;.;;(t) is the summed times that operatior?S the energy function of CSANN. The functi(_)nalit_y of (33) is
pairs O;1,, and O;;, have their starting times continuouslyto decrease the energy of the network and direct it toward the

changed with the same adjusting effects at tireger since the OPtimal solution.

previous zero-reset because of resource conflict on mach'@e

g during the processing of CSANN. The parametéris a '

prescribed positive integer with the same functionality?as The basic steps of the combined approaches for solving the
Algorithm 1 can be used together with CSANN to guarantd@b-shop scheduling problem are shown as follows:

the generation of feasible solutions. During the processing ofStep 1) Build up CSANN model, set the values for param-

Description of the Combined Approaches

CSANN there may appear the phenomenon of so-called “dead
lock” which can result in no feasible solution. This phenomenon

etersG, H, W and d, and prescribe an expected
makespan;

results from the conflicts of feedback adjustments themselvesStep 2) Randomly initialize or specify by hand the initial

while removing sequence and resource constraint violations.
For example, assum®;,,, Oiq] € P; or [Ojrp, Oitg] € Qs
and Oy, Ojrg € R,. During the processing of CSANN, the
SC-unitSCj, may put forward the starting tim;;, of opera-
tion Oy, through feedback adjustment because of sequence vi-
olation, while the RC-uniRCy;i;,,, may put backs;;, through
feedback adjustment because of resource violation. Thus there
may exist conflicts resulting from the two kinds of adjustments
which result in “dead lock.” “Dead lock” leads to the noncon-
vergence of CSANN to its stable station, which corresponds to

starting timeS;,,(0) for each operatio®;, (i €
N.k € {1,---,n;}), and letS;;,,(0) be the initial
net input/sr,, , of each ST-unitS7;,;

Step 3) Run each SC-un#C};,; of SC-block, calculate its

activationAgc,,, (t) with (13) or (17).Asc,,, () #

0 means the dissatisfaction of sequence constraint
corresponding to (1) or (2), then adjust activations of
relative ST-units with (14) and (15) or (18) and (19),
or with (28) and (29) if algorithm 1 is comdined in
the approach and its conditions are satisfied;

the feasible solution of specific job-shop scheduling problem. Step 4) Run each RC-uniCy;,;; of RC-block, calcu-

By using algorithm 1, when the phenomenon of “dead lock”

happens and;;, has been continuously put baék times be-

cause of resource violation betwee¥y, andO;.,.,, that is, at

time t Hgir;:(t) reachedd, the starting times;;, of O;;; may

be exchanged witly;,,,4, of O;,,4. Thus “dead lock” can be ef-

fectively avoided and the feasible solution is guaranteed.
Algorithm 2: Compact away the idle times. That is to elim-

late its activationAgc,,, ,(t) with (21) or (25).
Agrc,,..(t) # 0 means the dissatisfaction of re-
source constraint corresponding to (3). In this case
adjustSikq(t + 1) and Sjlq(t + 1) with (22), (23)

or (26), (27) according to the actual situation or
with (30), (31) if algorithm 1 is combined and its
conditions are satisfied;

inate the time segments in the feasible solution obtained byStep 5) Repeat Steps 3) and 4) until all units are in stable

CSANN, during which all machines are idle. Thus an improved
feasible solution with shorter makespan can be obtained.

states without changes, which means that the se-
quence and resource constraints are satisfied and the
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feasible solution is obtained. If algorithms 2 and 3 TABLE |
are not used, stop the program now; OR'GgiLhAP'fé‘Tf OF
Step 6) If algorithm 2 is used, run algorithm 2 in order to
obtain an improved feasible solution. If algorithm 3 Job No. 1 2 3
is not used, stop the program now; Operation No. 1127311 (2{1(2] 3
Step 7) If algorithm 3 is used, judge whether the prescribec Machine No. 1({1(2j1|2|2(1]| 2
stop criterion is achieved. If the stop criterion is  Previous Operation | 0 [ 1|2 (0|0 |0 |0 | 1,2
achieved, stop the program; otherwise, take the = Next Operation |23 /0|00 (3|3 ]| O
makespan of the newly obtained solution as new __ ProcessingTime (3 ]5)16[8(4|92] 7
expected makespan, use algorithm 3 to obtain a new
initial solution and return Step 3). TABLE I
In Steps 1) and 7), the expected makespan is the makespan the ORIGINAL DATA OF EXAMPLE 2
scheduler want tp achieve. For a scheduling problem without Job | Operation No.
due date constraints, the expected makespan can be used as the No.l 1 2 3
common due date of all jobs. For a scheduling problem with T |15 28 32
common or different due dates, the expected makespan can be 2 |37 13 29
set to the biggest due date of all jobs. In Step 7), the stop crite- 3 (1,3 23
rion used is the continuous run times, e.g., ten times, with the 4 |35 16 34
makespans of feasible solutions obtained keeping the same with 5 [24 1,3 33
ever obtained shortest makespan of feasible solutions.
TABLE I
V. SIMULATION STUDY ORIGINAL DATA OF EXAMPLE 3
A. Simulation Examples Job Operation No.

