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Abstract—The university course timetabling problem (UCTP) is
a combinatorial optimization problem, in which a set of events has
to be scheduled into time slots and located into suitable rooms. The
design of course timetables for academic institutions is a very diffi-
cult task because it is an NP-hard problem. This paper investigates
genetic algorithms (GAs) with a guided search strategy and local
search (LS) techniques for the UCTP. The guided search strategy
is used to create offspring into the population based on a data
structure that stores information extracted from good individu-
als of previous generations. The LS techniques use their exploitive
search ability to improve the search efficiency of the proposed GAs
and the quality of individuals. The proposed GAs are tested on two
sets of benchmark problems in comparison with a set of state-of-
the-art methods from the literature. The experimental results show
that the proposed GAs are able to produce promising results for
the UCTP.

Index Terms—Genetic algorithm (GA), guided search, local
search (LS), university course timetabling problem (UCTP).

I. INTRODUCTION

T IMETABLING is one of the common scheduling prob-
lems, which can be described as the allocation of re-

sources for tasks under predefined constraints so that it max-
imizes the possibility of allocation or minimizes the violation of
constraints [40]. Timetabling problems are often made compli-
cated by the details of a particular timetabling task. A general
algorithm approach to one problem may turn out to be inca-
pable for another problem, because certain special constraints
are required in a particular instance of that problem. In the uni-
versity course timetabling problem (UCTP), events (subjects
and courses) have to be allocated into a number of time slots
and rooms while satisfying various constraints. It is very diffi-
cult to find a general and effective solution for timetabling due
to the diversity of the problem, the variance of constraints, and
particular requirements from university to university according
to the characteristics. There is no known deterministic poly-
nomial time algorithm for the UCTP, since it is an NP-hard
combinatorial optimization problem [18].
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The research on timetabling problems has a long history
of more than 40 years, starting with Gotlieb in 1962 [22].
Researchers have proposed various timetabling approaches
by using graph coloring methods, constraint-based methods,
population-based approaches (e.g., genetic algorithms (GAs),
ant-colony optimization, and memetic algorithms), metaheuris-
tic methods (e.g., tabu search (TS), simulated annealing (SA),
and great deluge), variable neighborhood search (VNS), hy-
brid and hyperheuristic approaches, etc. A comprehensive re-
view and recent research directions in timetabling can be found
in [13], [27], and [35]. GAs have been used to solve the UCTP
in the literature [3], [28], [34]. Rossi-Doria et al. [37] compared
different metaheuristics to solve the UCTP. They concluded that
conventional GAs do not give good results among a number of
approaches developed for the UCTP. Hence, conventional GAs
need to be enhanced to solve the UCTP.

Recently, a guided search GA, denoted as GSGA, has been
proposed for solving the UCTP [23]. GSGA consists of a guided
search strategy and a local search (LS) technique. One of the
important concept of GAs is the notion of population. Unlike
traditional search methods, GAs rely on a population of can-
didate solutions [38]. In GSGA, a guided search strategy is
used to create offspring into the population based on an ex-
tra data structure. This data structure is constructed from the
best individuals from the population, and hence, stores useful
information that can be used to guide the generation of good
offspring into the next populations. The main advantage of this
data structure is that it maintains partial information of good
solutions, which otherwise may be lost in the selection process.
In GSGA, an LS technique is also used to improve the quality
of individuals through searching in three kinds of neighborhood
structures. GSGA has shown some promising results based on
some preliminary experiments in [23].

In this paper, we further investigate the performance of GSGA
with LS strategies for the UCTP. Here, a unified framework of
combining standard GA and LS strategies is used. In addition to
the original LS strategy used in GSGA [23], a new LS strategy
is introduced into GSGA, which leads to an extended GSGA
(EGSGA) for the UCTP. In order to investigate the effect of
parameters on the performance of GSGA for the UCTP, a sen-
sitivity analysis of key parameters of GSGA is carried out by
systematic experiments based on a set of benchmark UCTP in-
stances. In order to test the performance of GSGAs, experiments
are also carried out to compare GSGAs with other variants of
GAs and a set of state-of-the-art methods from the literature on
a set of benchmark UCTP instances.

The rest of this paper is organized as follows. Section II
briefly describes related work on the UCTP. The UCTP studied
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in this paper is described in Section III. Section IV presents the
proposed method and the common framework for all methods
described in this paper. Experimental results of the sensitivity
analysis of key parameters of GSGA and comparing the pro-
posed GSGAs with other algorithms from the literature are re-
ported and discussed in Section V. Finally, Section VI concludes
this paper with some discussions on the future work.

II. RELATED WORK

Several algorithms have been introduced to solve timetabling
problems. The earliest set of algorithms are based on graph
coloring heuristics. These algorithms show a great efficiency in
small instances of timetabling problems, but are not efficient in
large instances. Later, stochastic search methods, such as GAs,
SA, TS, etc., were introduced to solve timetabling problems.

Generally speaking, there are two types of metaheuristics al-
gorithms [5]. The first type are local-area-based algorithms and
the second are population-based algorithms. Each type has some
advantages and disadvantages. Local-area-based algorithms in-
clude SA [41], very large neighborhood search [1], TS [30], and
many more. Usually, local-area-based algorithms focus on ex-
ploitation rather than exploration, which means that they move
in one direction without performing a wider scan of the search
space. Population-based algorithms start with a number of so-
lutions and refine them to obtain global optimal solution(s) in
the whole search space, and hence, are global-area-based al-
gorithms. Population-based algorithms that are commonly used
to tackle timetabling problems include evolutionary algorithms
(EAs) [14], particle swarm optimization [19], ant-colony opti-
mization [39], artificial immune system [31], etc.

