
MISTA 2009

A Guided Search Genetic Algorithm for the University Course
Timetabling Problem

Sadaf Naseem Jat· Shengxiang Yang

Abstract The university course timetabling problem is a combinatorial optimisation prob-
lem in which a set of events has to be scheduled in time slots and located in suitable rooms.
The design of course timetables for academic institutions is a very difficult task because it
is an NP-hard problem. This paper proposes a genetic algorithm with a guided search strat-
egy and a local search technique for the university course timetabling problem. The guided
search strategy is used to create offspring into the population based on a data structure that
stores information extracted from previous good individuals. The local search technique is
used to improve the quality of individuals. The proposed genetic algorithm is tested on a set
of benchmark problems in comparison with a set of state-of-the-art methods from the liter-
ature. The experimental results show that the proposed genetic algorithm is able to produce
promising results for the university course timetabling problem.

1 Introduction

Timetabling is one of the common scheduling problems, which can be described as the
allocating of resources for factors under predefined constraints so that it maximises the pos-
sibility of allocation or minimises the violation of constraints [14]. Timetabling problems
are often complicated by the details of a particular timetabling task. A general algorithm
approach to a problem may turn out to be incapable, because of certain special constraints
required in a particular instance of that problem. In the university course timetabling prob-
lem (UCTP), events (subjects, courses) have to be set into a number of time slots and rooms
while satisfying various constraints. Timetabling has become much more difficult to find
the general and effective solution due to the diversity of the problem, the variance of con-
straints, and particular requirements from university to university according to the charac-

Sadaf Naseem Jat
Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
E-mail: snj2@mcs.le.ac.uk

Shengxiang Yang
Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
E-mail: s.yang@mcs.le.ac.uk

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

180



teristics. There is no known deterministic polynomial time algorithm for the UCTP. That is,
the UCTP is an NP-hard combinatorial optimisation problem [12].

The research on timetabling problems has a long history. Over the last forty years, re-
searchers have proposed various timetabling approaches by using constraint-based methods,
population-based approaches (e.g., genetic algorithms (GAs), ant colony optimization, and
memetic algorithms), meta-heuristic methods (e.g., tabu search, simulated annealing, and
great deluge), variable neighbourhood search (VNS), and hybrid and hyper-heuristic ap-
proaches etc. A comprehensive review on timetabling can be found in [8,18] and recent
research directions in timetabling are described in [5].

Several researchers have used GAs to solve course timetabling problems [20,21,1,23].
Rossi-Doria et al. [16] compared different meta-heuristics to solve the course timetabling
problem. They concluded that conventional GAs do not give good results among a number
of approaches developed for the UCTP. Hence, conventional GAs need to be enhanced to
solve the UCTP. In this paper, a guided search genetic algorithm, denotedGSGA, is proposed
for solving the UCTP, which consists of a guided search strategy and a local search tech-
nique. GAs rely on a population of candidate solutions [22]. If there is a good population,
then chances increase to create a feasible and optimal solution. In GSGA, a guided search
strategy is used to create offspring into the population based on an extra data structure. This
data structure is constructed from the best individuals from the population and hence stores
useful information that can be used to guide the generation of good offspring into the next
population. In GSGA, a local search technique is also used to improve the quality of indi-
viduals through searching in three kinds of neighbourhood structures. In order to test the
performance of the proposed GSGA, experiments are carried out on a set of benchmark
problems in comparison with a set of state-of-the-art methods from the literature.

The rest of this paper is organised as follows. The next section briefly describes the
UCTP. Section 3 presents the genetic algorithm proposed in this paper for the UCTP. Exper-
imental results of comparing the proposed GA and other algorithms from the literature are
reported and discussed in Section 4. Section 5 concludes this paper with discussions on the
future work.

2 The University Course Timetabling Problem

According to Carter and Laporte [8], the UCTP is a multi-dimensional assignment problem,
in which students and teachers (or faculty members) are assigned to courses, course sections
or classes and events (individual meetings between students and teachers) are assigned to
classrooms and time slots.