No.|1 2 3 4 5 6
31 1,3 26 4,7 63 56
28 35 510 6,10 1,10 44
35 44 68 19 21 57
25 15 35 43 58 69
39 23 55 64 13 41
23 43 69 1,10 54 31

Four job-shop scheduling problems d3/2/J/Cpax,
5/3/J/Cinax, 6/6/J/Cinax, and10/10/J/C,,,., are presented
as simulation examples.

Example 1:Table | presents the original data of a
3/2/J/Cnax 0generalized job-shop scheduling problem,
where there are free operations and different number of
operations for different jobs. In Table I, the previous or next
operation being equal to zero represents the case that the re-
sponding operation has no previous or next operation sequeft@ the same: in order from operation 1 to operation 10. The
constraint. If an operation has neither previous operation n¥@kespan of the feasible schedule given by Zabal. [16] is
next operation sequence constraint, it is called a free operati88;
e.g., the two operations of job 2. Of job 3 the operation 3 has
two previous operations 1 and 2, operation 1 and operatior52
are free sequence operation pair. Each of job 1 and job 3 haB8ecause of the adaptive property, it is very suitable to
three operations, while job 2 has two operations. realize the proposed CSANN in software. Because of the

Example 2:Table Il presents &/3/.J/C.x problem, object-oriented characteristics of units, it is relatively easy
which is also a generalized job-shop scheduling problem with simulate the CSANN with an object-oriented developing
different due dates and different number of operations for jodanguage. The simulation of CSANN was implemented on an
In Table 11, (m, t) means that the relevant operation of some jolmtel 586 PC running at 133 MHz. The development of CSANN
will be processed on machime with its processing time being was undertaking using Microsoft Visual C++ 5.0 development
t (the same with following Tables Il and 1V). The sequencenvironment. The first task was to build three classes: class
constraints of all jobs are the same: in order from operationCISTunit, class CSCunit and class CRCunit according to the
to operation 3. In this example, job 3 has only two operationsharacteristics of the summation and activation functions of
job 4 has its first operation and third operation to be process8d-units, SC-units and RC-units, then build up the class CNet-
on machine 3. The due dates for the five jobs are 23, 25, 4#ork as their friend class. While building these four classes,
30, and 30, respectively. the sequence and resource constraints of a specific problem are

Example 3:Table Ill presents a traditionad/6/J/Cyax  considered. Thus the problem-specific CSANN can be built up.
problem from literature [26]. The sequence constraints of allIn order to determine the performance of CSANN and
jobs are the same: in order from operations 1 to 6. This examplempare between the proposed heuristic algorithms, in our
has the optimum (i.e., minimal makespan) of 55, which smulations the deterministic fixed-order mechanism of running
already known. CSANN is used, under which the proposed network converges

Example 4: Table IV presents a traditionab/10/.J/C,,.. 10 an unique solution from an initial solution.
problem, with its data measured from the feasible schedule prefor the simulations, CSANN and proposed algorithms were
sented by Zhowt al.[16]. The sequence constraints of all jobsised with four combination methods. Method 1 is CSANN

O Ut N

Simulation Environment
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TABLE IV
ORIGINAL DATA OF EXAMPLE 4

Job Operation No.

No. | 1 2 3 4 5 6 7 8 9 10
1 31 1,3 2,5 48 63 57 75 88 98 104
2 (28 35 510 69 710 84 15 43 10,5 9,7
3 135 44 7.8 89 21 58 63 10,7 9,10 13
4 |75 85 25 14 38 4,10 107 94 57 6,10
5 38 74 8,5 24 51 10,1 97 6,7 1,8 4,7
6 23 43 78 910 104 61 87 19 57 35
7 |57 6,7 3,7 10,5 91 410 710 84 23 19
8 (45 97 110,10 64 34 58 15 210 84 75
9 |53 10,8 94 67 47 15 29 35 710 8,10
10 | 6,8 2,1 1,5 57 89 33 47 75 109 94

alone. Method 2 is the combination of CSANN and Alg.1. M HE =
Method 3 is the combination of CSANN, Alg.1 and Alg.2. -
Method 4 is the combination of CSANN, Alg.1, Alg.2 and M2
Alg.3. Of all simulations, the four parameters are valued as
follows: G = H = 6§ = 5, W = 0.5. In all the figures and 0 10 20 30 40 50 60 70 80 90 100
tables given subsequently in this paper, the program run time is Runtime: 0 Second  Makespan: 102

rounded up to the next smaller integer value (in seconds). And

in all the Gantts the blocks represent individual operationSg- 6. A solution ofExample 1by Method 1.

