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Abstract Recently, there has been an increasing concern from the evolutionary com-

putation community on dynamic optimization problems since many real-world optimiza-

tion problems are dynamic. This paper investigates a particle swarm optimization (PSO)

based memetic algorithm that hybridizes PSO with a local search technique for dynamic

optimization problems. Within the framework of the proposed algorithm, a local version of

PSO with a ring-shape topology structure is used as the global search operator and a fuzzy

cognition local search method is proposed as the local search technique. In addition, a self-

organized random immigrants scheme is extended into our proposed algorithm in order to

further enhance its exploration capacity for new peaks in the search space. Experimental

study over the moving peaks benchmark problem shows that the proposed PSO-based

memetic algorithm is robust and adaptable in dynamic environments.
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1 Introduction

In recent years, dynamic optimization problems (DOPs) have attracted a growing interest

from the evolutionary computation community since many real-world problems are time-

varying. In dynamic environments, the optimization goal, problem instance, and/or some

constraints may change over time due to such factors as stochastic arrival of new jobs,

machine faults and degradation, and so on. In such cases, the goal of an optimization

algorithm is no longer to find a satisfactory solution to a fixed problem, but to track the

moving optimum in the search space as closely as possible. This poses great challenges to

traditional evolutionary algorithms (EAs) because they cannot adapt well to the changing

environment once converged. Over the past decade, a number of approaches (Branke et al.

2000; Branke 1999; Cobb 1990; Uyar and Harmanci 2005; Wang and Wang 2006; Wang

et al. 2007, 2009a; Yang 2003, 2008; Yang and Yao 2005, 2008) have been developed into

EAs for DOPs and readers are referred to (Jin and Branke 2005; Yang et al. 2007) for a

comprehensive overview.

Memetic algorithms (MAs) are a recent growing area of research in evolutionary

computation. MAs combine EAs with local search (LS) methods and hence are also

referred to as genetic local search (Krasnogor and Smith 2005; Smith 2007). In the

framework of MAs, EA operators are used for globally rough search and LS operators are

used for local improvement, which can maintain an efficient balance between exploration

and exploitation of an algorithm. MAs have been applied widely for many complex

optimization problems, such as scheduling problems (Ishibuchi et al. 2003; Liu et al.

2007b; Man et al. 2007), combinatorial optimization problems (Gallardo et al. 2007; Tang

et al. 2007; Tang and Yao 2007), multi-objective problems (Goh and Tan 2009; Hatzakis

and Wallace 2006; Liu et al. 2007a), and so on. However, it is noticeable that the problems

for which MAs have been applied are mainly stationary problems. MAs are rarely applied

in dynamic environments.

Particle swarm optimization (PSO), which simulates the social behaviour of a group of

fishes or birds for solving problems, has become another rapidly growing active topic over

the last decade. PSO has been applied for many optimization problems with promising

results. In the recent years, PSO has been applied to address dynamic environments

(Blackwell and Branke 2006; Parrott and Li 2006). Based on the different learning

approaches of particles, PSO comes with two versions, the global version and the local

version. In the global PSO, each particle learns from the best particle in the whole swarm

while in the local version each particle learns from the best particle in its neighborhood. Of

these two versions, the local PSO has a slower convergence speed and hence may adapt to

a changing environment more easily.

In this paper, a new PSO-based MA, which hybridizes a local version of PSO and a

fuzzy cognition local search method, is proposed to address DOPs. In addition, a self-
organized random immigrants scheme is also integrated into the proposed algorithm in

order to further improve its performance in dynamic environments. Based on the moving

peaks benchmark (MPB) problem (Branke 1999), a set of extensive experiments are car-

ried out to examine the major features of the proposed PSO-based MA and to compare its

performance with some peer algorithms from the literature in dynamic environments.

The rest of this paper is outlined as follows. The next section reviews the basic prin-

ciples of PSOs and existing related work on PSOs for DOPs. Section 3 describes the

proposed PSO-based MA in detail. Section 4 evaluates empirically the proposed algorithm

on the moving peaks benchmark in comparison with several alternative approaches from
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the literature and some experimental analyses on parameter settings are also presented. The

final section concludes this paper with discussions on future work.

2 Related work

2.1 Principles of particle swarm optimization

Similar to EAs, PSO is a population-based, iterative technique. The main difference lies in

that in PSO potential solutions (particles) move, rather than evolve, through the search

space. The rules, which govern this movement, are inspired by the social interaction among

a school of fishes or flock of birds in nature. In a PSO model, a particle can be represented

by its position and velocity. At every iteration, each particle in a population (swarm) can

accomplish its updating based on its current velocity and position, the best position found

so far by itself, and the best position found so far by any of its ‘‘neighbors’’, which can be

described as follows:

viðt þ 1Þ ¼ xviðtÞ þ c1nðpiðtÞ � xiðtÞÞ þ c2gðpgiðtÞ � xiðtÞÞ ð1Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ; ð2Þ

where vi(t) and xi(t) represent the current velocity and position of particle i at iteration t,
respectively, pi(t) is the position of the best solution (pbest) found so far by particle i, pgi(t)
is the position of the best solution (gbest) found so far by the ‘‘neighbors’’ of particle i, x is

the inertia weight that controls the degree a particle’s previous velocity will be kept, c1 and

c2 denote cognitive and social learning factors, respectively, and n and g are uniform

random numbers in the range [0, 1].

