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Abstract: Based on Holland’s simple genetic algorithm (SGA) there have been many
variations developed. Inspired by the phenomenon of diploid genotype and dominance
mechanisms broadly existing in nature, we have proposed a primal-dual genetic
algorithm (PDGA), see (Yang 2002). Our preliminary experiments based on the Royal
Road functions have shown that PDGA outperforms SGA for different performance
measures. In this paper we present some further experiment results, especially on the
dynamic performance of PDGA over SGA, and give out our explanations and analyses
about why PDGA outperforms SGA based on these results. Through the primal-dual
mapping between a pair of chromosomes, PDGA’s performance of exploration in the
search space, especially during the early generations, is improved and thus its total
searching efficiency is improved. Copyright(©IFAC 2002
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1. INTRODUCTION

Ever since Holland first proposed the genetic al-
gorithm, usually called Holland’s simple genetic
algorithm (SGA) (Holland 1975), there have been
many variations and extensions both in GA’s
macro-structure such as the hybrid GAs, master-
slave GAs and parallel GAs, and in GA’s mi-
crostructure, including chromosome representa-
tion schemes, replace strategies, selection meth-
ods, mating policies, crossover operators, and mu-
tation operators, see (Goldberg 1989, Michalewicz
1996, Mitchell 1996). Most GAs studied so far
are haploidy-based, i.e., they operates on a set of
single-stranded chromosomes. Haploid genotype
is the simplest found in nature. GA’s researchers
have also studied diploid genotypes (pairs of chro-
mosomes) and dominance mechanisms for a long
history (Bagley 1967, Brindle 1981, Goldberg and
Smith 1987, Ng and Wong 1995).

Inspired by the phenomenon of diploid genotype
and dominance mechanisms broadly existing in
nature, we have proposed a primal-dual genetic
algorithm (PDGA in brief), see (Yang 2002).
PDGA operates on a pair of chromosomes that
are primal-dual to each other in the sense of
Hamming distance in genotype. We have carried
out some primary experiment results comparing
the performance of PDGA over SGA based on
the Royal Road functions (Forrest and Mitchell
1992, Mitchell et al. 1992, Mitchell 1996), which
are tailor-made for testing GA’s performance.
The experiment results have shown that PDGA
outperforms SGA on the Royal Road functions
for several different performance measures.

In this paper we present some further experiment
results and give out our explanations and analyses
about why PDGA outperforms SGA based on
these results. Through the primal-dual or Ham-
ming distance mapping between a pair of chro-
mosomes, PDGA’s performance of exploration in



the search space is improved, especially during the
early generations of GA’s searching progress and
thus its total searching efficiency is improved.

2. PRIMAL-DUAL GENETIC ALGORITHMS
2.1 Simple Genetic Algorithms

The simple genetic algorithm, as one kind of
generation-based evolutionary algorithm, main-
tains a population of candidate solutions or hap-
loid chromosomes to a given problem which are
evaluated according to a problem-specific fitness
function that defines the environment for the evo-
lution. New population is created by selecting
relatively fit members of the present population
and recombining them through crossover and mu-
tation operations.

As a meta-heuristic optimization algorithm, an
important issue on GA is the balance between ex-
ploration (the investigation for new, useful adap-
tations in the search space) and exploitation (the
use and propagation of these adaptations). An
efficient algorithm should use both techniques.
PDGA was proposed with the aim of improving
GA’s exploration capacity in the search space.

2.2 Primal-Dual Genetic Algorithms

Here we only consider binary bit string representa-
tion of genotype and define a pair of chromosomes
to be primal-dual to each other if their Hamming
distance (the number of locations at which corre-
sponding bits differ) is the maximum, i.e., equal
to their length. For example, given a chromosome
z = (1, %2, ..., zr) of fixed length L, its dual chro-
mosome is defined as & = (Z1, Z2, ..., Z1,) where
Z; = 1—x; (i = 1..L). Given this definition we say
that z is mapped to Z by the primal-dual mapping
or Hamming distance mapping, vice versa.

