
Learning the Dominance in Diploid Genetic Algorithms for
Changing Optimization Problems

Shengxiang Yang

Abstract— Using diploid representation with dominance
scheme is one of the approaches developed for genetic al-
gorithms to address dynamic optimization problems. This
paper proposes an adaptive dominance mechanism for diploid
genetic algorithms in dynamic environments. In this scheme, the
genotype to phenotype mapping in each gene locus is controlled
by a dominance probability, which is learnt adaptively during
the searching progress. The proposed dominance scheme is
experimentally compared to two other schemes for diploid
genetic algorithms. Experimental results validate the efficiency
of the dominance learning scheme.

I. INTRODUCTION

Genetic algorithms (GAs) are often used to solve station-
ary optimization problems. However, in real world many
optimization problems are actually dynamic, where changes
may occur over time. For dynamic optimization problems
(DOPs), the aim of GAs is no longer to locate an optimal
solution quickly and precisely but to track the moving
optimum with time. This seriously challenges traditional GAs
since once GAs are converged to a solution, it is hard for
them to adapt to the new environment when a change occurs.
In order to address DOPs, researchers have developed several
approaches into GAs to enhance their performance [3], of
which using memory schemes is one major approach.

The basic principle of memory schemes is to store and
reuse useful information. The information may be stored
implicitly [6], [7], [8] or explicitly [2]. For implicit memory
schemes, GAs use redundant representations in genotype to
store good (partial) solutions to be reused later. A typical
example is the diploid genetic algorithms (DGA), which
was inspired by the diploid representations and dominance
scheme in biology. DGAs have proved to be advantageous to
address DOPs [6], [8], [9], [10]. For DGAs, a key factor is
to develop good dominance schemes, which map the diploid
genotype to phenotype. It is also claimed that diploidy with
dominance changes is essential [7].

In this paper, an adaptive dominance scheme is proposed
for DGAs for DOPs. In this scheme, the genotype to phe-
notype mapping is controlled by a dominance probability
vector. The dominance probability vector is learnt toward the
best individual of the current population during the searching
progress and hence is adapted to the dynamic environment.
Using the DOP generator proposed in [11], [12], a series of
DOPs are constructed as the test environments and experi-
ments are carried out to compare the proposed dominance

Shengxiang Yang is with the Department of Computer Science, University
of Leicester, University Road, Leicester, LE1 7RH, United Kingdom, (email:
s.yang@mcs.le.ac.uk).

scheme against two state-of-the-art dominance schemes: the
Ng-Wong [8] and the additive [9] dominance schemes with
dominance change [7] for DGAs. The experimental results
validates the efficiency of the proposed dominance scheme
for DGAs for DOPs.

The rest of this paper is outlined as follows. The next
section briefly describes the framework of DGAs and several
dominance schemes developed for DGAs for DOPs. Section
III presents the proposed adaptive dominance scheme for
DGAs in dynamic environments. The experimental study and
analysis are presented in Section IV. Section V concludes this
paper with discussions on relevant future work.

II. DIPLOIDY AND DOMINANCE

A. Framework of Diploid Genetic Algorithms

Most advanced organisms have a diploid or even multi-
ploid chromosome structure. In the diploid structure, two
set of homologue chromosomes are twisted together into
a duplex deoxyribonucleic (DNA) structure. Genes are the
smallest hereditary unit that contains genetic information and
two or more alternative forms/values that genes occupying
the same locus on homologue chromosomes can take are
called alleles. The genotype of an individual consists of
all the genes located on all the homologue chromosomes
and those genes that are expressed form the phenotype
of the individual. A dominant allele is always expressed
while a recessive allele may be expressed only when both
genes occupying the same locus of the pair of homologue
chromosomes have the recessive value. Whether an allele is
dominant or recessive is determined by a dominance mecha-
nism. In nature, the dominance mechanism is determined by
and also evolves with the environment.

Diploidy and dominance mechanisms have been borrowed
and integrated into DGAs to enhance their performance in
dynamic environments. DGAs have a framework similar to
traditional GAs with two major differences. The first one lies
in the representation and evaluation scheme. For DGAs the
genotype and phenotype of an individual are separated as
shown in Fig. 1. In order to evaluate an individual we need
first map the diploid genotype (a pair of chromosomes) into a
haploid phenotype according to some dominance mechanism.
Then, the phenotype is evaluated according to the external
environment and the fitness of the individual is obtained. For
di-allelic representation where each gene has two alleles (0
or 1), the chromosomes in the genotype and the phenotype
are binary strings. In this case, the black and white bars in
Fig. 1 represents 0 and 1 respectively, vice versa.