In recent years, several researchers have used GAs to solve the
UCTP. They enhanced the performance of GAs by using modi-
fied genetic operators, heuristics operators, and LS techniques.
Generally speaking, when a simple GA is employed, it may
generate illegal timetables that have duplicate and/or missing
events. The quality of a solution produced by population-based
algorithms may not be superior to local-area-based algorithms
mainly due to the fact that population-based algorithms are more
concerned with exploration than exploitation [5]. Population-
based algorithms scan solutions in the whole search space with-
out focusing on the individuals of good fitness within a popula-
tion. Furthermore, population-based algorithms may experience
premature convergence, which may lead to them being trapped
into local optima. Population-based algorithms have another
drawback of requiring more time [33]. However, EAs have sev-
eral advantages when compared with other optimization tech-
niques [34]. For example, GAs can perform a multidirectional
search using a set of candidate solutions [21].

Various combinations of local-area- and global-area-based
algorithms have been reported to solve timetabling problems in
the literature [32], [37], [40]. In addition, it is also being in-
creasingly realized that EAs without incorporation of problem-
specific knowledge do not perform as well as mathematical
programming-based algorithms on certain classes of timetabling
problems [8]. In this paper, we want to combine the good prop-
erties of local- and global-area-based algorithms to solve the

UCTP. We try to make a balance between the exploration abil-
ity (global improvement) of GAs and exploitation ability (local
improvement) of LS. In addition, an external memory data struc-
ture is introduced to store parts of previous good solutions and
reintroduce these stored parts into offspring in order to enable
the proposed GAs to quickly locate the optimum of a UCTP.

III. UNIVERSITY COURSE TIMETABLING PROBLEM

A. Problem Description

According to Carter and Laporte [13], the UCTP is a multidi-
mensional assignment problem, in which students and teachers
(or faculty members) are assigned to courses, course sections,
or classes and events (individual meetings between students and
teachers) are assigned to classrooms and time slots. The real-
world UCTP consists of different constraints: some are hard
constraints and some are soft constraints. Hard constraints must
not be violated under any circumstances, e.g., a student can-
not attend two classes at the same time. Soft constraints should
preferably be satisfied, but can be accepted with a penalty asso-
ciated to their violation, e.g., a student should not attend more
than two classes in a row.

In this paper, we will test our proposed algorithms on the
problem instances discussed in [37]. We deal with the following
hard constraints:

1) no student attends more than one events at the same time;
2) the room is big enough for all the attending students;
3) the room satisfies all the features required by the event;
4) only one event is in a room at any time slot.
There are also soft constraints, which are equally penalized

by the number of their violations and are described as follows:
1) a student has a class in the last time slot of a day;
2) a student has more than two classes in a row;
3) a student has a single class on a day.

B. Problem Formulation

In a UCTP, we assign an event (course and lecture) into a time
slot and also assign a number of resources (students and rooms)
in such a way that there is no conflict between the rooms, time
slots, and events. As mentioned by Rossi-Doria et al. [37], the
UCTP consists of a set of n events (classes and subjects) E =
{e1 , e2 , . . . , en} to be scheduled into a set of 45 time slots T =
{t1 , t2 , . . . , t45} (i.e., nine for each day in a five day week), a set
of m available rooms R = {r1 , r2 , . . . , rm} in which events can
take place, a set of k students S = {s1 , s2 , . . . , sk} who attend
the events, and a set of l available features F = {f1 , f2 , . . . , fl}
that are satisfied by rooms and required by events.

In addition, interrelationships between these sets are given by
five matrices. The first matrix Ak,n , called Student-Event matrix,
shows which event is attended by which students. In Ak,n , the
value of ai,j is 1 if student i ∈ S should attend event j ∈ E;
otherwise, the value is 0. The second matrix Bn,n , called Event-
Conflict matrix, indicates whether two events can be scheduled
in the same time slot or not. It helps to quickly identify events
that can be potentially assigned to the same time slot. The third
matrix Cm,l , called Room-Features matrix, gives the features
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that each room possesses, where the value of a cell ci,j is 1 if
i ∈ R has a feature j ∈ F ; otherwise, the value is 0. The fourth
matrix Dn,l , called Event-Features matrix, gives the features
required by each event. It means that event i ∈ E needs feature
j ∈ F if and only if dij = 1. The last matrix Gn,m , called Event-
Room matrix, lists the possible rooms to which each event can be
assigned. Through this matrix, we can quickly identify all rooms
that are suitable in size and feature for each event. Usually, a
matrix is used for assigning each event to a room ri and a time
slot ti . Each pair of (ri, ti) is assigned a particular number that
corresponds to an event. If a room ri in a time slot ti is free or no
event is placed, then “−1” is assigned to that pair. In this way,
we assure that there will be not more than one event assigned
to the same pair so that one of the hard constraint will always
been satisfied.

For the room assignment, we use a matching algorithm de-
scribed by Rossi-Doria et al. [37]. For every time slot, there is a
list of events taking place in it and a preprocessed list of possible
rooms to which the placement of events can occur. The match-
ing algorithm uses a deterministic network flow algorithm and
gives the maximum cardinality matching between rooms and
events.

In general, the solution to a UCTP can be represented in
the form of an ordered list of pairs (ri, ti), of which the index
of each pair is the identification number of an event ei ∈ E
(i = 1, 2, . . . , n). For example, the time slots and rooms are
allocated to events in an ordered list of pairs like

(2, 4), (3, 30), (1, 12), . . . , (2, 7)

where room 2 and time slot 4 are allocated to event 1, room 3
and time slot 30 are allocated to event 2, etc.

The goal of the UCTP is to minimize the soft-constraint vi-
olations of a feasible solution (a feasible solution means that
no hard-constraint violation exists in the solution). The objec-
tive function f(s) for a timetable s is the weighted sum of the
number of hard-constraint violations #hcv and soft-constraint
violations #scv, which was used in [35], as defined as follows

f(s) := #hcv(s) ∗ C + #scv(s) (1)

where C is a constant, which is larger than the maximum pos-
sible number of soft-constraint violations.

IV. INVESTIGATED GAS FOR THE UCTP

In this section, the GAs that are investigated in this paper
to solve the UCTP are described in detail. We first present the
framework of these GAs with the integration of LS schemes, and
then, describe the recently proposed GSGA and its extension,
which is introduced in this paper.