Based on the approach of choosing gbest, PSO can be classified into two versions,

global and local. In the global version of PSO algorithms, each particle can be influenced

by the best fitness particle in the whole population which causes that all particles move and

converge quickly into one optimum point in the search space. On the contrast, the local

version of PSO only allows each particle to be influenced by the best fitness particle chosen

from its neighborhood which makes the algorithm exhibit a good exploration capacity due

to its slow convergence. Considering that a slowly converging population can adapt to a

changing environment more easily, it becomes an interesting research issue to examine the

performance of the local variant of PSO, which is hybrized with suitable LS techniques, in

dynamic environments.

2.2 PSO in dynamic environments

The work on PSO for addressing DOPs was first reported by Eberhart and Shi in (2001),

where a conventional PSO was investigated to track a single peak that varies spatially. Their

experimental results show that the simple PSO cannot deal with a variety of changes. Hu and

Eberhart (2002) introduced an adaptive PSO, which automatically tracks various changes in

a dynamic system. They tested different environmental detection and re-randomization

strategies, which effectively respond to a wide variety of changes, and reported and analyzed

the experimental results on the parabolic function and Rosenbrock’s benchmark function

with various severities of environmental changes. A method of adapting PSO for dynamic

environments was present by Carlisle and Dozier (2000). In their PSO, each particle can reset

the record of its best position and avoid making the direction and velocity change decisions
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based on outdated information when the environment has changed. Two resetting methods

were examined and the experimental results show that both were able to improve the

performance of PSO in both static and dynamic environments.

Recently, some special diversity schemes have been developed for PSO in dynamic

environments. Blackwell and Bentley (2002) introduced a charged PSO, where a nucleus

of neutral particles is surrounded by some charged particles. The charge imposes a

repulsion force between particles and thus hinders the swarm to converge. In (Liu et al.

2008), a composite PSO was proposed to address dynamic environments, where composite

particles are constructed as a novel type of particles in the search space and their motions

are integrated into the swarm. A special reflection scheme is also introduced the compound

PSO in order to explore the search space more comprehensively and hence enhances the

performance of PSO in dynamic environments.

The multi-swarm scheme is also a common strategy for PSO in dynamic environments.

Blackwell and Branke (2006) used a set of interacting swarms to track multiple optima

simultaneously. Two special operators, exclusion and anti-convergence, can prevent

multiple swarms from converging to the same peak and keep the exploration capacity for a

new peak in the search space, respectively. In addition, the charged particles or quantum

particles are used to encourage the diversity in each sub-swarm. On the MPB problem with

10 optima, multi-quantum swarm outperforms charged particle and standard PSO. Another

multi-swarm approach was recently proposed by Parott and Li (2006), where the number

and size of swarms are adjusted dynamically by a speciation mechanism, which was

originally proposed for finding multiple optima in multi-modal landscapes. The experi-

mental results indicate that the species-based PSO is very effective in dealing with multi-

modal optimization functions in both stationary and dynamic environments. Janson and

Middendorf (2006) proposed a partitioned hierarchical PSO, which can maintain a hier-

archy of particles that are partitioned into several sub-swarms for a limited number of

generations after a change of the environment occurs.

2.3 PSO based MAs

The algorithms investigated in this paper are a class of PSO-based MAs, which hybridize

PSO algorithms with LS techniques. The general PSO-based MA for a maximization

problem can be expressed by the pseudo-code in Fig. 1, where s_size denotes the popu-

lation size. Within this MA, a population of s_size particles are first initialized with random

positions and velocities and evaluated via a fitness function f(�). The pbest of each particle

is set equal to itself at the initial step. Then, some particles, selected from the current

population using a certain choice strategy, are improved by a meme or LS method, and

finally the gbest of each particle is updated. At each subsequent iteration, particles can

accomplish their update of velocities and positions according to Eqs. 1, 2, respectively. If

one particle can achieve a better solution than its pbest, its pbest will be replaced by the

newly achieved solution. Finally, some particles are selected to execute local improvement

before the gbest of each particle is updated.

Obviously, how to select suitable particles from the current population for local

improvement and how to execute an effective LS for the selected particles must be

addressed when we design a PSO-based MA. Moreover, the convergence problem should

also be considered when it is applied for DOPs. Many diversity keeping approaches have

proved to be good choices for EAs to address this problem. However, how to balance

between LS and diversity keeping schemes under the framework of a PSO-based MA in
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dynamic environments becomes a very interesting work since both the two schemes cost a

number of extra evaluations.

In the next section, some approaches will be proposed and discussed in detail to address

the aforementioned problems, which result in the proposed PSO-based MAs for DOPs.

3 Proposed PSO based MAs

3.1 The PSO topology structure

As discussed in the above section, a local version of PSO can reduce, at least temporarily,

the pressure of convergence of the population and thus enable the algorithm maintain a

sufficient exploration capacity for a longer time. This is necessary for adapting the PSO

well to a changing environment. Here, the first question to ask for this kind of PSO

algorithms is which topology structure should be used, i.e., how to choose the neighbors of

a particle. The approaches to design the local neighborhood of a particle can be grouped

into two categories as follows.

Fig. 1 Pseudo-code for a general PSO-based MA
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The local neighborhood of the first category is defined according to the actual distance

between the particles in the search space, which is translated into the Euclidean distance

for genotype with a real-coded representation, or the Hamming distance for genotype using

a binary representation. Parrot and Li (2006) proposed the notion of a species, which was

designed to be a group of particles that fall within a certain distance from a species seed,

i.e., the particles with the best fitness in a species. The whole population can be divided

into some different species and particles within the same species choose the species seed as

their neighborhood best gbest. The disadvantage of approaches in this category is that

when choosing a particle’s neighbors, the distance between the particle and other particles

need always to be re-calculated.