Evaluating

Phenotype

Fitness

Chromosome 1

Chromosome 2

Genotype

External Environment

Dominance SchemeGenotype−to−Phenotype

Mapping

Fig. 1. Representation and evaluation of an individual for DGAs.

The second difference lies in the reproduction operations.
For DGAs, crossover can be divided into two steps: ex-
change chromosomes and crossover. In the first step, two
parents (each has a pair of chromosomes) exchange their
chromosomes randomly to create two temporary offspring.
Each offspring has one chromosome from each parent and
hence the genotype materials from the parents are mixed and
propagated to the offspring. In the second step, each offspring
then undergoes the crossover operation within its own two
chromosomes with a probability pc, which is the same as in
traditional GAs. For DGAs, mutation performs on each of the
two genotype chromosomes of an individual independently
with the same mutation probability pm for each locus. Since
mutation operates on the genotype, a mutation of a gene may
or may not change the phenotype of an individual.

B. Dominance Schemes

As in biology, the dominance scheme controls how genes
are expressed in the phenotype and plays a key role in the
performance of DGAs. Hence, the research on DGAs has
mainly focused on developing proper dominance schemes.
There are several dominance schemes developed in the
literature [4], [6], [10].

In [8], Ng and Wong proposed a diploid representation
with simple dominance change for DOPs. They used four
genotype alleles: dominant 1 and 0, and recessive i and o.
The dominant allele is always expressed in the phenotype.
If contention exists between two dominant or two reces-
sive alleles, one is randomly chosen to be expressed. The
occurrence of “1i” or “0o” is prohibited. If it occurs the
recessive gene is promoted to be dominant. The genotype-to-
phenotype mapping is shown in Fig. 2(a), where “0/1” means
an equal probability of either 0 or 1. Ng and Wong also
incorporated a dominance change scheme when the fitness
of an individual drops by a preset percentage (20%) between
successive evaluation cycles. Dominance change is achieved
by inverting the dominance values of all allele-pairs such that
“11” becomes “ii”, “00” becomes “oo”, “1o” becomes “i0”,
and vice versa. The genotype-to-phenotype mapping keeps
unchanged.

In [9], Ryan proposed an additive dominance scheme,
where genotype alleles are represented by ordered values

i1o0

1

1

1

1

1

0

11

o

0

i

0

0

000 0/1

0/1

0/1

0/1 1

1

0

1

1

0

0C

B

A

D

0

1

DCBA

100

1

1

0

0

(a) (b)

Fig. 2. Two dominance schemes: (a) Ng-Wong’s and (b) Additive.

that are combined using a pseudo-arithmetic to determine
the phenotype allele. Ryan used four genotypic alleles A, B,
C, and D, and allocated the values of 2, 3, 7, and 9 to them
respectively. An addition is performed on the values allocated
with the two genotypic alleles for each gene locus. If the
result is greater than the threshold 10, the phenotypic allele
becomes 1; otherwise, it becomes 0. The resulting dominance
map is shown in Fig. 2(b).

In [7], Lewis et. al extended Ryan’s scheme by adding a
dominance change mechanism where genotypic alleles are
demoted or promoted by one grade. For example, demoting
a “B” makes it a “A” whereas promoting it makes it a “C”.
Allele “A” cannot be demoted and “D” cannot be promoted.
As in the Ng-Wong approach, dominance change occurs
when the fitness of a population member drops by a threshold
percentage (20%) between successive evaluation cycles. If
this happens, for each gene locus one of the two genotypic
alleles is randomly chosen and the following procedure is
performed: If the phenotypic allele at this locus is 1, then
demote the chosen genotypic allele, unless it is an “A”;
otherwise, promote the chosen genotypic allele, unless it is
a “D”. Lewis et. al. [7] compared the Ng-Wong and additive
dominance schemes with or without dominance change on a
dynamic knapsack problem and concluded that some form of
dominance change is essential for DGAs to address DOPs.

III. DOMINANCE LEARNING SCHEME

As mentioned before, the dominance scheme affects
DGA’s performance significantly. This is also true in biol-
ogy. However, in biology the dominance mechanism may
change with the environment under the control of some
type of enzyme. Modelling biological mechanism here may
be beneficial. That is, it may be beneficial for DGAs if
the dominance mechanism can be changed according to the
current dynamic environment. This inspiration leads to the
dominance learning mechanism proposed in this paper and
the corresponding DGA is called dominance learning DGA,
DLDGA in short.