In a UCTP, we assign an event (courses, lectures) into a time slot and also assign a
number of resources (students, rooms) in such a way that there is no conflict between the
rooms, time slots and events. As mentioned by Rossi-Doria et al. [17], the UCTP problem
consists of a set ofn events (classes, subjects)E = {e1, e2, ..., en} to be scheduled in a set
of 45 time slotsT = {t1, t2, ..., t45} (i.e., nine for each day in a five day week), a set ofm

available roomsR = {r1, r2, ..., rm} in which events can take place, a set ofk studentsS =

{s1, s2, ..., sk} who attend the events and a set ofl available featuresF = {f1, f2, ..., fl}

that are satisfied by rooms and required by each event.
In addition, interrelationships between these sets are given by five matrices. The first ma-

trix shows which event is attended by which students. The second matrix indicates whether
two events can be scheduled in the same time slot or not. The third matrix gives the features

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

181



that each room possesses. The fourth matrix gives the features required by each event. The
last matrix lists the possible rooms to which each event can be assigned.

Usually, a matrix is used for assigning each event to a roomri and a time slotti. Each
pair of (ri, ti) is assigned a particular number corresponding to an event. If a roomri in a
time slotti is free or no event is placed then “-1” is assigned to that pair. In this way we
assure that there will be no more than one event assigned to the same pair so that one of the
hard constraint will always been satisfied.

For the room assignment we use a matching algorithm described by Rossi-Doria [16].
For every time slot, there is a list of events taking place in it and a preprocessed list of
possible rooms to which the placement of events can be occurred. The matching algorithm
uses a deterministic network flow algorithm and gives the maximum cardinality matching
between rooms and events.

In general, the solution to a UCTP can be represented in the form of an ordered list of
pairs(ri, ti), of which the index of each pair is the identification number of an eventei ∈ E

(i = 1, 2, · · · , n). For example, the time slots and rooms are allocated to events in an ordered
list of pairs like:

(2, 4), (3, 30), (1, 12), · · · , (2, 7),

where time slot 4 and room 2 are allocated to event 1, time slot 30 and room 3 are allocated
to event 2, and so on.

The real world UCTP consists of different constraints: some are hard constraints and
some are soft constraints. Hard constraints must not be violated under any circumstances,
e.g. students cannot attend two classes at the same time. Soft constraints should preferably be
satisfied, but can be accepted with a penalty associated to their violation, e.g. students should
not attend more than two classes in a row. In this paper, we will test our proposed algorithm
on the problem instances discussed in [16]. We deal with the following hard constraints:

– No student attends more than one events at the same time;
– The room is big enough for all the attending students and satisfies all the features re-

quired by the event;
– Only one event is in a room at any time slot.

There are also soft constraints which are penalised equally by their occurrences:

– A student has a class in the last time slot of a day;
– A student has more than two classes in a row;
– A student has a single class on a day.

The goal of the UCTP is to minimise the soft constraint violations of a feasible solution
(a feasible solution means that no hard constraint violation exists in the solution). The ob-
jective functionf(s) for a timetables is the weighted sum of the number of hard-constraint
violations #hcv and soft-constraint violations#scv, which was used in [17], as defined
below:

f(s) := #hcv(s) ∗ C + #scv(s) (1)

whereC is a constant, which is larger than the maximum possible number of soft-constraint
violations.

3 The Guided Search Genetic Algorithm

GAs are a class of powerful general purpose optimisation tools that model the principles
of natural evolution [11]. GAs have been used for timetabling since 1990 [10]. Since then,

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

182



Algorithm 1 The Guided Search Genetic Algorithm (GSGA)
1: input : A problem instanceI
2: set the generation counterg := 0
{initialize a random population}

3: for i := 1 to population sizedo
4: si ← create a random solution
5: si ← solutionsi after applyingLocalSearch()
6: end for
7: while the termination condition is not reacheddo
8: if (g modτ ) == 0 then
9: applyConstructMEM() to construct the data structureMEM

10: end if
11: s ← child solution generated by applyingGuidedSearchByMEM() or the crossover operator

with a probabilityγ

12: s← child solution after mutation with a probabilityPm

13: s← child solution after applyingLocalSearch()
14: replace the worst member of the population by the child solutions
15: g := g + 1
16: end while
17: output : The best achieved solutionsbest for the problem instanceI

there are a number of papers investigating and applying GA methods for the UCTP [8]. In
this paper, we propose an optimization method based on GAs that incorporates a guided
search strategy and a local search operator for the UCTP. The pseudocode of the proposed
guided search GA for the UCTP is shown in Algorithm 1.