In the second category, the neighboring particles are identified using their indices rather

than their genotype distance. The particles are often lied on a ring-shaped topology, i.e., the

particle x0 is the immediate neighbor of the particle xs size�1: If rn is the neighborhood’s

radius, particle i is neighbored by the particles with indices from ((i - rn)%s_size) to

((i ? rn)%s_size). Similarly, Janson and Middendorf (2006) introduced a hierarchical PSO

algorithm where each particle is arranged in a node of a rooted tree and only neighbored to

the particle that is in its parent node. A local variant of PSO with a grid-like neighborhood

structure is also tested by Li and Dam (2003).

Here, the ring topology structure of PSO is adopted in our investigated algorithm and

the radius of neighborhood rn is set to 1, which means each particle only communicates

with two neighbors whose indices are closest to it. It is obvious that the smaller the value of

rn is, the more slowly the population converges. We choose rn = 1 because it is always

helpful to maintain the population diversity with a great degree in dynamic environments.

3.2 Local search

Within MAs, LS operators are employed to improve the individuals’ quality efficiently in a

local area. In the context of PSO-based MAs, a LS improvement procedure can often be

regarded as the particle executing one iterative biased or random moving, while the

moving from the current solution to a candidate solution would be accepted if the can-

didate has a better fitness at each iterative step. The general LS operator in PSO-based

MAs can be illustrated by the pseudo-code in Fig. 2.

From Fig. 2, it can be seen that the primary factor that affects the behavior of the LS

operator is the choice of the velocity (v0) generating method. Petalas et al. (2007)

employed a stochastic iterative LS technique in their MA, called random walk with
direction exploitation (RWDE), where a sequence of approximations of the optimizer are

generated by assuming a random vector as a search velocity. Liu et al. (2007a) presented a

synchronous particle local search (SPLS) method where a velocity vector is generated

through the conventional particle velocity formula except for that gbest is replaced with a

fuzzy vector. Inspired by these works, a fuzzy cognition local search (FCLS), which

utilizes a special cognition-only model of PSO to generate a velocity vector, is proposed in

this paper.

Kennedy (1997) introduced two special models of PSO, which are defined by omitting

or restricting components in the velocity formula. Dropping the social component results in

the cognition-only model, whereas dropping the cognitive component defines the social-
only model. It is clear that the cognition-only model can help enhance the exploitation

capacity of a particle to its own best pbest, which is the main motivation of designing the

FCLS operator based on the cognition-only PSO model.
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In order to improve the quality of a particle as much as possible, a fuzzy cognition-only
model is proposed here, which is formulated as follows.

p0ðtÞ ¼ NðpðtÞ; rÞ ð3Þ

vðt þ 1Þ ¼ xvðtÞ þ c1nðp0ðtÞ � xðtÞÞ; ð4Þ

where p0(t) denotes a fuzzy position of pbest (p(t)) of particle x at time t, which is

characterized by a normal distribution vector N(p(t), r) with r being a predefined

parameter to control the distribution range.

Based on the fuzzy cognition-only model, the FCLS procedure can be expressed by the

pseudo-code shown in Fig. 3. From the pseudo-code, it can be seen that r is an important

parameter that affects the FCLS operator because the move of a particle is directed by the

fuzzy position of pbest. The smaller the value of r is, the closer the position of the

generated fuzzy pbest approaches its original position. This means that the particle can

execute one biased move towards a smaller area around pbest. When r = 0, the particle’s

move is decided by its pbest absolutely as a result that the fuzzy cognition-only model
returns to the cognition-only model. Moreover, the initialization of v0 (see Fig. 3) is also

confined within a small range (v0 is initialized within the range of [0, 5]n in this paper) in

order to reduce the influence of the random factor.

The next problem to be addressed is how to select suitable particles from the current

population for local improvement (see Fig. 1). In many researches, LS is performed on

each of newly generated individuals, which seems to be too costly and infeasible for a MA

for DOPs considering that the total cost per iteration in terms of function evaluations is

limited. Hence, it seems a good choice that only the best fitness individual being selected

for local improvement (Wang et al. 2009b), if there exists a single optimum in the search

space. However, if the dynamic multi-modal function is considered, this scheme may

become unsuitable. Here, a selection algorithm, which can ensure multiple high-quality,

non-crowded particles to be refined by LS simultaneously, is illustrated in Fig. 4.

Fig. 2 Pseudo-code for the general LS operator in PSO-based MAs
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The algorithm (as shown in Fig. 4) of selecting particles for LS is performed at each

iteration. The set S of particles for LS is initially set to null and all particles in the current

population P are copied into a temporary choice pool P0. The best fitness particle x is firstly

selected from P0 into S and then the remainders in P0 are checked in turn against x. If a

particle falls within the radius rs of x, it is removed away from P0. This choice course will

be iterated until P0 becomes a null set or the maximal allowable number of LS operations is

Fig. 3 Pseudo-code for the
FCLS operator

Fig. 4 Pseudo-code for the choice algorithm that selects particles for LS
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met. It is easy to understand that this algorithm aims to pick out multiple high-quality

particles in different regions of the search space. The parameter rs can control the crowded

degree of S and ensure LS exploit different peaks in the search space. In addition, at each

iteration, the LS step size ls_size for each particle in S needs to be re-calculated because the

size of S, i.e., |S|, may be different at different iteration steps. In the experiments reported

later in this paper, ls size ¼ dtotal ls size=jSje; where total_ls_size denotes the total LS

step size for S per iteration.