DLDGA does not use a strict genotype-to-phenotype map-
ping scheme as shown in Fig. 3. Instead, we can define a
dominance probability vector where each element is a domi-
nance probability that represents the probability a genotypic
allele can be expressed in the phenotype in the corresponding
locus. The dominance probability vector is evolved with
the dynamic environment by a learning scheme. Below we

describe the dominance learning mechanism regarding di-
allelic encoding since this paper uses di-allelic encoding.

For di-allelic encoding, without loss of generality, we
can define the dominance probability vector in terms of
expressing allele 1 in the phenotype. That is, the dominance
probability vector at generation t can be defined as ~pd(t) =
{pd(i, t), · · · , pd(l, t)} where l is the encoding length. Here
pd(i, t) denotes the probability that allele 1 will dominate
allele 0 and appear in locus i of the phenotype of an
individual if the two genotypic alleles of the individual do not
agree in locus i. With this definition, the dominance scheme
works as follows. Let ~C1(t) = {C1(1, t), · · · , C1(l, t)} and
~C2(t) = {C2(1, t), · · · , C2(l, t)} be the two chromosomes in
the genotype of an individual in the population at time t,
then ~C1(t) and ~C2(t) are mapped to the phenotype ~P (t) =
{P (1, t), · · · , P (l, t)} of the individual as follows:

P (i, t) =

1, C1(i, t) = C2(i, t) = 1

0, C1(i, t) = C2(i, t) = 0

1, C1(i, t) 6= C2(i, t) & r < pd(i, t)

0, C1(i, t) 6= C2(i, t) & r >= pd(i, t),

(1)

where r = rand(0.0, 1.0) is a random number.
With respect to evolving the dominance probability vector

we can use the learning scheme similar to that used in the
Population-Based Incremental Learning (PBIL) algorithm,
which was proposed by Baluja [1]. This learning scheme is
described as follows. Originally, the dominance probability
vector starts from the neutral dominance probability vector
that has a value of 0.5 for each locus. That is, ~pd(0) = ~0.5.
This means the probability of expressing a 1 or 0 in the
phenotype on each locus is equal when two genotypic alleles
of a locus are different. Then, the dominance probability
vector is updated every generation according to the current
population. As in PBIL, the best individual(s) in the popula-
tion can be extracted to learn ~pd from. In this paper, only the
best individual is used. Let ~PB(t) = {PB(1, t), · · · , PB(l, t)}
denote the phenotype of the best individual at generation t.
Then, ~pd is learnt toward ~PB(t) as follows:

pd(i, t + 1) := pd(i, t) ∗ (1 − α) + α ∗ PB(i, t), (2)

where i ∈ {1, · · · , l} and α is the learning rate.
From the above description, it can be seen that in DLDGA

the dominance scheme is updated toward the current environ-
ment. This bias is expected to adapt DLDGA to the changing
environment more efficiently than those dominance schemes
that are unbiased to the current environment. For example, as
seen from Fig. 3, both the Ng-Wong and additive schemes are
unbiased since the total probability of creating a phenotypic
allele 0 or 1 is exactly 0.5.

IV. EXPERIMENTAL STUDY

In this section, we present our experimental study of
comparing DLDGA with two DGAs described in Section
2. The first, denoted NWDGA, is the DGA with the Ng-
Wong dominance scheme with dominance change. The sec-
ond DGA is the modified additive dominance scheme with

dominance change, denoted AddDGA in this paper. For
NWDGA and AddDGA, whenever the environment changes,
the dominance change scheme in NWDGA and AddDGA
starts to work.

A. Dynamic Test Environments

In this paper we use the DOP generator proposed in [11],
[12] to construct dynamic test environments. This generator
can construct DOPs from any binary-encoded stationary
function f(~x) (~x ∈ {0, 1}l and l is the encoding length)
as follows. Suppose the environment changes every τ gener-
ations. For each environment k, an XORing mask ~M(k) is
incrementally generated as follows:

~M(k) = ~M(k − 1) ⊕ ~T (k), (3)

where “⊕” is a bitwise exclusive-or (XOR) operator and
~T (k) is an intermediate binary template for environment k.
~T (k) is created with ρ × l (ρ ∈ (0.0, 1.0]) random loci set
to 1 while the remaining loci set to 0. For the first initial
environment k = 1, ~M(1) is set to a zero vector.