A. Common Framework

GAs are a class of general-purpose optimization tools
that model the principles of natural evolution [16]. GAs are
population-based heuristic methods, which start from an initial
population of randomly generated solutions of a problem. Each
solution in a population is called an individual of the population.
Each individual is evaluated according to a problem-specific

objective function, usually called the fitness function. After
evaluation, there is a selection phase in which possibly good
individuals are chosen by a selection operator to undergo the
recombination process. In the recombination phase, crossover
and mutation operators are used to create new individuals in or-
der to explore the solution space. The newly created individuals
replace old individuals, usually the worst ones, of the population
based on the fitness. This process is repeated until a stopping
criterion is reached, which may be the maximum number of
generations or a time limit. GAs were first used for timetabling
in 1990 [14]. Since then, there have been a number of papers
investigating and applying GA methods for the UCTP [13].

The basic framework of GAs investigated in this paper is
based on the steady-state GA (i.e., one individual is created
during each generation) together with LS schemes, which is
denoted as SSGA in this paper and is shown in Algorithm 1.
With this basic framework, GAs start from an initial popula-
tion of individual solutions that are randomly generated (i.e.,
events are randomly assigned to rooms and time slots for each
solution). It is reasonable to expect that the quality of the initial
solutions would affect the quality of the final solutions. How-
ever, we start from random initial solutions in this paper. Then,
in each generation, one individual is generated as follows. First,
two parents are selected using the tournament selection (of a
tournament size 2 in this paper). Then, crossover is carried out
with a probability Pc to generate one child via exchanging the
time slots between the two selected parents and allocating rooms
to events in each nonempty time slot. After crossover, the child
undergoes the mutation operation with a probability Pm . The
mutation operator first randomly selects one of the three neigh-
borhood structures N1, N2, and N3 (to be described next in
this section), and then, makes a move within the selected neigh-
borhood structure. After mutation, LS is performed on the child.
Finally, the newly generated child is used to replace the worst
individual from the population.

1) LS and Neighborhood Structures: In the basic framework
of GAs investigated in this paper, an LS method, as used in [36]
and denoted as LS1 in this paper, is applied on an individual
for possible improvement. Algorithm 2 summarizes the LS1
scheme used in the basic framework. LS1 works on all events.
Here, we suppose that each event is involved in soft- and hard-
constraint violations. LS1 works in two steps and is based on
three neighborhood structures N1, N2, and N3, respectively,
which are described as follows:

1) N1: the neighborhood defined by an operator that moves
one event from a time slot to a different one;
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2) N2: the neighborhood defined by an operator that swaps
the time slots of two events;

3) N3: the neighborhood defined by an operator that permutes
three events in three distinct time slots in one of the two
possible ways other than the existing permutation of the
three events.

In the first step (lines 2–13 in Algorithm 2), LS1 checks the
hard-constraint violations of each event while ignoring its soft-
constraint violations. If there are hard-constraint violations for
an event, LS1 tries to resolve them by applying moves in the
neighborhood structures N1, N2, and N3 orderly1 until a stop
condition is reached, e.g., an improvement or the maximum
number of steps smax is reached, which is set to different values
for different problem instances. After each move, we apply the
matching algorithm to the time slots affected by the move and
try to resolve the room allocation disturbance and delta evaluate
the result of the move.2 If there is no untried move left in

1For the event being considered, potential moves are calculated in a strict
order. First, we try to move the event to the next time slot, then the next, then
the next, etc. If this search in N1 fails, we then search in N2 by trying to swap
the event with the next one in the list, then the next one, etc. If the search in N2
also fails, we try a move in N3 by using one different permutation formed by
the event with the next two events, then with the next two, etc.

2A delta evaluation means that we only calculate the hard- and soft-constraint
violations of those events involved in a move within an individual and work out
the change of the objective value of the individual before and after the move

the neighborhood for an event, LS1 continues to the next event.
After applying all neighborhood moves on each event, if there is
still any hard-constraint violation, then LS1 will stop; otherwise,
LS1 will perform the second step (lines 14–27 in Algorithm 2).

In the second step, after reaching a feasible solution, LS1
deals with soft constraints in a similar way, as in the first step.
For each event, LS1 tries to make moves in the neighborhood
N1, N2, and/or N3 orderly in order to reduce its soft-constraint
violations without violating the hard constraints. For each move,
the matching algorithm is applied to allocate rooms to affected
events and the result is delta-evaluated. When LS1 finishes, we
get a possibly improved individual.

B. Guided Search Genetic Algorithm

The GSGA proposed in [23] incorporates a guided search
strategy and the aforementioned LS scheme LS1 into the GA
to solve the UCTP. The pseudocode of GSGA for the UCTP
is shown in Algorithm 3. In GSGA, we first initialize the pop-
ulation by randomly creating each individual via assigning a
random time slot for each event according to a uniform distri-
bution and applying the matching algorithm to allocate a room
for the event. Then, the LS1 method is applied to each member
of the initial population using the three neighborhood structures
described in Section IV-A.

After the initialization of the population, a data structure (de-
noted as MEM in this paper) is constructed, which stores a
list of room and time slot pairs (r, t) for each event that has a
zero penalty (i.e., no hard and soft violation at this event) of
individuals selected from the population. After that, MEM can
be used to guide the generation of offspring for the following
generations. The MEM data structure is reconstructed regu-
larly, e.g., every τ generations. In each generation of GSGA,

accordingly. On the contrast, a complete evaluation of an individual involves
the calculation of the hard- and soft-constraint violations of all events in the
individual. A delta evaluation is much cheaper than a complete evaluation, and
hence, is not counted into the number of evaluations in the experimental study
of this paper, as in other works from the literature.
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Fig. 1. Illustration of the data structure MEM .

one child is first generated either by using MEM or by apply-
ing the crossover operator, depending on a probability γ. After
that, the child will be mutated by a mutation operator with a
probability pm followed by the LS1 local search operation. Fi-
nally, the worst member in the population is replaced by the
newly generated child individual. This iteration continues until
one termination condition is reached, e.g., a preset time limit
tmax is reached.

In the following sections, we describe in detail the key com-
ponents of GSGA, including the MEM data structure and its
construction and the guided search strategy, respectively.