3.3 Increasing population diversity

Although a local version of PSO can maintain a certain degree of diversity, it can loose

the capacity of exploring new regions of the search space along with its slow con-

vergence. This situation must be avoided since the fitness landscape may change over

time and new peaks may also appear in the search space over time in dynamic

environments.

Some diversity-increasing approaches have been developed for EAs to address this

problem. For example, the random immigrants approach is a very simple and natural way

to increase the diversity level of the population. In a random immigrants genetic algo-

rithm (RIGA) (Grefenstette 1992), a fraction of the current population is replaced by

randomly generated individuals in each generation of the run. A replacement strategy, like

replacing random or worst individuals of the population, defines which individuals are

replaced by the immigrants. However, this simple scheme cannot often improve the

performance of algorithms in dynamic environments because the newly generated

immigrants hardly survive during the selection process into the next generation due to

their very low fitness.

Recently, a variant of RIGA, called self-organized random immigrants genetic algo-
rithm (SORIGA), was proposed in Tinos and Yang (2007). In SORIGA, the worst fitness

individual and some of its neighbors are replaced by random individuals and preserved into

a sub-population. This sub-population is allowed to evolve independently. That is, it is

subjected to selection, crossover, and mutation among individuals that belong to the

sub-population. The individuals in the current population that do not belong to the sub-

population are not allowed to compete with (and hence replace) the individuals of the sub-

population. The sub-population may expand or shrink dynamically and may become

extincted when the worst fitness individual does not fall within it.

Here the mechanism of self-organized random immigrants (SORI) in Tinos and

Yang (2007) is extended into the proposed PSO-based MA for DOPs. In this extension,

a set of separate particles (the size is denoted as rr), which form a sub-population, are

selected randomly to be re-initialized and partitioned from the ring structure of the

population every fixed number (t_ri) of iterations. The partitioned sub-population

always keeps searching for the optimum independently until when a new sub-popula-

tion is generated, it is rejoined into the main population. Moreover, the sub-population

accomplishes its update in a global version and its best fitness particle can be improved

by a LS operator in each iteration of running the algorithm in order to ensure that it

converges into a promising area in the search space quickly. Re-initialization of a

particle also involves resetting its pbest besides randomly initializing its position and

velocity.

Based on the above description, our proposed MA that hybridizes both the FCLS

operator and the SORI scheme with a local version of PSO in a ring-shape topology can be

summarized by the pseudo-code shown in Fig. 5. Within the proposed algorithm, after an
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initial population is generated randomly, a set of particles, selected from the population by

the choice algorithm in Fig. 4, are improved by the FCLS operator and then the gbest of

each particle would be updated by the best particle among its neighbors. At each sub-

sequent iterative step, each particle is firstly updated according to the update formula

(Eqs. 1, 2), and then a portion of separate particles, selected randomly and partitioned from

the population, are re-initialized and set as preserved to search for the new optima inde-

pendently if the condition of SORI scheme is reached (t%t_ri = 0). Finally, the best

preserved particle and a set of non-preserved particles are selected to execute local

improvement before the gbest of each particle is updated.

Fig. 5 Pseudo-code for the proposed PSO-based MA
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4 Experimental study

4.1 Algorithm test environments

In this paper, a series of dynamic test environments are generated based on the MPB

problem (http://www.aifb.unikarl-sruhe.de/jbr/MovPeaks) that consists of a number of

peaks, of changing heights, widths, and locations in a random direction. The base landscape

of the MPB function consists of m peaks defined in an n-dimensional real space as follows:

Fðx; tÞ ¼ max
i¼1;...;m

HiðtÞ
1þWiðtÞ

Pn
j¼1 ðxjðtÞ � XijðtÞÞ2

; ð5Þ

where Wi(t) and Hi(t) are the height and width of peak i at time t, respectively, and Xij(t) is

the jth element of the location of peak i at time t. Each peak can independently change its

height and width and move its location around in the search space.

The parameter settings of the MPB problem used in this paper correspond to Scenario 1

as specified on the benchmark website (http://www.aifb.unikarl-sruhe.de/jbr/MovPeaks).

The test function has five peaks defined on a five-dimensional real space. Every s itera-

tions, the height and width of each peak are changed by adding a random Gaussian variable

and the location of each peak is moved by a shift vector vi of a fixed length q. More

formally, a change of a single peak can be described as follows:

d 2 Nð0; 1Þ
HiðtÞ ¼ Hiðt � 1Þ þ 7 � d
WiðtÞ ¼ Wiðt � 1Þ þ 0:01 � d
XiðtÞ ¼ Xiðt � 1Þ þ viðtÞ;

8
>><

>>:
ð6Þ

viðtÞ ¼
q

rþ viðt � 1Þj jðð1� kÞrþ kviðt � 1ÞÞ; ð7Þ

where the shift vector vi(t) is a linear combination of a random vector r and the previous

shift vector vi(t - 1) and is normalized to length q. The random vector r is created by

drawing random numbers for each dimension and normalizing its length to q. Hence, the

parameter s may be used to control the speed of changes and q may be used to control the

severity of changes. The parameter k allows controlling whether changes exhibit a trend (k
is always set to 0 in our experiments).

To test the performance of algorithms in different dynamic environments, a series of

DOPs are constructed using the MPB problem. The change severity parameter q is set to

0.1, 1.0, 2.0, and 5.0, respectively, in order to examine the performance of algorithms in

dynamic environments with different severities: from slight change (q = 0.1) to moderate

variation (q = 1.0 or 2.0) to intense change (q = 5.0). The change speed parameter s is set

to 50, 100, and 200, respectively, which means that the environment changes fast, in the

moderate speed, and very slowly, respectively. In total, a series of 12 different DOPs are

constructed and summarized in Table 1.