The basic framework of GSGA is a steady state GA, where only one child solution is
generated per iteration/generation. In GSGA, we first initialize the population by randomly
creating each individual via assigning a random time slot for each event according to a
uniform distribution and applying the matching algorithm to allocate a room for the event.
Then, a local search (LS) method as used in [9] is applied to each member of the initial
population. The LS method uses three neighbourhood structures, which will be described in
section 3.4, to move events to time slots and then uses the matching algorithm to allocate
rooms to events and time slots. After the initialization of the population, a data structure
(denotedMEM in this paper) is constructed, which stores a list of room and time slot
pairs (r, t) for all the events with zero penalty (no hard and soft violation at this event)
of selected individuals from the population. After that thisMEM can be used to guide
the generation of offspring for the following generations. TheMEM data structure is re-
constructed regularly, e.g., everyτ generations.

In each generation of GSGA, one child is first generated either by usingMEM or by
applying the crossover operator, depending on a probabilityγ. After that, the child will be
improved by a mutation operator followed by the LS method. Finally, the worst member in
the population is replaced with the newly generated child individual. The iteration continues
until one termination condition is reached, e.g., a preset time limittmax is reached.

In the following sub-sections, we will describe in details the key components of GSGA
respectively, including theMEM data structure and its construction, the guided search strat-
egy, the mutation operator, and the local search method.

3.1 TheMEM Data Structure

There have been a number of researches in the literature on using extra data structure or
memory to store useful information in order to enhance the performance of GAs and other

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

183



Fig. 1 Illustration of the data structureMEM .

Algorithm 2 ConstructMEM() – Constructing the data structureMEM

1: input : The whole populationP
2: sort the populationP according to the fitness of individuals
3: Q← select the bestα individuals inP

4: for each individualIj in Q do
5: for each eventei in Ij do
6: calculate the penalty value of eventei from Ij

7: if ei is feasible (i.e.,ei has zero penalty)then
8: add the pair of room and time slot (rei

, tei
) assigned toei into the listlei

9: end if
10: end for
11: end for
12: output : The data structureMEM

meta-heuristic methods for optimization and search [24,26,25]. In GSGA, we also use a
data structure to guide the generation of offspring. Fig. 1 shows the details of theMEM

data structure, which is a list of events and each eventei has again a listlei
of room and

time slot pairs. In Fig. 1,Ni represents the total number of pairs in the listlei
.

The MEM data structure is regularly reconstructed everyτ generations. Algorithm
2 shows the outline of constructingMEM . WhenMEM is due to be reconstructed, we
first selectα best individuals from the populationP to form a setQ. After that, for each
individual Ij ∈ Q, each event is checked by its penalty value(Hard and soft constraints
associated with this event). If an event has a zero penalty value, then we store the information
corresponding to this event intoMEM . For example, if the evente2 of an individualIj ∈ Q

is assigned room 2 at time slot 13 and has a zero penalty value, then we add the pair(2, 13)

into the listle2
. Similarly, the events of the next individualIj+1 ∈ Q are also checked by

their penalty values. If the evente2 in Ij+1 has a zero penalty, then we add the pair of room
and time slot assigned toe2 in Ij+1 into the existing listle2

. If for an eventei, there is no a
list lei

existing yet, then the listlei
is added into theMEM data structure. Similar process

is carried out for the selectedQ individuals and finally theMEM data structure stores pairs
of room and time slot corresponding to those events with zero penalty of the best individuals
of the current population.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

184



Algorithm 3 GuidedSearchByMEM() – Generating a child fromMEM

1: input : TheMEM data structure
2: Es := randomly selectβ ∗ n events
3: for each eventei in Es do
4: randomly select a pair of room and time slot from the listlei

5: assign the selected pair to eventei for the child
6: end for
7: for each remaining eventei not inEs do
8: assign a random time slot and room to eventei

9: end for
10: output : A new child generated using theMEM data structure

This MEM data structure is then used to generate offspring for the nextτ generations
before re-constructed. We updateMEM everyτ generations instead of every generation in
order to make a balance between the solution quality and the computational time cost of the
proposed GSGA.

3.2 Generating a Child by the Guided Search Strategy

In GSGA, a child is created through the guided search byMEM or a crossover operator with
a probabilityγ. That is, when a new child is to be generated, a random numberρ ∈ [0.0, 1.0]

is first generated. Ifρ is less thanγ, GuidedSearchByMEM() (as shown in Algorithm 3)
will be used to generate the new child; otherwise, a crossover operation is used to generate
the new child. Below we first describe the procedure of generating a child through the guided
search byMEM and then describe the crossover operator.