1) MEM Data Structure: There have been a number of re-
searches in the literature on using extra data structure or memory
to store useful information in order to enhance the performance
of GAs and other metaheuristic methods for optimization and
search [4], [29]. In GSGA, we also use a data structure MEM
to guide the generation of offspring. This MEM is used to
provide further direction of exploration and exploitation in the
search space. It aims to increase the quality of a child solution
by reintroducing part of best individuals from previous gener-
ations. Fig. 1 shows the details of the MEM data structure,
which is a two-level list. The first level is a list of events and the
second level is a list li of room and time slot pairs corresponding
to each event ei in the first level list. In Fig. 1, Ni represents the
total number of pairs in the second level list li .

The MEM data structure is regularly reconstructed every
τ generations. Algorithm 4 shows the outline of constructing
MEM . When MEM is due to be reconstructed, we first select
α × N best individuals from the population P to form a set
Q, where N denotes the population size. After that, for each
individual Ij ∈ Q, each event is checked by its penalty value,
i.e., the hard- and soft-constraint violations associated with this
event. If an event has a zero penalty value, then we store the
information corresponding to this event into MEM . For exam-
ple, if the event e2 of an individual Ij ∈ Q is assigned room 2 at
time slot 13 and has a zero penalty value, then we add the pair
(2, 13) into the list l2 . Similarly, the events of the next individual
Ij + 1 ∈ Q are also checked by their penalty values. If the event
e2 in Ij + 1 has a zero penalty, then we add the pair of room and
time slot assigned to e2 in Ij + 1 into the existing list l2 . If for an
event ei , there is no list li existing yet, then, the list li is added

into the MEM data structure. Similar process is carried out for
the selected Q individuals, and finally, the MEM data struc-
ture stores pairs of room and time slot corresponding to those
events with zero penalty of the best individuals of the current
population.

This MEM data structure is then used to guide the generation
of offspring for the next τ generations. We update MEM every
τ generations instead of every generation in order to make a
balance between the solution quality and the computational time
cost of the proposed GSGA.

2) Generating a Child by the Guided Search Strategy: In
GSGA, a child is created through the guided search strategy
by MEM (see Algorithm 5) or the crossover operator (see Al-
gorithm 6) with a probability γ. When a new child is to be
generated, a random number ρ ∈ [0.0, 1.0] is first generated. If
ρ < γ, Algorithm 5 (i.e., GuidedSolutionConstruction()) will
be used to generate the new child; otherwise, a crossover oper-
ation is used to generate the new child. Next, we first describe
the procedure of generating a child through the guided search
strategy by MEM , and then, describe the crossover operator.

If a child is to be created using the MEM data structure, we
first select a set Es of β ∗ n random events to be generated from
MEM . Here, β is a percentage value and n is the total number
of events. After that, for each event ei in Es , we randomly select
a pair of (rj

i , t
j
i ), j = 1, . . . , Ni , from the list li that corresponds

to the event ei and assign the selected pair to ei for the child. If
there is an event ei in Es , but there is no list li in MEM , then
we randomly assign a room and time slot from possible rooms
and time slots to ei for the child. This process is carried out
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for all the events in Es . For those remaining events that are not
present in Es , they are assigned random rooms and time slots.

Algorithm 6 describes the crossover operator. If a child is to
be generated using the crossover operator, we first select two
individuals from the population as the parents by the tournament
selection with the tournament size 2. Then, for each event of the
child, we randomly select a parent and allocate the correspond-
ing time slot for that event. Finally, we allocate rooms to events
in each nonempty time slot using the matching algorithm.

After a child is generated by using either MEM or crossover,
it goes over the mutation operation with a probability Pm , as
described earlier. After mutation, we apply the LS scheme LS1
to improve the child individual. Finally, the worst individual in
the population is replaced by the new child.

C. Extended GSGA

In this paper, we propose an extended version of GSGA,
denoted EGSGA, for the UCTP. In EGSGA, a new LS scheme,
denoted LS2 in this paper and described in Algorithm 7, is
introduced and combined with LS1 for GSGA.

In EGSGA, LS2 is used immediately after LS1 on random
solutions of the initial population as well as after a child is
created through crossover or the MEM data structure and mu-

tation. The basic idea of LS2 is to choose a high-penalty time
slot that may have a large number of events involving hard- and
soft-constraint violations and try to reduce the penalty values of
involved events.

LS2 first randomly selects a preset percentage of time slots3

(e.g., 20% as used in this paper) from the total time slots of T .
Then, it calculates the penalty of each selected time slot4 and
chooses the worst time slot wt that has the biggest penalty value
for LS. After taking the worst time slot, LS2 tries a move in the
neighborhood N1 for each event of wt and checks the penalty
value of each event before and after applying the move. If all
the moves in wt together reduce the hard- and/or soft-constraint
violations, then we apply the moves; otherwise, we do not apply
the moves. In this way, LS2 can not only check the worst time
slot, but also reduce the penalty value for some events by moving
them to other time slots.

In general, LS2 aims to help in improving the solution ob-
tained by LS1. LS2 is expected to enhance the individuals of
the population and increase the quality of the feasible timetable
by reducing the number of constraint violations.

D. GA With Both LS Schemes (GALS)

In order to investigate the effect of the guided search strat-
egy in GSGAs, in this paper we also investigate a SSGA with
two aforementioned LS strategies LS1 and LS2 and without
the guided search strategy. This GA is denoted as GALS in this
paper. In each generation of GALS, one child is first generated
through selection, crossover (Algorithm 6), and mutation. Then,
two LS methods, LS1 (Algorithm 2) and LS2 (Algorithm 7), are
orderly applied to the child. In the end, the worst individual in
the population is replaced with this new child. Hence, GALS
is an SSGA with the integration of LS2. This will also allow
us to check the effect of LS2 on the performance of SSGA for
the UCTP. GALS differs from EGSGA with γ = 0.0 in that
in GALS, crossover is carried out with a crossover probabil-
ity Pc , while in EGSGA with γ = 0.0 crossover is carried out
with a probability 1.0. In other words, EGSGA with γ = 0.0 is
equivalent to GALS with Pc = 1.0.