The evaluation of an individual at generation t is calculated
as follows:

f(~x, t) = f(~x ⊕ ~M(k)), (4)

where k = dt/τe is the index of the environment at time t.
With this XOR generator, τ and ρ control the speed and
severity of environmental changes respectively. Smaller τ
means faster changes while bigger ρ means severer changes.

Three 100-bit binary functions are selected as base func-
tions to construct DOPs. The first is the well-known OneMax
function that aims to maximize the number of ones in a
binary string. The second one is a variant of Forrest and
Mitchell’s Royal Road function [5], which consists of 25
contiguous 4-bit building blocks (BBs). Each BB contributes
4 to the total fitness if all bits inside the BB have the
allele of one; otherwise, it contributes 0. The third function
also consists of 25 contiguous 4-bit BBs. Each BB for the
third function is fully deceptive and is defined as below: it
contributes 4 to the total fitness if all bits inside the BB
have the allele of one; otherwise, it contributes 3 minus the
number of ones inside the BB. All the three functions have
an optimum fitness of 100.

Dynamic environments are constructed from each of the
three base functions using the XOR DOP generator. For each
dynamic environment, the landscape is periodically changed
every τ generations during the run of a GA. In order to
compare the performance of DGAs in different dynamic
environments, τ is set to 10, 50 and 100 and ρ is set to 0.1,
0.2, 0.5, and 1.0 respectively. Hence, a series of 12 DOPs
are constructed from each stationary function.

B. Experimental Settings

Experimental study was carried out to compare DLDGA,
NWDGA and AddDGA on the above constructed dynamic
environments. For all DGAs, parameter settings are as fol-
lows: generational, uniform crossover with the crossover
probability pc = 0.6, bit flip mutation with probability

OneMax, τ = 10 OneMax, τ = 50 OneMax, τ = 100

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

ρ ρ ρ

Royal Road, τ = 10 Royal Road, τ = 50 Royal Road, τ = 100

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 20

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

ρ ρ ρ

Deceptive, τ = 10 Deceptive, τ = 50 Deceptive, τ = 100

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

AddDGA
NWDGA
DLDGA

ρ ρ ρ

Fig. 3. Experimental results of DGAs on dynamic optimization problems.

pm = 0.01, standard tournament selection with tournament
size of 2, and elitism of size 1. The population size n is set
to 100. For DLDGA, the learning rate α is set to 0.5.

For each experiment of a DGA on a dynamic problem, 50
independent runs were executed with the same set of random
seeds. For each run 50 environmental changes were allowed,
which are equivalent to 500, 2500 and 5000 generations for
τ = 10, 50 and 100 respectively. For each run the best-of-
generation fitness was recorded every generation. The overall
performance of an algorithm on a problem is defined as
follows:

FBOG =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

FBOGij
), (5)

where G = 50 ∗ τ is the total number of generations for a
run, N = 50 is the number of runs, and FBOGij

is the best-
of-generation fitness of generation i of run j. The off-line
performance F BOG is the best-of-generation fitness averaged
over 50 runs and then over the data gathering period.

C. Experimental Results and Analysis

The experimental results of comparing investigated DGAs
on the constructed dynamic test problems are plotted in
Fig. 3. The corresponding statistical results of comparing
DGAs by one-tailed t-test with 98 degrees of freedom at
a 0.05 level of significance are given in Table 1. In Table
1, the t-test result regarding Alg. 1 − Alg. 2 is shown
as “s+” or “s−” when Alg. 1 is significantly better than
or significantly worse than Alg. 2 respectively. In order
to better understand the performance of DGAs in dynamic
environments, their dynamic behaviour regarding best-of-
generation fitness against generations on dynamic OneMax
problems with τ = 50 and ρ = 0.2 and ρ = 1.0 is plotted in
Fig. 4, where the first 10 environmental changes are shown
and the data were averaged over 50 runs. From the tables
and figures several results can be observed.