PDGA is quite simple relative to other genetic
algorithm variants, as shown in its pseudocode
in Figure 1. From Figure 1 we can see that
PDGA differs from SGA only in the evaluation
of chromosomes in the population and the genetic
operations are all the same for PDGA and SGA.

2.3 Haploid over Diploid

In the general diploid form a genotype carries one
pair of homologous chromosomes. Each position
in the genome has two or multiple allele values.
A dominance mechanism for determining which
allele value for a gene will be expressed is required
to adjudicate when the allele values do not agree
(Goldberg 1989).

Procedure PDGA:

t:=0;
initializePopulation(P(0));
for each z in P(0) do {evaluate P(0)}
evaluate = and T;
if f(Z) > f(z) then z := F;
endfor
repeat
P' := selectForReproduction(P(t));
recombine(P');
mutate(P');
for each z in P’ do
evaluate z and Z;
if f(Z) > f(z) then z := Z; {replace}
endfor
P(t + 1) := selectForSurvival(P(t), P');
t:=t+4+1;
until terminated = true; {e.g., t > tmaz}

{replace}

{evaluate P'}

Fig. 1. Pseudocode for PDGA.

From the above description of PDGA, it seems
that it is diploidy-based, however, PDGA is in fact
a haploid-like genetic algorithm since we needn’t
explicitly keep track of each chromosome’s dual
chromosome. That is, the dual chromosome Z of a
primal chromosome z can be looked as the shadow
of x and only shows its body through the primal-
dual mapping when z is evaluated. Of course, if
Z proves to be better, it will embody itself and
throw z into its shadow. In this sense, we can call
PDGA pseudo-diploid or implicitly diploid.

PDGA differs from those diploidy and dominance
based genetic algorithms (Bagley 1967, Brindle
1981, Goldberg and Smith 1987, Ng and Wong
1995) in the three aspects. First, dominance in
PDGA is phenotype oriented (i.e., the dominance
mechanism works on the primal-dual pair by tak-
ing whichever has higher fitness as the dominant
chromosome) instead of gene oriented and thus
need no special dominant scheme as in those GAs.
Secondly, dominance in PDGA operates on the
pair of chromosomes that are primal-dual to each
other instead of randomly chosen chromosomes.
Finally, in PDGA only the dominant chromosome
of the primal-dual pair instead of the pair of
chromosomes undergoes genetic operations.

3. SCHEMA THEOREM

The building block hypothesis and schema the-
orem of Holland are the theoretical foundations
of GA (Holland 1975, Goldberg 1989). Holland
first proposed the notation of schema to describe
a subset of all binary vectors of fixed length that
have similarities at certain positions. A schema, is
typically specified by a vector over the alphabet



{0, 1, *}, where the “*” denotes a “wildcard”
matching both 0 and 1. Given a schema S, its
order o(S) is the number of fixed positions within
S and its defining length [(S) is the maximum
distance between fixed positions within S. For ex-
ample, given S = 01 *x1x, 0(S) = 3 and I(S) = 4.

The building block hypothesis states that crossover
combines short, low-order, high-fit schemas into
increasingly fit, higher-order schemas. The schema
theorem states that short, low-order, better than
average schemas (also called building blocks) re-
ceive an exponentially increasing number of trials
in the subsequent generations. Given a population
size of N individuals, the number of schemas pro-
cessed at each generation is of the order N3, this
is called GA’s implicit parallelism.

However, the schema theorem and building block
hypothesis do not state how crossover, one major
source of GA’s search power, works to recombine
highly fit schemas from short, low-order ones.

4. ROYAL ROAD FUNCTIONS

To investigate schema processing and recombi-
nation in detail, Mitchell, Forrest and Holland
designed a class of fitness landscapes, called Royal
Road functions (Figure 2 and Figure 3), to capture
the essence of building blocks (Mitchell et al. 1992,
Forrest and Mitchell 1993, Mitchell 1996).