V. EXPERIMENTAL STUDY

In this section, we experimentally investigate the performance
of the proposed methods GALS, GSGA, and EGSGA in addition
with SSGA described in Algorithm 1 and a TS method proposed
by Rossi-Doria et al. [37] for the UCTP. TS is a powerful tool for
solving difficult optimization problems. It is a local-area-based
algorithm that has specialized memory structures to avoid being
trapped in local minima and achieve an effective balance of
intensification and diversification [37]. A TS method maintains
a list of tabu moves that represent timetables, which have been

3Rather than choosing the worst time slot out of all the time slots, we randomly
select a set of time slots, and then, choose the worst time slot. This is because,
for each selected time slot, we need to calculate its penalty value, which is time
consuming. By selecting a set of time slots instead of all time slots, we try to
balance between the computational time and the quality of the algorithm.

4The penalty of a time slot is the sum of the penalty values of all the events
that occur in the time slot.

Authorized licensed use limited to: University of Leicester. Downloaded on June 11,2010 at 11:47:59 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG AND JAT: GENETIC ALGORITHMS WITH GUIDED AND LOCAL SEARCH STRATEGIES FOR UNIVERSITY COURSE TIMETABLING 7

TABLE I
THREE GROUPS OF PROBLEM INSTANCES

visited recently and are forbidden, in order to prevent the search
from staying in the same region, and thus, enable the TS method
to escape from local optima [10].

All algorithms were coded in GNU C++ under version 4.1
and run on a 3.20 GHz PC. We use a set of benchmark UCTP
instances to test the algorithms, which were proposed in [37] for
the timetabling competition.5 Although these problem instances
lack many of the real-world problem constraints and issues [33],
they allow the comparison of our approaches with current state-
of-the-art techniques on them. Table I presents the data of these
UCTP instances in three different groups: five small instances,
five medium instances, and one large instance. As mentioned
earlier, the basic framework of all GAs we investigate (SSGA,
GALS, GSGA, and EGSGA) is a steady-state GA. The basic
parameters for GAs were set as follows: the population size N
was set to 50, the mutation probability Pm was set to 0.5, and the
crossover probability Pc (only used in SSGA and GALS) was
set to 0.8. The value of the constant C in the objective function
was set to 106 .

Two sets of experiments were carried out in this study. The
first set of experiments are devoted to analyze the sensitivity
of parameters for the performance of GSGA for the UCTP.
The second set of experiments compare the performance of
investigated GAs with or without the guided search strategy on
the test UCTPs. For both sets of experiments, there were 50 runs
of each algorithm on each problem instance. Following other
works [37], [39], for each run of an algorithm on a problem,
the maximum run time tmax was set to 90 s for small instances,
900 s for medium instances, and 9000 s for the large instance
based on the fact that larger UCTP instances are more complex
and have more conflicting constraints and a larger search space
as compared to smaller UCTP instances, and therefore, requires
more processing time.

In the end, we compare our experimental results of EGSGA
with a set of current state-of-the-art methods from the litera-
ture on the aforementioned set of test UCTP instances and an-
other set of UCTP instances taken from the 2002 International
Timetabling Competition (TTC 2002).6

A. Sensitive Analysis of Key Parameters of GSGA

The performance of the guided search strategy method de-
pends on the parameters and operators used. Through our previ-
ous work [23], we found that α, β, γ, and τ are key parameters

5For details, see http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html.
6For details, see http://www.idsia.ch/Files/ttcomp2002/oldindex.html.

TABLE II
PARAMETER SETTINGS IN GSGA

that can greatly affect the performance of GSGA for the UCTP,
where α is the percentage of best individuals selected from the
current population for creating the data structure MEM , β is
the percentage value of the total number of events that are used
to create a child through the data structure MEM , γ is the prob-
ability that indicates whether a child is created through MEM
or crossover, and τ decides the frequency of updating MEM
(i.e., MEM is updated every τ generations). Hence, we test our
algorithm GSGA with different settings of these parameters.

Table II shows different parameters and their settings that are
tested in our experiments. In order to find out which parameter
settings have a great effect on the performance of GSGA, we
run GSGA 50 times for all parameter combinations in Table II.
In Total, 600 combinations of parameter settings were observed.
Here, we only present some of them that seem to have a great
effect on the performance of GSGA. We chose two α values 0.2
and 0.6, three β values 0.1, 0.3, and 0.7, three γ values 0.2, 0.4,
and 0.8, and two τ values 20 and 60. The experimental results
with respect to the average objective value of GSGA with these
selected parameter settings are presented in Table III. In Table III
(and other tables and figures in this paper), “S1” represents small
problem instance 1, “S2” represents small problem instance
2, etc., “M1” represents medium problem instance 1, “M2”
represents medium problem instance 2, etc., and “L” represents
the large problem instance.

In order to help to understand the experimental results, Fig. 2
shows the dynamic performance regarding the average objective
value against the number of evaluations over 50 runs of GSGA
with one parameter changing while the other parameters kept
constant on different UCTP instances. Fig. 2(a) shows the ef-
fect of changing α on M1 with β = 0.3, γ = 0.8, and τ = 20.
Fig. 2(b) shows the effect of changing β on S2 with α = 0.2,
γ = 0.8, and τ = 20. Fig. 2(c) shows the effect of changing γ
on S5 with α = 0.2, β = 0.3, and τ = 20. Fig. 2(d) shows the
effect of changing τ on S4 with α = 0.2, β = 0.3, and γ = 0.8.
From Table III and Fig. 2, several results can be observed and
are analyzed next.