First, DLDGA significantly outperforms both NWDGA
and AddDGA on almost all DOPs except a few with ρ = 1.0,
see the t-test results in Table 1. This result validates the

TABLE I

THE t-TEST RESULTS OF COMPARING DGAS ON DYNAMIC OPTIMIZATION PROBLEMS.

t-test Result OneMax Royal Road Deceptive

τ = 10, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DLDGA − AddDGA s+ s+ s− s− s+ s+ s+ s+ s+ s+ s+ s+
DLDGA − NWDGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s+
AddDGA − NWDGA s+ s+ s+ s+ s+ s+ s+ s− s+ s+ s+ s+

τ = 50, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DLDGA − AddDGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s−
DLDGA − NWDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
AddDGA − NWDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

τ = 100, ρ ⇒ 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
DLDGA − AddDGA s+ s+ s+ s− s+ s+ s+ s+ s+ s+ s+ s−
DLDGA − NWDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
AddDGA − NWDGA s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+

OneMax, ρ = 0.2 OneMax, ρ = 1.0

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500

B
es

t-
O

f-
G

en
er

at
io

n
Fi

tn
es

s

Generation

AddDGA
NWDGA
DLDGA

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

B
es

t-
O

f-
G

en
er

at
io

n
Fi

tn
es

s

Generation

AddDGA
NWDGA
DLDGA

Fig. 4. Dynamic behaviour of DGAs on OneMax with τ = 50 and ρ = 0.2 and 1.0.

efficiency of introducing the dominance learning scheme over
fixed ones into DGAs for DOPs. The effect of the dominance
learning scheme can be more clearly observed from the
dynamic behaviour of DGAs as shown in the left column
of Fig. 4: every time the environment changes DLDGA can
more rapidly climbs to a higher fitness level than NWDGA
and AddDGA can do.

When ρ = 1.0, i.e., the environment oscillates between
two opposite fitness landscape, DLDGA is beaten by Ad-
dDGA on some DOPs, especially on the OneMax problem.
The underlying reason can be observed from examining
the dynamic behaviour of DGAs. In the right column of
Fig. 4, it can be seen that each time the environment changes
AddDGA achieves much less fitness dropping than DLDGA
does. This happens because the dominance change scheme
in AddDGA is in fact more directly oriented toward extreme
environmental changes as with the oscillating case when
ρ = 1.0. In this case, though DLDGA can still climb to
a fitness height comparable to or even higher than the height
AddDGA reaches at the end of each environmental period,
the overall average gives AddDGA a lead over DLDGA.

Second, comparing AddDGA and NWDGA, it can be seen
that AddDGA outperforms NWDGA on almost all DOPs,

see the t-test results in Table 1. This is an interesting result
and seems difficult to understand at the first glance since
both use similar dominance change schemes, as described in
Section II. However, scrutinizing their dominance schemes
in Fig. 2 may dig out the deeply hidden secret. Comparing
Fig. 2(a) and Fig. 2(b), it can be seen that in the Ng-
Wong scheme there are four “0/1” uncertain values in the
map. In other words, in the Ng-Wong scheme when “1”
meets “0” or “i” meets “o” in the genotype, the phenotypic
allele is random. This puts NWDGA in a disadvantageous
ground over AddDGA. This is because for each given
environment the allele for each locus in the optimal solution
is deterministic for the test DOPs and hence having some
phenotypic alleles randomly wandering between 0 and 1 may
be disadvantageous.

Third, when observing the performance of DGAs on the
deceptive DOPs, it can be seen that DGAs perform much
better when ρ = 1.0 than when ρ is set to other values.
This is because in the deceptive function there is a strong
deceptive sub-optimal schema in its building block, which is
complementary to the global optimal schema. When ρ = 1.0
the individuals of the population will mainly switch between
the global optimal and the sub-optimum.

OneMax Royal Road Deceptive

 60

 65

 70

 75

 80

 85

 90

 95

 100

1.00.50.20.1

F
it

n
es

s

0.05-DLDGA
0.25-DLDGA

0.5-DLDGA
0.75-DLDGA

 30

 40

 50

 60

 70

 80

 90

 100

1.00.50.20.1

F
it

n
es

s

0.05-DLDGA
0.25-DLDGA

0.5-DLDGA
0.75-DLDGA

 60

 65

 70

 75

 80

 85

 90

 95

 100

1.00.50.20.1

F
it

n
es

s

0.05-DLDGA
0.25-DLDGA

0.5-DLDGA
0.75-DLDGA

ρ ρ ρ

Fig. 5. Experimental results on the effect of α on DLDGAs on DOPs with τ = 50.