The length of a block equals the processing time of relative

3,2
operation, ands, j) represents operatighof job s. M1 [ ]

C. Simulation Results and Analyses M2 2
IIII|IIllllllllllll[lllllllllllIlllllllllllll

For Example 1, different methods were used to solve the 0 5 10 15 20 25 30 35 40 45
problem from the same randomly initialized solution with Runtime: 0 Second  Makespan: 43
the expected makespan prescribed to be 120. Fig. 6 shows
the feasible solution in the mode of Gantt chart, obtained I 7- A solution ofexample 1by Method 3.
Method 2. The obtained solution has six idle time segments 8.2
that can be compacted away. Fig. 7 shows the solution obtained M1 [ ][] [ 20 ]
by Method 3. From Fig. 7, we can see, with algorithm 2 used,
the idle t.ime.s are compacted away, resulting in.a makgspan T ol
of 43 which is much shorter than that of 102 in Fig. 6. Fig. 8 0 5 10 15 20 25 30
presents a solution obtained by Method 4. From Fig. 8 we can
see, with algorithm 3 used, the optimal solution is obtained

M2 31 | 1s | a3 J22]

Runtime: 3 Seconds Makespan: 26

with makespan of 26. Fig. 8. A solution ofExample 1by Method 4.
ForExample 2 we use CSANN alone to solve from arandom

initial solution. Fig. 9 shows the simulation result. Obviously, M1[ 11 Baz][ 2z 52

Fig. 9 is an optimal solution with the due dates of all jobs satis-

fied. M2 E“ EHEEEE
From Figs. 7-9, we can see that the approaches are efficient M3[ 5 T lﬁ [15]3]

for the generalized job-shop scheduling problem. TN
ForExample 3 in order to show the performance of the pro- 0 5 10 15 20 25

posed approaches, different methods were first used to solve Runtime: 1 Second Makespan: 25

from zero initial solution under different expected makespans.

Zero initial solution means that the initial starting times of alfig. 9. A solution ofExample 2by CSANN.

operations is set to zero. The simulation results are shown in

Table V. From Table V it can be seen that searching from zetial solution is that the initial starting times of all operations

initial solutions, CSANN can always find good schedules by difre valued in a random and uniformed distribution in the region

ferent methods with all expected makespans in a short time. of [0,100]. With each method 100 experiments were executed.
Second, the use of different methods to séxample 3from For each experiment the expected makespan was used as the

randomly initial solutions under different expected makesparnsommon due date for all jobs. For all experiments the release

300 (equivalent teroo; for Example 3), 100 (quite loose value) dates for all jobs were set to zero. The statistics of the simu-

and 58 (near-optimal value) was investigated. A randomly iflation results with respect to average, minimum and maximum
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TABLE V
SIMULATION RRESULTS OFEXAMPLE 3 WITH ZEROINITIAL SOLUTIONS M1 E] 22 ][ =2 ] 6:‘5 X lEI
M2[ 21 sl [ 13 [ 0

Solving  Expected Makespan Runtime 1,1 6.6

method  makespan (E) (Seconds) M3[[=1] [22] 50 ] [a2] 5[!3

Method 1 +0o0 71 0 M4 ] :

Method 1 100 71 0 L) L]

Method 1 58 58 38 M5 L 28 J{es][1e] 45 Jes] 50 ]

Method 2 400 71 0

Meth0d2 100 71 O M6IlllllIlllIII3;3|:!II!IHG|'|3III|I1|’|51I1[1I2;4I|III|!TII4I‘I6|IIIII|

Method 2 58 58 34 0 5 10 15 20 25 30 35 40 45 50 55 60

Method 3 +00 71 0 Runtime: 35 Seconds ~ Makespan: 58

Method 3 100 71 0

ﬁeziog i .58 2(85 g? Fig. 10. A near-optimal solution dixample 3by Method 1.

etho o0
M1 [42] 34 J[ 64 T 25 s3]
3,5
of obtained makespans, the program runtimes and the times of N g MRS XN O RN CE
not converged in 100 experiments, respectively, are shown in 31“ T 6.6
Table VI. Fig. 10 shows the running result from a randomly ini- M3 — IREEN EEN i 56
tialized solution by Method 1 with the expected makespan pre- , -, [s2]
scribed to be 58. Fig. 11 is the optimal solution obtained from T e e [ o o]
a randomly initialized solution by Method 4 with the expected M5 : —— ——
makespan prescribed to 300. [Tsa ][ 63 | 22 [s4[ns] 26 |
From Table VI, Figs. 10 and 11, we can see that when

Lo o b bon b b b Lo
0 5 10 15 20 25 30 35 40 45 50 55

searching from randomly initial solutions, we can get the
Runtime: 305 Seconds Makespan: 55

following points.