11111117

11111117
11111117
11111117
11111117
11111117
11111117

11111111
1111111211121111111111211121111111111211111111111112111111111111111111

graggeape
Wt nnn

Fig. 2. Royal Road Function R;.
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Fig. 3. Royal Road Function Rj.

Royal Road functions R; and R, contain tailor-
made building blocks and thus are good test
problems to investigate GA’s performance with
respect to schema processing and recombination.
They are defined using a list of schemas. Each
schema s; is given a coefficient ¢; which is equal
to its order (i.e., ¢; = o(s;)). For Ry, ¢; = 8
for all s; (¢ = 1..8) while for Ry, ¢; = 8 for s;

(i =1..8), ¢; =8 for s; (i =9..12), and ¢; = 8 for
s; (1 = 13,14). The fitness of a bit string x for both
Ri(z) and Ry(z) is computed by summing the
coeflicients ¢; corresponding to each of the given
schema s; of which z is an instance. That is, R; (x)
and Ry (x) are defined as follows:

Ri(z) = i cidi(z) and Ry () = i cidi(2)

where 0;(z) = {1,if z € s;;0,otherwise}. If z is an
instance of exactly two of the order-8 schema, of
R, Ri(z) = 16,e.g., R1(111111110..011111111) =
16. Similarly, the optimal solutions for R; and R,
are given as follows: Ry (sopt) = R1(111..1) = 64
and R2 (sopt) = R2(].].].1) = 192.

For R, and R», with PDGA we can evaluate a
primal-dual chromosome pair at the same time
with only a few extra instructions than when we
evaluate one single chromosome with SGA. For
this reason we count the evaluations of a primal-
dual pair as one evaluation in our experiments.

5. COMPUTER EXPERIMENT STUDY
5.1 Experiment Design and Performance Measures

In our primary experiments in (Yang 2002), we
have shown that PDGA outperforms SGA on the
following performance measures: function evalua-
tions to optimum, percentage of achieving opti-
mum over a number of runs against generations,
percentage of optimal members in the population
for a run against generations.

According to our primary experiments, for our
following experiments, we fix the parameters with
population size N = 128, crossover probability
P, = 0.7, and mutation probability P, = 0.01.
We also use sigma truncation scaling and elitist
schemes, one-point crossover and bit mutation for
both PDGA and SGA. In this paper, we’ll test the
dynamic performance of PDGA and SGA with
respect to the efficiency of function evaluations
and the processing of schema recombination.

5.2 Experiments on Efficiency of Evaluation

To compare the dynamic performance of efficiency
of function evaluation, we carried out 1000 runs of
PDGA over SGA on R; and R, respectively with
the same 1000 random seeds for each combination
of algorithm and function. We record the best
fitness found every 100 function evaluations for
each run. Here only those chromosomes that were
changed by crossover and mutation operations
were evaluated and counted. The statistic results
over 1000 runs are shown in Figure 4. From Figure



4 we can see that PDGA overruns SGA quite well,
especially during the early generations.
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Fig. 4. Comparisons of PDGA vs. SGA with
respect to mean best fitness over 1000 runs
against evaluations on (a) Ry and (b) Rs.

5.3 Experiments on Schema Recombination

To further compare the dynamic searching process
of PDGA and SGA, we give out the result of a
typical run of PDGA and SGA on R; and Rs in
Figure 5 with respect to mean fitness and best
fitness achieved against generations. The data
are plotted every 5 generations. On R;, PDGA
achieves optimum at generation 85 with 9252 eval-
uations while SGA at generation 400 with 43264
evaluations. On Ry, PDGA achieves optimum at
generation 108 with 11784 evaluations while SGA
at generation 578 with 62360 evaluations. From
Figure 5 we can see that PDGA overruns SGA
quite well especially during the early generations.