If a child is to be created using theMEM data structure, we first select a setEs of
β ∗ n random events to be generated fromMEM . After that, for each eventei in Es, we
randomly select a pair of (rei

, tei
) from the listlei

that corresponds to the eventei and assign
the selected pair toei for the child. If there is an eventei in Es but there is no the listlei in
MEM , then we randomly assign a room and time slot from possible rooms and time slots
to ei for the child. This process is carried out for all the events inEs. For those remaining
events that are not present inEs, they are assigned random rooms and time slots.

If a child is to be generated using the crossover operator, we first select two individuals
from the population as the parents by the tournament selection of size 2. Then, we exchange
the time slots between the two parents and allocate rooms to events in each non-empty time
slot.

3.3 Mutation

After a child is generated by using eitherMEM or crossover, a mutation operator is used
with a probabilityPm. The mutation operator first randomly selects one from three neigh-
bourhood structures N1, N2 and N3, which will be described in Section 3.4, and then make
a move within the selected neighbourhood structure.

3.4 Local Search

After mutation, a local search (LS) method is applied on the child solution for possible
improvement. Algorithm 4 summarises the LS scheme used in GSGA. LS works on all

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

185



Algorithm 4 LocalSearch() – Search the neighbourhood for improvement
1: input : Individual I from the population
2: for i := 1 to n do
3: if eventei is infeasiblethen
4: if there is untried move leftthen
5: calculate the moves: first N1, then N2 if N1 fails, and finally N3 if N1 and N2 fail
6: apply the matching algorithm to the time slots affected by the move and delta evaluate the result.
7: if moves reduce hard constraints violationthen
8: make the moves and go to line 3
9: end if

10: end if
11: end if
12: end for
13: if no any hard constraints remainthen
14: for i := 1 to n do
15: if eventi has soft constraint violationthen
16: if there is untried move leftthen
17: calculate the moves: first N1, then N2 if N1 fails, and finally N3 if N1 and N2 fail
18: apply the matching algorithm to the time slots affected by the move and delta evaluate the

result
19: if moves reduce soft constraints violationthen
20: make the moves and go to line 14
21: end if
22: end if
23: end if
24: end for
25: end if
26: output : A possibly improved individualI

events. Here, we suppose that each event is involved in soft and hard constraint violations.
LS works in two steps and is based on three neighbourhood structures, denoted as N1, N2,
and N3. They are described as follows:

– N1: the neighbourhood defined by an operator that moves one event from a time slot to
a different one

– N2: the neighbourhood defined by an operator that swaps the time slots of two events
– N3: the neighbourhood defined by an operator that permutes three events in three distinct

time slots in one of the two possible ways other than the existing permutation of the three
events.

In the first step (line 2-12 in Algorithm 4), LS checks the hard constraint violations of
each event while ignoring its soft constraint violations. If there are hard constraint violations
for an event, LS tries to resolve them by applying moves in the neighbourhood structures
N1, N2, and N3 orderly1 until a termination condition is reached, e.g., an improvement is
reached or the maximum number of stepssmax is reached, which is set to different values
for different problem instances. After each move, we apply the matching algorithm to the
time slots affected by the move and try to resolve the room allocation disturbance and delta-
evaluate the result of the move (i.e., calculate the hard and soft constraint violations before
and after the move). If there is no untried move left in the neighbourhood for an event,

1 For the event being considered, potential moves are calculated in a strict order. First, we try to move the
event to the next time slot, then the next, then the next, etc. If this search in N1 fails, we then search in N2
by trying to swap the event with the next one in the list, then the next one, and so on. If the search in N2 also
fails, we try a move in N3 by using one different permutation formed by the event with the next two events,
then with the next two, and so on.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

186



Table 1 Three groups of problem instances

Class Small Medium Large

Number of events 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Per room approximate features 3 3 5
Percentage (%) of features used 70 80 90
Number of students 80 200 400
Maximum events per student 20 20 20
Maximum students per event 20 50 100

LS continues to the next event. After applying all neighbourhood moves on each event, if
there is still any hard constraint violation, then LS will stop; otherwise, LS will perform the
second step (lines 13-25 in Algorithm 4).