First, the parameter α has a significant effect on the perfor-
mance of GSGA for the UCTP. The performance of GSGA drops
when the value of α increases from 0.2 to 0.8 (see Fig. 2(a) for
reference). This occurs because when we choose a small part of
the population to create the MEM data structure, MEM can
provide a strong guidance during the genetic operations and help
GSGA to exploit the area of the search space that corresponds
to the best individuals of the population sufficiently. This suffi-
cient exploitation can ensure that GSGA quickly achieves better
solutions. In the contrast, when a large part of the population
is taken to create or update MEM , then MEM will lose its
effect of guiding GSGA to exploit promising areas of the search
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TABLE III
AVERAGE BEST VALUE OF 50 RUNS OF GSGA WITH DIFFERENT PARAMETER SETTINGS ON THE TEST PROBLEM INSTANCES

space. In other words, when α is set to large values, GSGA tends
to be SSGA, and hence, the performance will drop or become
weak. This can be observed from Fig. 2(a): when the value of
α increases, the best solution of GSGA cannot improve after a
certain number of evaluations, e.g., after about 4000 evaluations
when α = 0.6 and after about 1500 evaluations when α = 0.8.

Second, regarding the effect of β, it can be seen that setting
this parameter to a very small or very large value affects the
penalty value. This result can be observed from the interesting
behavior of GSGA on the S2 problem instance with α = 0.2,
γ = 0.8, and τ = 20, and different β values in Fig. 2(b). From
Fig. 2(b), it can be seen that when the value of β increases
from 0.1 to 0.3, the performance of GSGA improves due to the
enhanced effect of the MEM data structure. However, when
the value of β is further raised, the performance of GSGA drops.
This occurs because if a large portion of individuals is created
through MEM , e.g., when β = 0.9, the chance of creating a
similar child may be increased every generation, and after a few
generations, GSGA may be trapped in a suboptimal state, and
hence, cannot obtain the optimal solution. From Fig. 2(b), it can
be seen that by setting the value of β to 0.7 or 0.9 leads to an
earlier stagnation in the performance of GSGA in the solving
process.

Third, regarding the effect of γ on the performance of GSGA,
from Table III, it can be easily seen that increasing the value of
γ results in near-optimal solutions. The reason lies in the fact

that a small value of γ leads to the proposed GSGA algorithm
acting as the conventional SSGA. Fig. 2(c) shows the behavior
of GSGA on the S5 problem instance with α = 0.2, β = 0.3,
and τ = 20, and different values of γ. It is quite obvious that
a large value of γ, e.g., γ = 0.8, leads to an optimal solution
quickly. The effect of γ also shows the importance of the MEM
data structure. From Fig. 2(c), it can also be seen that when
γ = 1.0, the performance of GSGA drops in comparison with
when γ = 0.8. This result shows that the use of crossover helps
to improve the performance of GSGA for the UCTP.

Fourth, regarding the effect of τ , it can be seen from Table III
and Fig. 2(d) that setting τ to 20 gives a better objective value
than setting τ to other values (i.e., 40, 60, 80, and 100). Hence,
updating the MEM data structure every small number of gen-
erations gives a better performance of GSGA. This is because
when MEM is updated more frequently, the information ex-
tracted from the best individuals of the population can be more
timely used to guide the generation of offspring, and hence,
gives a greater chance to create better individuals. The differ-
ence is significant when τ is set to 20 over 100. The effect of τ
also shows the importance of the MEM data structure for the
performance of GSGA.

Based on the aforementioned parameter analyses, in the
following experiments, we set the parameters for GSGA
and EGSGA as follows: α = 0.2, β = 0.3, γ = 0.8, and
τ = 20.
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Fig. 2. Comparison on the effect of parameters on the performance of GSGA on different problem instances. (a) M1 with β = 0.3, γ = 0.8, and τ = 20. (b) S2
with α = 0.2, γ = 0.8, and τ = 20. (c) S5 with α = 0.2, β = 0.3, and τ = 20. (d) S4 with α = 0.2, β = 0.3, and γ = 0.8.

B. Comparative Experiments

This set of experiments compares the performance of EGSGA
with our implemented algorithms (TS, SSGA, GALS, and
GSGA). The parameter settings identified by the previous ex-
periments were used for all results presented in this section. The
same set of parameters were used for GAs in order to have a fair
comparison of the performance of algorithms.

Fig. 3 presents the comparison of EGSGA with other algo-
rithms with respect to the average performance over 50 runs
on small and medium test UCTP instances. Table IV compares
all algorithms in terms of the best, average, standard deviation,
and worst penalty value over the 50 runs on the 11 problem
instances, where “–” means that no feasible solution was found
by the corresponding method. From Fig. 3 and Table IV, it can
be seen that EGSGA produces a lower average and standard
deviation of the objective value on most of the UCTP instances
and that the worst objective values produced by EGSGA are by
far the best among all algorithms. This is a really good result,
which means that EGSGA is much more reliable than the others.
EGSGA produces good solutions due to the usage of the MEM
data structure and LS schemes. As mentioned earlier, this is due
to the fact that we assign to an event a pair of room and time
slot that was extracted from one of the best individuals of a
previous population. This means that the pair satisfies different
constraints that are suitable to that event. The LS technique fur-

ther helps EGSGA to find the local optimum of an individual.
By doing so, we increase the chance of getting better and better
solutions during the solving process.

Fig. 4 shows the dynamic behavior of algorithms against
the number of evaluations on some problem instances, where
the x-axis represents the number of evaluations and the y-axis
represents the average objective value over 50 runs. Fig. 4(a)
and (b) show the performance of different algorithms on small
UCTP instances S1 and S3, respectively. Fig. 4(c) represents
the performance of algorithms on the medium problem instance
M5, where the y-axis shows the objective value expressed in
the log scale. Fig. 4(d) shows the performance of GSGA and
EGSGA on the large problem instance, where the y-axis is also
expressed in the log scale.