4.2 Experimental design

In this section, experiments are carried out in order to study the major features of our

proposed PSO-based MAs and to compare their performance with several existing peer

algorithms. The following abbreviations represent the algorithms considered in this paper.
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– LPSO: a simple local version of PSO, which utilizes a ring topology with the neighbor

radius set to 1 (see Sect. 3.1);

– GPSO: a standard global version of PSO;

– LPSO-FCMA: LPSO-based MA with the FCLS operator;

– LPSO-RWMA: LPSO-based MA with the RWDE operator (Petalas et al. 2007);

– GPSO-FCMA: GPSO-based MA with the FCLS operator;

– multiCPSO: a multi-swarm PSO proposed by Blackwell and Branke in (2006). In

multiCPSO, the population is split into a set of sub-swarms, which interact with each

other locally by an exclusion parameter and globally through a new anti-convergence

operator. In addition, each sub-swarm has some charged particles, whose update is

affected by the inter-particle repulsions.

– multiMPSO: a multi-swarm PSO that is similar to multiCPSO except that each sub-

swarm is now equipped with the FCLS operator, rather than charged particles. In each

iteration of running multiMPSO, it is firstly checked whether all sub-swarms have

converged using an anti-convergence operator and if so, the worst sub-swarm will be

re-initialized. Then, all pairs of sub-swarms are also tested to see whether they are too

close using an exclusion parameter and if so, the inferior sub-swarm is re-initialized.

Finally, all particles are simply updated and the best fitness particle in each sub-swarm

is improved by the FCLS operator.

The total number of evaluations per iteration is always fixed to 100 for all algorithms in

order to make an impartial comparison among them. For all PSO models, the cognitive and

social learning factors c1 and c2 are both set to 1.4962 and the inertia weight x is set to

0.72984 as suggested by van den Bergh (2002). The velocity of a particle is always

confined within the range [ - VMAX, ? VMAX], i.e., between the lower and upper bounds of

the range of variables (here VMAX = 100). The special parameters in our proposed MAs are

set as follows: rs = 1.0, rr = 5, and t_ri = 25. The setting of other relevant parameters

will be given and discussed in the experiments later on.

For each experiment of an algorithm on a test problem, 30 independent runs were

executed with the same set of random seeds. For each run of an algorithm on a DOP, 10

environmental changes were allowed and the best fitness of any particle in the population is

recorded. Given that the optimum fitness is always known for the test problem used in this

paper, the overall offline performance of an algorithm is defined as the mean error aver-

aged across the number of total runs and then averaged over the data gathering period, as

formulated below:

EBG ¼
1

G

XG

i¼1

1

N

XN

j¼1

ðF�ij � FBGij
Þ

 !

; ð8Þ

where G is the number of generations (i.e., G = 10 * s), N = 30 is the total number of

runs, Fij
* and FBGij

are the fitness of global optimum and the best particle in the population

of iteration i of run j, respectively.

Table 1 The index table for
dynamic parameter settings

s Environmental dynamics index

50 1 2 3 4

100 5 6 7 8

200 9 10 11 12

q? 0.1 1.0 2.0 5.0
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4.3 Experimental study on the effect of LS operators

In the experimental study on the effect of LS operators, we first study the influence of

different settings of r in FCLS in order to determine a robust setting for this parameter. In

particular, we have implemented three LPSO-FCMAs, where r is set to 0.05, 0.5, and 5.0,

respectively, just on the stationary period of the MPB problem. The population size s_size
is set to 90 for all algorithms and the FCLS operator within them is always applied

ls_size = 10 steps upon the best particle in the current population at each iteration. For

each run of an algorithm, the maximum allowable number of iterations was set to 100. The

experimental results are shown in Fig. 6, where the data were averaged over 30 runs.

From Fig. 6, it can be seen that LPSO-FCMA with r = 5.0 performs the best at the

early searching stage, while is beaten by LPSO-FCMA with r = 0.5 quickly. When the

value of r is very small (r = 0.05), LPSO-FCMA does not perform well until the late

iteration stage of the algorithm running. Hence, r is always set to 0.5 in the following

experiments since a moderate value of r always shows an adaptive capacity at the different

search stages on this test problem.

Similar experiments are carried out to investigate the performance of PSO-based MAs

with different LS operators, with the aim of examining the effect of the FCLS operator

proposed in Sect. 2. In particular, five different algorithms, including GPSO-FCMA,

LPSO-FCMA, LPSO-RWMA, LPSO, and GPSO, are tested also on the stationary period

of the MPB problem. The population size s_size is set to 100 for LPSO and GPSO, but 90

for all MAs because the LS operator within them is always applied ls_size = 10 steps upon

the best particle in the current population at each iteration. The experimental results are

shown in Fig. 7, where the data were also averaged over 30 runs.

From Fig. 7, the following results can be obtained. First, the LS operator does improve

the performance of an algorithm on the stationary problem significantly. This can be seen

from the results that both LPSO-FCMA and LPSO-RWMA outperform LPSO and GPSO-

FCMA outperforms GPSO with a high degree. In addition, it is also shown that hybridizing

LPSO with LS is very necessary from the experimental results that GPSO performs much

better than LPSO, which means that the exploitation capacity of LPSO is very weak, that

is, LPSO cannot achieve the optima with a higher accuracy quickly, though it can exhibit
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the good exploitation capacity due to its slow convergence. Second, within the two LPSO-

based MAs, the FCLS operator can help them make more efficient local refinements than

the RWDE operator does. The RWDE operator always executes random moves, while the

FCLS operator combines the features of both random moves and biased moves, which can

make the particle approach the optimum more easily. Obviously, the result that LPSO-

FCMA outperforms LPSO-RWMA in this experiment validates our expectation of the

proposed FCLS operator.