1) By Method 1 (CSANN alone), the quality of obtained SOI:ig. 11. An optimal solution oExample 3by Method 4.
lutions heavily depends on the expected makespan. When
the expected makespan is suitably prescribed, near-
timal or optimal solutions can be found.

2) By Method 1, there may appear the phenomenon of
lock” with the percentage of about 8%.

3) While combined with algorithm 1, CSANN can alway
converge to feasible solutions.

%fc))od result, based on the comparison with the total processing
“degﬁ'e of the longest job. The total processing time of the longest
job,i.e.,job 9, is 68. From Fig. 13, we can see that the makespan
Sof the obtained solution dixample 4is 95, which is better than

the schedule result given in literature [16].

4) By Method 4, near-optimal or optimal solutions can al- Simulations of above four examples proved the efficient per-

ways be found, independent on the expected makesgg_ﬂﬂance of prop_osed CSANN and its combined approaches
and initial conditions. with several algorithms for job-shop scheduling problems as to

5) The solving speed of the proposed approaches ff0d solutions and high solving speed.

job-shop scheduling problems is high.
Additionally, from Figs. 6 and 7 and Tables V and VI, we can see
that while the expected makespan is quite loose and the initialAs mentioned in Section llI, there are three mechanisms of
starting times of operations were randomly generated fronranning CSANN. The first mechanism was used in the simula-
quite wide time region (e.g., [0, 100] is a quite wide region faions. Similarly in this section the computational complexity of
Example 1), algorithm 2 can be of great effect, but while theCSANN was invetigated with this mechanism. Computational
expected makespan is quite tight or the initial starting times odbmplexity of CSANN consists of two factors. One is the cal-
operations is randomly generated from a quite tight time regicalating times that CSANN requires during each iteration cycle.
(e.g., [0, 100] is a quite tight region féxample 3), algorithm The other one is the total humber of iterations that CSANN
2 can be of little effect. needs to obtain a feasible solution.

For Example 4, to compare our proposed approaches with We first discuss the computational complexity of each iter-
other neural networks, we first use Method 1 (only CSANNjtion cycle. For the convenience of discussions and without
to solve it from a randomly initial solution with the expectedhe lose of generality, we take as the analysis example a tra-
makespan set to 100, which is near the makespan given in dliitional n/m/J/Cy.x problem wheren; = m for all ¢ €
erature [16]. The simulation result is given in Fig. 12. Second and each job passes through each machine in a prescribed
we use Method 4 to solvexample 4from a randomly initial sequencing order. As described in Section lll, there rare
solution with the initial expected makespan set to 1000, whi@T-units,n(m — 1) SC-units andnn(n — 1) RC-units. We as-
is much greater than the sum of processing times of all opesaime that in the worst case, in which during an iteration cycle
tions and equivalent tg-co. The simulation result is shown in for each SC-unit or RC-unit there are constraint violation and
Fig. 13. From Fig. 12, we can see that CSANN obtained a qufeedback adjustments. In this case for each iteration cycle, first

VI. COMPUTATIONAL COMPLEXITY ANALYSIS
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TABLE VI
SIMULATION RESULTS OFEXAMPLE 3 WITH RANDOMLY INITIAL SOLUTIONS