From Fig. 4, it can be seen that on the small instances, SSGA
and TS reach near-optimal solutions as the number of evalua-
tions increases and that GALS and GSGA perform similar to
each other. We notice that when the two techniques in EGSGA
are used independently, GALS and GSGA are not significantly
better than each other, but when the two techniques are combined
in EGSGA, we see a great improvement in the performance of
EGSGA. The penalty value of EGSGA is reduced at the be-
ginning of the search and gives the optimal solution between
1000 and 1500 evaluations, while GSGA and GALS give near-
optimal solutions after 2000 evaluations. On the M5 medium
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Fig. 3. Comparison of EGSGA with other algorithms regarding the average
performance on (a) small instances and (b) medium instances.

problem instance, a great fall in the penalty value can be no-
ticed in the performance of EGSGA. EGSGA quickly generates
a feasible solution after a few evaluations and makes positive
movement toward the near-optimal solution by exploring the
search space as the number of evaluations increases. On the
other hand, GALS and GSGA achieve a feasible solution over
1000 evaluations. It can be observed from Fig. 4(d) that the
search speed of EGSGA on the large problem instance is better
than that of GSGA. We anticipate this result because partial so-
lutions from good individuals provide more efficient solutions
when combined with the LS technique LS2.

The t-test results of statistically comparing investigated algo-
rithms are shown in Table V. The t-test statistical comparison
was carried out with 98 DOF at a 0.05 level of significance. In
Table V, the t-test results of comparing two algorithms is shown
as “s+,” “s−,” “+,” or “−” when the first algorithm is sig-
nificantly better than, significantly worse than, insignificantly
better than, or insignificantly worse than the second algorithm,
respectively. In Table V, “In” means that one or both of the

TABLE IV
COMPARISON OF ALGORITHMS ON DIFFERENT PROBLEM INSTANCES

algorithms being compared failed to find a feasible solution of
the corresponding problem.

From Table V, it can be seen that the performance of EGSGA
is significantly better than the performance of all other algo-
rithms on all medium and large problem instances and that the
performance of EGSGA is significantly better than the perfor-
mance of GSGA on most small, medium, and large problem
instances. These results show that the integration of proper LS
techniques with the guided search strategy can greatly improve
the performance of GAs for the UCTP.
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Fig. 4. Dynamic performance of algorithms on different problem instances: (a) S1, (b) S3, (c) M5, and (d) L.

TABLE V
t-TEST VALUES OF COMPARING ALGORITHMS ON DIFFERENT PROBLEM

INSTANCES

C. Comparison With Other Algorithms From the Literature

In this section, we compare the experimental results of our
algorithms with the available results of other algorithms in the
literature on the 11 aforementioned test UCTP instances. The al-
gorithms compared and the conditions under which their results
were reported are described as follows.

1) EGSGA: The EGSGA proposed in this paper. The results
reported here were out of 50 runs with each run lasting
for 90 s for small UCTP instances, 900 s for medium
instances, and 9000 s for the large instance.

2) Randomized Iterative Improvement Algorithm (RIIA): Ab-
dullah et al. [1] proposed the RIIA. They presented a com-
posite neighborhood structure with the RIIA . The results
were reported out of five runs with each run lasting for
200 000 evaluations.

3) Nonlinear Great Deluge (NLGD): Landa-Silva and Obit
[26] proposed a modified great deluge algorithm by using
a nonlinear decay of water level. They successfully im-
proved the performance of the great deluge algorithm on
medium UCTP instances. The results were reported out of
ten runs with each run lasting for 3600 s for small UCTP
instances, 4700 s for medium instances, and 6700 s for the
large instance.

4) GA With LS (GAWLS): Abdullah and Turabieh [3] pro-
posed GAWLS. They tested a GA with a repair function
and LS on the UCTP. The results were reported out of
five runs and the stopping criterion for each run was not
clearly mentioned in the paper.

5) Hybrid EA (HEA): Abdullh et al. [2] proposed HEA that
consists of an EA that uses a light mutation operator fol-
lowed by an RIIA. The results were reported out of five
runs with 200 000 evaluations per run.

6) Graph-Based Hyperheuristic (GBHH): Burke et al. [11]
proposed GBHH. They employed TS with GBHHs for
the UCTP and examination of timetabling problems. The
results were reported out of five runs with 12 000 evalua-
tions per run for small UCTP instances, 1200 evaluations
per run for medium instances, and 5400 evaluations per
run for the large instance.

7) TS Hyperheuristics (THHS):Burke et al. [9] introduced a
TSHH for the UCTP, where a set of low-level heuristics

Authorized licensed use limited to: University of Leicester. Downloaded on June 11,2010 at 11:47:59 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

TABLE VI
COMPARISON OF ALGORITHMS ON DIFFERENT PROBLEM INSTANCES

compete with each other. This approach was tested on the
course timetabling and nurse rostering problems. The re-
sults were reported out of five runs with 12 000 evaluations
per run for small UCTP instances, 1200 evaluations per
run for medium instances, and 5400 evaluations per run
for the large instance.

8) LS: Socha et al. [39] introduced an LS method. They used
a random restart LS method for the UCTP and compared
it with an ant algorithm (AA). The results were reported
out of 50 runs with each run lasting for 90 s for small
UCTP instances, 40 runs with each run lasting for 900 s
for medium instances, and 10 runs with each run lasting
for 9000 s for the large instance.

9) GA: Rossi-Doria et al. [37] proposed a GA. They used
a LS method with the GA to solve the UCTP and also
compared several metaheuristics methods on the UCTP.
The results were reported out of 50 runs with each run
lasting for 90 s for small problem instances, 900 s for
medium instances, and 9000 s for the large instance.

10) AA: Socha et al. [39] used AA. They developed an ant-
colony optimization algorithm with the help of a con-
struction graph and a pheromone model appropriate for
the UCTP. The results were reported out of 50 runs with
each run lasting for 90 s for small UCTP instances, 40
runs with each run lasting for 900 s for medium instances,
and 10 runs with each run lasting for 9000 s for the large
instance.

11) Fuzzy Algorithm (FA): Asmuni et al. [7] proposed FA.
Asmuni et al. [7] focused on the issue of ordering events by
simultaneously considering three different heuristics using
fuzzy methods. The results were reported out of one run
for each problem instance, and the stopping criterion for
each run on a problem instance was not clearly mentioned
in the paper.