To study the dynamic process of schema recombi-
nation, we also recorded the percentage of individ-
uals in the population that are instances of each
schema every 5 generations. Figure 6 shows the
corresponding schema recombination process of
the same typical run on R; as in Figure 5(a). The
result on Ry is similar but not shown here. From
Figure 6 we can see that PDGA obtained schemas
much faster than SGA, especially on schema 4
and schema 6. SGA suffered much more heavily
than PDGA by the phenomenon called “hitch-
hiking” (Schaffer et al. 1990, Mitchell 1996). For
example, with SGA schema sg appeared at about
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Fig. 5. Mean and best fitness against generations
for a typical run of PDGA vs. SGA on (a) Ry
and (b) RQ.

generation 70 and 350 but suppressed by s5 and
s7. Hitchhiking results from undesirable schemas
being coupled or hitchhiked along with desirable
schemas during recombination, thereby producing
above average individuals and later getting sam-
pled at a higher rate during selection. Hitchhik-
ing seriously limits GA’s implicit parallelism and
causes premature convergence.

6. DISCUSSIONS AND ANALYSES

From above experiments we can see that PDGA
outperforms SGA, especially during the early
stage of GA’s searching process. In this section,
we give out our explanations and analyses to this
result. We have said that PDGA is proposed with
the aim of improving GA’s exploration capacity
in the search space through the primal-dual map-
ping. Here the mapping function has the key role
in PDGA’s performance. We illustrates the effects
of the primal-dual mapping in Figure 7, where
the attribute(s) axis represents the combination of
different attributes (e.g., schemas for Royal Road
functions) of a chromosome.

Figure 7(a) illustrates an original population
during the early generation of GA’s searching
progress, where there are many individuals with
low fitness. With SGA the genetic operations
perform directly on the population without the
primal-dual mapping, as shown in Figure 7(b);
while with PDGA before genetic operations the
primal-dual mapping maps those chromosomes
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Fig. 6. Percentage of individuals in the population that are instances of the given schema against
generations of a typical run of PDGA vs. SGA on R;.

with fitness left to the virtual mapping curve,
i.e., low fitness, into their dual ones that have
high fitnesses and are right to the virtual mapping
curve (see Figure 7(c)) and the genetic operations
now perform on the mapped better population
(see Figure 7(d)), as shown in Figure 7(e). From
Figure 7 (a) to Figure 7(e) we can see that the
primal-dual mapping greatly improves GA’s per-
formance during the early generations. However,
after certain generations the primal-dual mapping
has little effect because the mean fitness of the
population has become quite high and new chro-
mosomes created by the genetic operations seldom
fall into the left side of the virtual mapping curve,
as shown in Figure 7(f).

The primal-dual mapping also helps moderating
the hitchhiking phenomenon for it improves the

diversity of the population during the early stage
of GA’s searching progress.

7. CONCLUSIONS

Inspired by the phenomenon of diploid genotype
and dominance mechanisms broadly existing in
nature, in (Yang 2002) we have proposed a primal-
dual genetic algorithm and have carried out some
primary experiments showing that PDGA out-
performs SGA on the Royal Road functions for
different performance measures. In this paper we
present some further experiment results compar-
ing the dynamic performance of PDGA over SGA,
and give out our explanations and analyses about
why PDGA outperforms SGA.
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Fig. 7. llustration of the effects of the primal-dual mapping. (a) original population; (b) genetic operating
without primal-dual mapping; (c) for population in (a), mapping those chromosomes with fitness
left to the virtual mapping curve into their dual ones; (d) after the mapping; (e) genetic operating
on the mapped population; (f) after certain generations the primal-dual mapping loses its effect.

Through the primal-dual mapping, PDGA’s per-
formance of exploration in the search space is
improved, especially during the early generations
of GA’s searching progress and thus its total
searching efficiency is improved. This mapping
function works well during the early generations
by shortening genetic operations performed on low
fitness chromosomes and thus speed up GA’s con-
vergence. However, whence the mean fitness of the
population becomes quite high, it loses its effect.
For the future research on PDGA, we believe that
dynamic primal-dual mapping function instead of
the static Hamming mapping that can adapt itself
with GA’s searching progress will further improve
PDGA’s performance.
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