Solving  Expected Makespan Runtime (Seconds) Times of
method makespan (Ave/Min/Max) (Ave/Min/Max})  not converged
Method 1 300 106/96/117 1/0/1 7
Method 1 100 94/88/100 2/0/6 8
Method 1 58 58/58/58 49/19/85 10
Method 2 300 105/95/118 1/0/1 0
Method 2 100 93/86/100 1/0/5 0
Method 2 58 58/58/58 45/17/80 0
Method 3 300 68/61/84 2/0/7 0
Method 3 100 93/85/100 2/1/8 0
Method 3 58 58/58/58 48/25/95 0
Method 4 300 60/55/67 145/91/349 0
3,10
M1 m I 9,6 I 6.8 I 8,7 I 2,7 l 5.9 l D l 7,10
10,2 3,5
Mol [aEolsl 0[] o
11 10,6
M3 | 5.1 |3,1 | |2.2| 7.3 | l Is,sl 4.5 ’
M4 | s . [ 24 Jrwr]es ] 46 | 16 |
5.5
M5 9,1[ 7,1 | | 10,4 ”I 2,3 I | 8,6 I 1,6 I 3,6 || 6,9 I 1.9 |
6,6
M6 [ 101 Jl 7,2 | Is,4| 9,4 I[l,sl 2,4 ” 5,8 I
M7 |5,2| 4,1 I 6,3 l 3,3 [ IlO,SI 2,5 I 1,7 | I 7.7 l 9.9 [s10]
M8 |5,3|4,2| 10,5 || 3.4 | ] 6.7 || 1,8 | Is,9|7,sJ [ 9,10 I
7.5 10,10
M9 ] [se T we [za0]
5.6
Mio| [e2 ][ == ] [oe | [Cor [ oo | 110
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 8 85 90 95 100

Runtime: 45 Seconds Makespan: 99

Fig. 12. A feasible solution dExample 4 by CSANN.

mn ST-units are calculated, thexfrn — 1) SC-units are calcu- and the problem size is approximately linear with the ratio of
lated an®@n(m—1) feedback adjustments are calculated, finallthe total iteration number to the problem size being about five.
mn(n—1) RC-units an@mn(n — 1) feedback adjustments areThat is, the total number of iterations is on the orde©¢fnn)
calculated. So for each iteration, the total number of calculatiottsthe problem size.
is n(3mn + m — 3), which is on the order a®(mn?). The total computational complexity of CSANN is the product
Second, the total number of iterations needed by CSANN o6 the number of iterations and the complexity per iteration,
obtain a feasible solution is discussed. Usually the total numbehich is approximately)(m?n?).
of iterations varies with the problem size (i. e., the total opera-
tions in our discussions ) and the parameter value of CSANN.
In order to test the relation between the total number of iter-
ations and the problem size, we simulated under the same paFhe proposed approaches for job-shop scheduling are origi-
rameter valugW = 0.5) with randomly generated eight tra-nated from the idea of combining CSANN and several heuristic
ditional job-shop scheduling problems: froB3/J/Ch.x to  algorithms. CSANN has the property of easily mapping the se-
10/10/J/Cpax- For all these problems, each job passes througluence and resource constraints of specific job-shop scheduling
each machine once in the order of from the first operation to theoblem onto its architecture and removing the violations of
last operation. In all the simulations the expected makespahase constraints during its processing to obtain feasible solu-
were set to betoc and the solution starts from random initions. The adaptive property of CSANN makes it different from
tial solutions. The simulation results are shown in Table Vlbther constraint satisfaction neural networks in a simpler archi-
Table VII shows that the relation between the iteration timescture.

VII. CONCLUSIONS
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Fig. 13. A solution ofExample 4 by Method 4.

TABLE VII
SIMULATION RESULTS OFCOMPUTATIONAL COMPLEXITY

Simulation Number of Runtime Number of
Problems Operations (Seconds) Iterations
3/3/J/Caz 9 0 37
4/4/J/Cmas 16 0 64
5/5/J/Cmaz 25 0 134
6/6/J/Cmax 36 1 161
7/7/J/Cmaz 49 1 213
8/8/J/Cpax 64 1 334
9/9/J/Caz 81 2 412 [
10/10/J/Craz 100 3 584
[2]
[3]

When only CSANN is used for job-shop scheduling prob-
lems, the quality of feasible solutions obtained somewhat de{4]
pends on the choice of an expected makespan which may be the
scheduler’s desired objective. When the expected makespan i[ssl
suitably chosen, the desired objective can always be achieveds]
But when the specification of the expected makespan is too
loose the feasible solution searched may be not good enougﬂ,ﬂ
and when too tight or shorter than the optimum, the feasible
solution cannot be obtained. Meanwhile there may appear thé?l
phenomenon of nonconvergence among many runs.

To improve the performance of CSANN and the quality of [9]
solutions searched, we can combine CSANN with the proposed
heuristics. While combined with these algorithms, CSANN cary, g,
always find good schedules (including near-optimal and optimal
solutions) with the expected makespan chosen quite loose &
even equivalent te-oc. [12

For practical scheduling problems we can apply the following
strategy: first use only CSANN to obtain a feasible solution from
the zero initial solution, then use the obtained makespan as ﬂ[&;]
expected makespan to run Method 4 from randomly initial so-

55 60 65 70 75 80 85 90 95

lutions several times, finally take the obtained best solution as
the practical schedule.
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