Another feature of the FCLS operator is how to select suitable particles from the current

population for local improvement. In Sect. 3.2, we introduced a choice algorithm (see

Fig. 4) that aims to select multiple high-quality, non-crowded particles simultaneously. In

the following experiment, we test the effect of this choice algorithm through comparing

with other two strategies: one is to improve the best fitness particle only and the other is to

select a certain number of particles randomly for local refinement. For the sake of con-

veniently describing this experiment, LPSO-FCMA1, LPSO-FCMA2, and LPSO-FCMA3

are used to denote LPSO-FCMA with the choice algorithm in Sect. 3.2, LPSO-FCMA with

choosing the best fitness particle scheme, and LPSO-FCMA with the random choice

scheme, respectively.

We run the above three LPSO-FCMAs on the DOPs constructed in Table 1. The

population size s_size is set to 90 for LPSO-FCMA2 and 70 for LPSO-FCMA1 and LPSO-

FCMA3 considering that ls_size = 10 in FCMA2, the number of selected particles is set to

5 and ls_size is set to 6 in LPSO-FCMA3 and the maximum allowable number

(max_ls_count) of particles selected for LS is set to 5 and the total step size of LS per

iteration is set to 30 in LPSO-FCMA1. The experimental results with respect to the overall

offline performance are presented in Table 2 and plotted in Fig. 8. The corresponding

statistical results of comparing algorithms by the one-tailed t-test with 58 degrees of

freedom at a 0.05 level of significance are given in Table 3. In Table 3, the t-test result

regarding Alg.1–Alg. 2 is shown as ‘‘s?’’, ‘‘s-’’, ‘‘?’’, or ‘‘-’’ when Alg. 1 is significantly

better than, significantly worse than, insignificantly better than, or insignificantly worse

than Alg. 2, respectively.

From Tables 2, 3 and Fig. 8, several results can be observed. In general, LPSO-FCMA1

always performs the best on most dynamic problems, which shows the validity of our
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proposed choice algorithm in improving the performance of LPSO-based MAs in dynamic

environments. The reason is that LPSO-FCMA1 can exploit multiple particles that are

distributed in different peaks of the fitness landscape synchronously using the FCLS

operator, which is very helpful in a changing multi-modal environment.

LPSO-FCMA2 performs better than LPSO-FCMA3, even outperforms LPSO-FCMA1

on several dynamic problems when the change severity parameter q is small. This is

because a new optimum can be close to the previous one when q is very small. For such

instances, executing sufficient FCLS operations only for the best fitness particle may be

more beneficial. However, once the environment is subject to significant changes, the

choice algorithm in LPSO-FCMA2 can mislead the FCLS operator. This is why LPSO-

FCMA2 performs significantly worse than LPSO-FCMA1 on all dynamic problems when

q = 5.0, see the relevant t-test results regarding LPSO-FCMA1 - LPSO-FCMA2 in

Table 3. LPSO-FCMA3 always performs the worst in dynamic environments, which

Table 2 Experimental results
with respect to overall offline
performance of LPSO-FCMAs
on dynamic test problems

Dynamics Algorithms

s q LPSO-FCMA1 LPSO-FCMA2 LPSO-FCMA3

50 0.1 1.97 ± 0.90 2.30 ± 1.83 3.24 ± 1.47

50 1.0 2.63 ± 1.06 2.85 ± 1.14 3.59 ± 1.32

50 2.0 3.42 ± 1.04 3.94 ± 1.88 5.17 ± 1.49

50 5.0 5.52 ± 1.04 6.27 ± 1.42 9.26 ± 1.87

100 0.1 1.04 ± 0.91 1.00 ± 0.26 1.56 ± 0.66

100 1.0 1.38 ± 0.68 1.27 ± 0.58 2.01 ± 0.95

100 2.0 2.13 ± 1.47 2.46 ± 1.61 2.79 ± 1.03

100 5.0 3.37 ± 0.50 4.01 ± 1.24 5.24 ± 0.78

200 0.1 0.46 ± 0.25 0.53 ± 0.51 0.87 ± 0.67

200 1.0 0.77 ± 0.61 0.82 ± 0.62 1.03 ± 0.51

200 2.0 1.12 ± 0.62 1.36 ± 0.76 1.51 ± 0.51

200 5.0 1.88 ± 0.43 2.78 ± 1.15 3.04 ± 0.87
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indicates that the random choice scheme is disappointing. Hence, the choice algorithm in

LPSO-FCMA2 will always be adopted in the following experiments.

4.4 Experimental study on the effect of diversity schemes

The main problem for the above investigated PSO-based MAs in dynamic environments

lies in that they can loose the exploration capacity for new peaks in the search space due to

the convergence of the population. In Sect. 3.3, a SORI approach is extended into PSO for

addressing this problem. In this section, we investigate the effect of this SORI scheme on

the performance of LPSO-FCMA in dynamic environments via comparing it with another

effective diversity scheme, the multi-swarm method, which has been widely used in the

literature. In particular, LPSO-FCMA, LPSO-FCMA with the SORI scheme (denoted as

LPSO-SOFCMA), multiMPSO with the swarm number set to 5 (denoted as multiMPSO1),

and multiMPSO with ten swarms (denoted as multiMPSO2) are applied for DOPs con-

structed in Table 1.