In the second step, after reaching a feasible solution, the LS method is used to deal with
soft constraints. LS performs a similar process as in the first step on each event to reduce its
soft constraint violations. For each event, LS tries to make moves in the neighbourhood N1,
N2, and/or N3 orderly without violating the hard constraints. For each move, the matching
algorithm is applied to allocate rooms to affected events and the result is delta-evaluated.
When LS finishes, we get a possibly improved and feasible individual.

At the end of each generation, the obtained child solution replaces the worst member of
the population to make a better population in the next generation.

4 Experimental Study

The program is coded in GNU C++ with version 4.1 and run on a 3.20 GHz PC. We use
a set of benchmark problem instances to test our algorithm, which were proposed by Ben
Paechter for the timetabling competition, see [15]. Although these problem instances lack
many of the real world problem constraints and issues [13], they allow the comparison of
our approach with current state-of-the-art techniques on them.

Table 1 represents the data of timetabling problem instances of three different groups:
5 small instances, 5 medium instances, and 1 large instance. The parameters for GSGA are
set as follows: the population sizepop size is set to 50,α = 0.2 ∗ pop size = 10, β = 0.6,
γ = 0.8, τ = 20, andPm = 0.5. In the local search, the maximum number of steps per
local searchsmax is set to different values for different problem instances, which are 200
for small instances, 1000 for medium instances, and 2000 for the large instance respectively.
There were 50 runs of the algorithm for each problem instance. For each run, the maximum
run timetmax was set to 90 seconds for small instances, 900 seconds for medium instances,
and 9000 seconds for the large instance.

We compare our GSGA with other algorithms on the 11 timetabling problem instances.
The algorithms compared in the table are described as follows:

– GSGA: The guided search genetic algorithm proposed in this paper
– RIIA: The randomised iterative improvement method by Abdullah et al. [2]. They pre-

sented a composite neighbourhood structure with a randomised iterative improvement
algorithm.

– VNS: The variable neighbourhood search by Abdullah et al. [3]. In [3], they used a
variable neighbourhood search approach based on the random-descent local search with
an exponential Monte Carlo acceptance criteria.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

187



Table 2 Comparison of algorithms on small and medium problem instances

GSGA RIIA GALS GBHH VNS THHS LS EA AA FA
UCTP Best Med Best Best Best Best Best Med Best Med Best

S1 0 0 0 2 6 0 1 8 0 1 10
S2 0 0 0 4 7 0 2 11 3 3 9
S3 0 0 0 2 3 0 0 8 0 1 7
S4 0 0 0 0 3 0 1 7 0 1 17
S5 0 0 0 4 4 0 0 5 0 0 7
M1 240 242.5 242 254 372 317 146 199 280 195 243
M2 160 164 161 258 419 313 173 202.5 188 184 325
M3 242 245 265 251 359 357 267 77.5%In 249 248 249
M4 158 161 181 321 348 247 169 177.5 247 164.5 285
M5 124 126.5 151 276 171 292 303 100%In 232 219.5 132
L 801 822 100%In 1027 1068 100%In 80%In 100%In 100%In 851.5 1138

– THHS: The tabu-based hyper-heuristic search by Burke et al. [6]. They introduced a
tabu-search hyper heuristics where a set of low level heuristics compete with each other.
This approach was tested on the course timetabling and nurse rostering problems.

– EA: The evolutionary algorithm (EA) by Rossi-Doria et al. [16]. They used a local
search with the EA to solve the UCTP and also compared several metaheuristics meth-
ods on the UCTP.

– GALS: The GA with local seach by Abdullah and Turabieh [1]. They tested a GA with
a repair function and local seach on the UCTP.

– LS: The local search method by Socha et al. [19]. They used a random restart local
search for the UCTP and compared it with an ant algorithm.

– AA: The ant algorithm used by Socha et al. [19]. They developed a first ant colony
optimization algorithm with the help of construction graph and a pheromone model
appropriate for the UCTP.

– FA: The fuzzy algorithm by Asmuni et al. [4]. In [4], Asmuni et al. focused on the issue
of ordering events by simultaneously considering three different heuristics using fuzzy
methods.

– GBHH: The graph-based hyper heuristic by Burke et al. [7]. They employed tabu search
with graph-based hyper-heuristics for the UCTP and examination timetabling problems.