One thing to notice is that the aforementioned algorithms
compared and the conditions under which their results were
reported have been frequently used by other researchers to com-
pare the performance of their algorithms. Strictly speaking, it is
not fully fair to use the results reported in the literature, since the
conditions involved are not the same for all algorithms. How-
ever, the results reported can give us a rough understanding on
how good or bad an algorithm is in comparison with existing
methods. Hence, we also follow the trend in the literature and

roughly compare our algorithm EGSGA with the aforemen-
tioned state-of-the-art methods using the reported results.

Table VI gives the comparison results, where the term “%In”
represents the percentage of runs that failed to obtain a feasible
solution. “Best” and ‘med” mean the best and median result
among 50 runs, respectively. We present the best result among
all algorithms for each UCTP instance in the bold font. From
Table VI, it can be seen that EGSGA performs better than the
FA [7], LS [39], and graph-based approach [11] on all the 11
problem instances. EGSGA outperforms RIIA [1], and GA [37]
on all the medium problem instances and ties them on some
or all of the small problem instances. EGSGA also gives better
results than the AA [39] on ten problem instances and ties it on
S5. When comparing with the tabu-based hyperheuristic search
[9], EGSGA performs better or the same on all the problem
instances. The results of our approach is better than GAWLS [3]
and NLGD [26] on all medium and large instances and ties them
on one small instance. Finally, the result of EGSGA is better
than that of HEA [2] on all medium problem instances and ties it
on small instances. On the whole, EGSGA beats all algorithms
on medium problem instances and gives promising results on
the large problem.

We also run EGSGA according to the TTC 2002 rules on the
set of 20 UCTP instances. There were 50 runs of EGSGA on
each problem instance. For each run on a problem instance, the
maximum run time tmax was set to 900 s. The results of the
algorithms we compared are taken from the TTC 2002 Website.
These algorithms are briefly described as follows.

1) SA: Kostuch [25] proposed an SA-based heuristic. This
approach is divided into two stages. First, it finds a feasible
timetable. Second, it uses an SA scheme to improve the
timetable, according to an objective function value.

2) Efficient Timetabling Solution (ETTS): Cordeau et al. [15]
proposed ETTS with TS. They developed a tabu heuristic
that first finds a feasible solution, and then, improves the
quality of the solution by reducing soft constraints.

3) Great Deluge LS (GDLS): Bykov [12] used a GDLS
algorithm to solve the problem.

4) Three Stage LS (TSLS): Gaspero and Schaerf [20] used
a TSLS paradigm. Their LS method consists of hill
climbing, TS, and multiswap shake stages.

5) Adaptive Memory LS (AMLS): Arntzen and Løkketangen
[6] proposed a simple AMLS method to improve the
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TABLE VII
COMPARISON OF ALGORITHMS ON TTC 2002 PROBLEM INSTANCES

quality of an initial solution. The search is guided by TS
mechanisms based on recency and frequency of certain
attributes of previous moves.

6) Dubourg et al. TS (DTS): Dubourg et al. [17] proposed a
TS approach to solve the UCTP.

Table VII shows the comparison of EGSGA with other results
from the literature on the TTC 2002 test set, where “comp01”
represents the first benchmark instance, “comp02” represents
the second benchmark instance, etc. Table VII shows the best
result (soft-constraints violation) achieved by each algorithm,
where the best result among all algorithms for each UCTP in-
stance is represented in the bold font. From Table VII, it can be
seen that EGSGA is able to produce good results on all prob-
lem instances. It gives the best result on nine out of 20 problem
instances. But, there is still a chance of improvement of the
proposed approach to get an optimal solution on hard problem
instances.

From the aforementioned experimental results, it can be seen
that the guided search strategy and proper LS techniques used in
GSGAs can help to minimize the objective function value and
give better results for the UCTP compared to other population-
based algorithms employed in the literature. The experimental
results also shows that due to the good solutions that are created
through the MEM data structure in GSGAs, the chance of
getting feasible and optimal solutions is increased.

VI. CONCLUSION AND FUTURE WORK

This paper presents a GSGA to solve the UCTP, where a
guided search strategy and LS techniques are integrated into a
steady-state GA. The guided search strategy uses a data structure
to store useful information, i.e., a list of room and time slot
pairs for each event that is extracted from the best individuals
selected from the population and has a zero penalty value. This
data structure is used to guide the generation of offspring into the
following populations. The main advantage of this data structure
lies in that it improves the quality of individuals by storing part

of former good solutions, which otherwise would have been lost
in the selection process, and reusing the stored information in the
following generations. This can enable the algorithm to quickly
retrieve the best solutions corresponding to the previous and new
populations. In the original GSGA [23], a LS technique is used
to improve the quality of individuals through searching three
neighborhood structures. This paper also proposes an EGSGA
for the UCTP by adding another LS method into GSGA.

In order to test the performance of GSGAs for the UCTP,
experiments were carried out to analyze the sensitivity of pa-
rameters and the effect of the guided search strategy for the
performance of GSGAs based on a set of benchmark UCTP
instances. The experimental results of EGSGA were also com-
pared with several state-of-the-art methods from the literature
on the tested UCTP instances. The experimental results show
that the proposed GSGA is competitive and works reasonably
well across all problem instances in comparison with other ap-
proaches studied in the literature. Generally speaking, with the
help of the guided search and LS strategies, EGSGA is able to
efficiently find optimal or near-optimal solutions for the UCTP,
and hence, can act as a powerful tool for the UCTP.

To our knowledge, this study is the first time to apply guided
search GAs to address timetabling problems. There are several
works to pursue in the future. One future work will be to further
analyze the neighborhood techniques toward the performance
of EGSGA. We also intend to test our approach on the 2007
timetabling competition benchmarks, in particular, and other
problem instances that are available in the literature, in gen-
eral. Improvement of genetic operators and new neighborhood
techniques based on different problem constraints will also be
investigated. We believe that the performance of GSGAs for the
UCTP can be improved by applying advanced genetic operators
and heuristics. For example, using adaptive techniques to adjust
the key parameters of GSGAs with the searching progress may
further improve the performance of GSGAs for the UCTP. The
understanding of the interrelationship of these techniques and
a proper placement of these techniques in GSGA may lead to
better performance of GSGAs for the UCTP.
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