The population size s_size is set to 70 and the maximal allowable LS size is set to 30 for

LPSO-FCMA and LPSO-SOFCMA. For LPSO-SOFCMA, the LS size for the best pre-

served particle per iteration is always fixed to 5. The population size and the LS size of

each sub-swarm are set to 15 and 5 in multiMPSO1, while 5 and 5 in multiMPSO2,

respectively. It is easy to understand that multiMPSO1 has a very suitable number of sub-

swarms, while multiMPSO2 has a unsuitable number of sub-swarms for the test problems

used in this paper. The experimental results are given in Table 4 and plotted in Fig. 9 and

the corresponding statistical results are given in Table 5. From Tables 4, 5 and Fig. 9

several results can be observed and are analyzed as follows.

Firstly, LPSO-SOFCMA always performs better than LPSO-FCMA on all dynamic test

problems. LPSO-FCMA can keep a certain population diversity level just depending on its

small local neighbor structure, while its particles may converge into its neighbor best gbest
as the number of iteration increases. That is, LPSO-FCMA cannot achieve a new peak after

several iterations. However, this problem can be addressed by the SORI scheme in LPSO-

SOFCMA. The SORI scheme can introduce a constant diversity into the population via re-

initializing a segment of separate particles randomly every fixed period of iterations. On

Table 3 The t-test results of
comparing LPSO-FCMAs
regarding the overall offline per-
formance on the dynamic test
problems

t-Test result MPB problem

s = 50, q) 0.1 1.0 2.0 5.0

LPSO-FCMA1–LPSO-FCMA2 ? ? ? s?

LPSO-FCMA1–LPSO-FCMA3 s? s? s? s?

LPSO-FCMA2–LPSO-FCMA3 s? s? s? s?

s = 100, q) 0.1 1.0 2.0 5.0

LPSO-FCMA1–LPSO-FCMA2 - - ? s?

LPSO-FCMA1–LPSO-FCMA3 s? s? s? s?

LPSO-FCMA2–LPSO-FCMA3 s? s? ? s?

s = 200, q) 0.1 1.0 2.0 5.0

LPSO-FCMA1–LPSO-FCMA2 ? ? ? s?

LPSO-FCMA1–LPSO-FCMA3 s? ? s? s?

LPSO-FCMA2–LPSO-FCMA3 s? ? ? ?

718 H. Wang et al.

123



the other hand, the newly re-initialized particles with low fitness can be preserved and

allowed to evolve independently for several iterations, which enables LPSO-SOFCMA

always keep the exploration capacity for new peaks. The better results of LPSO-SOFCMA

over LPSO-FCMA in this experiment indicates that the proper diversity method can

improve the performance of algorithms in dynamic environments.

Secondly, multiMPSO1 outperforms LPSO-SOFCMA, while LPSO-SOFCMA per-

forms much better than multiMPSO2 on most dynamic problems. This is because that the

performance of multiMPSO for DOPs depends on the number of sub-swarms with a great

degree. MultiMPSO can obtain very good results if it owns a proper number of sub-

swarms; otherwise, it may perform a little worse. However, the optimal setting regarding

the number of sub-swarms is hard to obtain since many dynamic environments are

Table 4 Experimental results with respect to the overall offline performance of LPSO-FCMAs on the
dynamic test problems

Dynamics Algorithms

s q LPSO-SOFCMA LPSO-FCMA MultiMPSO1 MultiMPSO2

50 0.1 1.81 ± 0.33 2.77 ± 2.61 1.30 ± 0.28 1.84 ± 0.50

50 1.0 2.68 ± 1.24 4.17 ± 5.36 2.21 ± 0.59 4.15 ± 0.81

50 2.0 3.50 ± 1.12 3.68 ± 1.83 2.68 ± 0.51 4.66 ± 0.85

50 5.0 6.32 ± 1.54 7.05 ± 4.24 4.24 ± 0.77 7.94 ± 1.31

100 0.1 1.29 ± 0.99 1.32 ± 1.44 0.64 ± 0.24 1.07 ± 0.19

100 1.0 1.25 ± 0.39 1.32 ± 0.70 1.47 ± 0.26 2.93 ± 0.59

100 2.0 2.03 ± 1.46 2.07 ± 1.31 1.46 ± 0.28 2.69 ± 0.60

100 5.0 3.36 ± 0.72 3.47 ± 0.97 1.97 ± 0.23 3.69 ± 0.55

200 0.1 0.60 ± 0.48 1.22 ± 2.04 0.32 ± 0.06 0.74 ± 0.12

200 1.0 0.79 ± 0.57 0.72 ± 0.38 0.83 ± 0.22 1.84 ± 0.58

200 2.0 1.00 ± 0.82 1.44 ± 1.96 0.70 ± 0.13 1.46 ± 0.54

200 5.0 2.16 ± 2.16 2.11 ± 1.08 1.00 ± 0.15 1.94 ± 0.42
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unknown in advance. Thus, the SORI method seems to be a more adaptive diversity

scheme for algorithms in dynamic environments. Similar results have also been observed

in Tinos and Yang (2007).

Table 5 The t-test results of
comparing algorithms regarding
the overall offline performance
on the dynamic test problems

t-Test result MPB problem

s = 50, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–LPSO-FCMA s? s? ? s?

LPSO-SOFCMA–multiMPSO1 s- - s- s-

LPSO-SOFCMA–multiMPSO2 ? s? s? s?