Table 2 gives the comparison of the experimental results of our algorithm with the avail-
able results of other algorithms in the literature on the small and medium timetabling prob-
lem instances. In the table,S1 represents small instance 1,S2 represents small instance 2,
and so on, andM1 represents medium problem instance 1,M2 represents medium problem
instance 2, and so on, andL represents large instance. In Table 2, the term “%ln” represents
the percentage of runs that failed to obtain a feasible solution. “Best” and “Med” mean the
best and median result among 50 runs respectively. We present the best result among all
algorithms for each UCTP instance in the bold font.

From Table 2, it can be seen that our proposed GSGA is better than the fuzzy algorithm
[4] and graph based approach [7] on all the 11 small, medium, and large problem instances.
GSGA outperforms VNS [3], RIIA [2], and EA [16] on all the medium problem instances
and ties them on some or all of the small problem instances. It also gives better results than
local search [19] on 10 out of the 11 problem instances and is better than the ant algorithm
[19] on 9 problem instances and ties it on S5. When comparing with the tabu-based hyper
heuristic search [6], GSGA performs better or the same on all the problem instances except

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

188



(a) (b)

Fig. 2 Comparison of GSGA with the EA from [16] on (a) small and (b) medium problems.

Table 3 Thet-test results of comparing GSGA against the EA by Rossi-Doria et al. [16]

function S1 S2 S3 S4 S5
t-test 8.8874 8.0551 9.5634 7.7520 4.5521
function M1 M2 M3 M4 M5
t-test 6.5912 5.0794 4.5667 17.6783 18.4526

on M1. Finally, the results of our approach is better then the GALS approach [1] on all
medium and large instances and ties on S4.

We are interested to compare the results of GSGA with EA to show that the guided
serach approach can help to minimise the penalty values and give better results for UCTP
in comparison with conventional EAs employed in [16]. Fig. 2 shows the average penalty
value over 50 runs of the EA by Rossi-Doria et al. [16] and our proposed GSGA on the small
and medium UCTP instances, respectively. The results of thet-test statistical comparison of
GSGA against their EA are shown in Table 3. Thet-test statistical comparison is carried out
with 98 degrees of freedom at a 0.05 level of significance. From Fig. 2 and Table 3, it can
be seen that the performance of GSGA is significantly better than the EA by Rossi-Doria et
al. on all small and medium problems. These results show that by integrating proper guided
search techniques the performance of GAs for the UCTP can be greatly improved.

5 Conclusion and Future work

This paper presents a guided search genetic algorithm, i.e., GSGA, to solve the university
course timetabling problem, where a guided search strategy and a local search technique
are integrated into a steady state genetic algorithm. The guided search strategy uses a data
structure to store useful information, i.e., a list of room and time slot pairs for each event that
is extracted from the best individuals selected from the population and has a zero penalty
value. This data structure is used to guide the generation of offspring into the next popula-
tion. In GSGA, a local search technique is also used to improve the quality of individuals
through searching three neighbourhood structures. To our knowledge this is the first such
algorithm aimed at this problem domain.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

189



In order to test the performance of GSGA, experiments are carried out based on a set
of benchmark problems to compare GSGA with a set of state-of-the-art methods from the
literature. The experimental results show that the proposed GSGA is competitive and work
reasonably well across all problem instances in comparison with other approaches studied
in the literature. With the help of the guided search strategy, GSGA is capable of finding
(near) optimal solutions for the university course timetabling problem and hence can act as
a powerful tool for the UCTP.

Future work includes further analysis of the contribution of individual components (local
search and guided search) toward the performance of GSGA. Improvement of genetic oper-
ators and new neighbourhood techniques based on different problem constraints will also be
investigated. We believe that the performance of GAs for the UCTP can be improved by ap-
plying advanced genetic operators and heuristics. The inter-relationship of these techniques
and a proper placement of these techniques in a GA may lead to a better performance.

References

1. S. Abdullah and H. Turabieh Generating university course timetable using genetic algorithm and local
search.Proc. of the 3rd Int. conf. on Hybrid Information Technology, pp. 254-260, 2008.

2. S. Abdullah, E. K. Burke, and B. McCollum. Using a randomised iterative improvement algorithm with
composite neighbourhood structures.Proc. of the 6th Int. Conf. on Metaheuristic, pp. 153-169, 2007.