D. Sensitivity Analysis of the Learning Rate

It is intuitive that the learning rate α has an important
effect on DLDGA’s performance in dynamic environments.
In order to investigate this effect, we further carried out ex-
periments on DLDGA with different settings, 0.05, 0.25, and
0.75, for α on the dynamic test problems. The experimental
design is the same as previous one for DLDGAs except the
learning rate. The experimental results are plotted in Fig. 5
where the data were obtained and averaged over 50 runs and
the DLDGA with learning rate α is marked as α-DLDGA
accordingly.

From Fig. 5, it can be seen that the learning rate α does
affect DLDGA’s performance on the DOPs. When the value
of α rises from 0.05 to 0.25, the performance of DLDGA
improves significantly on most DOPs. When α is raised
to 0.5, DLDGA’s performance is further improved but with
much less magnitude. When the value of α is further raised
to 0.75, the performance of DLDGA is only slightly better
on the dynamic test problems.

V. CONCLUSIONS

This paper proposes a dominance learning scheme that
uses a dominance probability vector to map the genotype to
phenotype of individuals for DGAs to address DOPs. This
dominance probability vector is learnt adaptively toward the
current environment and hence can adapt the DLDGA more
efficiently in the changing environment. Experiments were
carried out based on a series of systematically constructed
DOPs to compare the proposed dominance learning scheme
with two other dominance change schemes for DGAs. From
the experimental results and relevant analysis, several con-
clusions can be drawn on the dynamic test environments.

First, the proposed dominance learning scheme is efficient
to improve the performance of DGAs in dynamic environ-
ments. It outperforms the other two investigated dominance
change schemes.

Second, the parameter sensitivity analysis shows that the
learning rate α has a significant effect on the proposed
dominance learning scheme and setting α in the range of
[0.25, 0.5] seems a good choice for DLDGA.

Third, the additive dominance scheme is significantly
better than the Ng-Wong scheme for DGAs on the dynamic
test environments. The existence of uncertainty in the dom-
inance mapping in the Ng-Wong scheme seems giving it a
disadvantage over the additive dominance scheme.

In this paper, we have carried out some preliminary exper-
iments comparing the proposed dominance learning scheme
for DGAs over two existing dominance change schemes.
Comparing it with other advanced dominance schemes, such
as the one in [10], is now under investigation. It is also an
interesting future work to compare it with some advanced
explicit memory schemes for GAs for DOPs.

REFERENCES

[1] S. Baluja. Population-based incremental learning: A method for
integrating genetic search based function optimization and compet-
itive learning. Technical Report CMU-CS-94-163, Carnegie Mellon
University, USA, 1994.

[2] J. Branke. Memory enhanced evolutionary algorithms for changing
optimization problems. Proc. of the 1999 Congress on Evolutionary
Computation, vol. 3, pp. 1875-1882, 1999.

[3] J. Branke. Evolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, 2002.

[4] E. Collingwood, D. Corne, and P. Ross. Useful diversity via
multiploidy. Proc. of the IEEE 1996 Int. Conf. on Evolutionary
Computation, pp. 810-813, 1996.

[5] S. Forrest and M. Mitchell. Relative building-block fitness and
the building-block hyperthesis. In D. Whitley (ed.), Foundations of
Genetic Algorithms 2, pp. 109-126, 1992.

[6] D. E. Goldberg and R. E. Smith. Nonstationary function optimization
using genetic algorithms with dominance and diploidy. Proc. of the
2nd Int. Conf. on Genetic Algorithms, pp. 59-68, 1987.

[7] E. H. J. Lewis and G. Ritchie. A comparison of dominance mech-
anisms and simple mutation on non-stationary problems. PPSN V,
pp. 139-148, 1998.

[8] K. P. Ng and K. C. Wong. A new diploid scheme and dominance
change mechanism for non-stationary function optimisation. Proc. of
the 6th Int. Conf. on Genetic Algorithms, pp. 159-166, 1995.

[9] C. Ryan. The degree of oneness. Proc. of the 1994 ECAI Workshop
on Genetic Algorithms, 1994.

[10] A. Ş. Uyar and A. E. Harmanci. A new population based adaptive
dominance change mechanism for diploid genetic algorithms in dy-
namic environments. Soft Computing, 9(11): 803-814, 2005.

[11] S. Yang. Non-stationary problem optimization using the primal-
dual genetic algorithm. Proc. of the 2003 Congress on Evolutionary
Computation, vol. 3, pp. 2246-2253, 2003.

[12] S. Yang and X. Yao. Experimental study on population-based incre-
mental learning algorithms for dynamic optimization problems. Soft
Comput., 9(11): 815-834, 2005.