3. S. Abdullah, E. K. Burke, and B. McCollum. An investigation of variable neighbourhood search for
university course timetabling.Proc. of the 2nd Multidisciplinary Conference on Scheduling: Theory and
Applications, pp. 413–427, 2005.

4. H. Asmuni, E. K. Burke, and J. M. Garibaldi. Fuzzy multiple heuristic ordering for course timetabling.
Proc. of the 5th UK Workshop on Comput. Intell., pp. 302-309, 2005.

5. E. K. Burke and S. Petrovic. Recent research directions in automated timetabling.European Journal of
Operation Research, 140(2): 266-280, 2002.

6. E. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-heuristic for timetabling and rostering.
Journal of Heuristics, 9(6): 451-470, 2003.

7. E. K. Burke, B. MacCloumn, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper heuristic for
timetabling problems.European Journal of Operation Research, 176: 177–192, 2006.

8. M. W. Carter and G. Laporte. Recent developments in practical course timetabling.Proc. of the 2nd Int.
Conf. on Practice and Theory of Automated Timetabling, LNCS 1408, pp. 3–19, 1998.

9. M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm for university
course timetabling.Journal of Scheduling, 9(5): 403–432, 2006.

10. A. Colorni, M. Dorigo, and V. Maniezzo. Genetic algorithms - A new approach to the timetable problem.
In Akgul et al. (eds.),NATO ASI Series, Combinatorial Optimization, Lecture Notes in Computer Science,
F(82), pp. 235-239, 1990.

11. L. Davis.Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
12. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems.

SIAM Journal on Computing, 5(4): 691–703, 1976.
13. B. McCollum. University Timetabling: Bridging the Gap between Research and Practice.Proc of the

6th Int Conf on the Practice and Theory of Automated Timetabling, pp. 15–35, 2006.
14. N. D Thanh Solving timetabling problem using genetic and heuristics algorithmsJournal of Scheduling,

9(5): 403–432, 2006.
15. http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html
16. O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. Gambardella, J. Knowles,

M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle. A comparison of the performance of
different metaheuristics on the timetabling problem.Lecture Notes in Computer Science 2740, pp. 329–351,
2002.

17. O. Rossi-Doria and B. Paechter. A memetic algorithm for university course timetabling.Proceedings of
Combinatorial Optimization (CO 2004), pp. 56. 2004.

18. A. Schearf. A survey of automated timetabling.Artificial Intelligence Review, 13(2): 87–127, 1999.
19. K. Socha, J. Knowles, and M. Samples. A max-min ant system for the university course timetabling

problem.Proc. of the 3rd Int. Workshop on Ant Algorithms (ANTS 2002), LNCS 2463, pp. 1-13, 2002.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

190



20. W. Erben,J. Keppler. A genetic algorithm solving a weeklycourse timetabling problem.Proc. of the ist
Int. Conf. on Practice and Theory of Automated Timetabling, LNCS 1153, pp. 198-211, 1995.

21. P. Pongcharoen, W. Promtet, P. Yenradee, and C. Hicks. Schotastic Optimisation Timetabling Tool for
University Course Scheduling.International Journal of Production Economics, 112: 903-918, 2008.

22. K. Sastry, D. Goldberg, and G. Kendall. Genetic algorithms. In E. K. Burke and G. Kendall (Eds.),
Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Chapter
4, pp. 97-125, Springer, 2005.

23. R. Lewis and B. Paechter. Application of the Grouping Genetic Algorithm to University Course
Timetabling Proc. of the 5th European Conf. on Evol. Comput. in Combinatorial Optimization (EvoCOP
2005), LNCS 3448, pp. 144-153, 2005.

24. A. Acan and Y. Tekol. Chromosome Reuse in Genetic AlgorithmsProc. of the 2003 Genetic and
Evolutionary Computation Conference (GECCO 2003), pp. 695-705, 2003.

25. S. Louis and G. Li. Augmenting genetic algorithms with memory to solve traveling salesman problem
Proc. of the 1997 Joint Conference on Information Sciences, pp. 108-111, 1997.

26. A. Acan. An External Memory Implementation in Ant Colony Optimization.Proc. of the 4th Int.
Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS 2004), pp. 73-82, 2004.

Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2009) 
10-12 August 2009, Dublin, Ireland

191