LPSO-FCMA–multiMPSO1 s- - s- s-

LPSO-FCMA–multiMPSO2 - - s? ?

MultiMPSO1–multiMPSO2 s? s? s? s?

s = 100, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–LPSO-FCMA ? ? ? ?

LPSO-SOFCMA–multiMPSO1 s- s? s- s-

LPSO-SOFCMA–multiMPSO2 - s? s? s?

LPSO-FCMA–multiMPSO1 s- ? s- s-

LPSO-FCMA–multiMPSO2 - s? s? ?

MultiMPSO1–multiMPSO2 s? s? s? s?

s = 200, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–LPSO-FCMA ? - ? -

LPSO-SOFCMA–multiMPSO1 s- ? - s-

LPSO-SOFCMA–multiMPSO2 ? s? s? -

LPSO-FCMA–multiMPSO1 s- ? s- s-

LPSO-FCMA–multiMPSO2 - s? ? -

MultiMPSO1–multiMPSO2 s? s? s? s?

Table 6 Experimental results with respect to the overall offline performance of LPSO-FCMAs on the
dynamic test problems

Dynamics Algorithms

s q LPSO-SOFCMA MultiMPSO MultiCPSO1 MultiCPSO2

50 0.1 1.83 ± 0.38 1.32 ± 0.45 2.31 ± 0.37 2.58 ± 0.34

50 1.0 2.48 ± 0.84 2.17 ± 0.34 2.81 ± 0.58 3.14 ± 0.35

50 2.0 3.16 ± 0.65 2.62 ± 0.51 3.50 ± 0.49 4.52 ± 0.51

50 5.0 6.50 ± 2.05 4.32 ± 1.59 7.13 ± 1.68 10.22 ± 1.94

100 0.1 1.06 ± 0.63 0.61 ± 0.23 1.11 ± 0.14 1.29 ± 0.15

100 1.0 1.25 ± 0.39 1.32 ± 0.70 1.47 ± 0.26 2.93 ± 0.59

100 2.0 1.95 ± 0.89 1.37 ± 0.25 1.68 ± 0.21 2.27 ± 0.33

100 5.0 3.34 ± 0.70 2.17 ± 0.41 3.50 ± 0.47 5.26 ± 0.68

200 0.1 0.59 ± 0.35 0.36 ± 0.16 0.60 ± 0.07 0.68 ± 0.07

200 1.0 0.68 ± 0.33 0.95 ± 0.45 0.66 ± 0.07 0.83 ± 0.09

200 2.0 0.88 ± 0.17 0.74 ± 0.14 0.85 ± 0.12 1.19 ± 0.19

200 5.0 1.66 ± 0.37 1.03 ± 0.17 1.70 ± 0.22 2.61 ± 0.39

720 H. Wang et al.

123



4.5 Experimental study on the performance of proposed PSO-based MAs

In the final set of experiments, we attempt to compare the performance of LPSO-SOFCMA

with another existing peer PSO algorithm, multiCPSO algorithm proposed in Blackwell

and Branke (2006) on the DOPs. Two instances of multiCPSO, multiCPSO with five sub-

swarm and multiCPSO with 10 sub-swarms (denoted as multiCPSO1 and multiCPSO2,

respectively), and a multiMPSO with five sub-swarms are considered in the experiments.

The number of neutral and charged particles in each sub-swarm are set to 10 and 10 for

multiCPSO1, while 5 and 5 for multiCPSO2, respectively. The other relevant parameters

are always the same as their original settings. For LPSO-SOFCMA and multiMPSO, the

same parameter setting in Sect. 4.4 is used again. The experimental results are given in

Table 6 and plotted in Fig. 10 and the corresponding statistical results are given in Table 7.

From Tables 6, 7, and Fig. 10, several results can be observed and are analyzed as follows.

Firstly, LPSO-SOFCMA always outperforms multiCPSO1 on the dynamic problems

when the environment changes quickly, i.e., when s = 50. When s = 50, LPSO-SOFCMA

can always achieve the optimum more quickly than multiCPSO1 because the FCLS

operator has a strong exploitation capacity. The similar conclusion can be further drawn

from the t-test results regarding multiMPSO - multiCPSO in Table 7, which will be

explained in the later experimental analysis. When s = 100 or 200, the situation becomes a

little different. Two algorithms exhibit almost the same performance, though LPSO-

SOFCMA performs a little better than multiCPSO1 on dynamic problems with q = 0.1 or

5.0, while multiCPSO1 performs a little better than LPSO-SOFCMA when q = 1.0 or 2.0.

Secondly, multiMPSO significantly outperforms multiCPSO1 on most dynamic envi-

ronments, which is a very interesting result. The only difference between the two algo-

rithms multiMPSO and multiCPSO1 lies in the update course of sub-swarms. In

multiMPSO, the best fitness particle of each sub-swarm is improved by the FCLS operator,

while the update of charged particles in multiCPSO1 can be affected by the exclusion force

among them. Obviously, the FCLS operator in multiMPSO and the charged particles in

multiCPSO1 are both used to ensure the algorithm adapt to the environmental changes

quickly. The good performance of multiMPSO over multiCPSO1 shows that our proposed

FCLS operator has a very strong robustness and adaptivity in dynamic environments.
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Thirdly, the behavior of multiMPSO2 seems to be disappointing and it is almost beaten

by the other algorithms on all dynamic environments due to its improper number of sub-

swarms, which has been explained in the above experimental analysis (see Sect. 4.4).

Finally, the environmental parameters affect the performance of algorithms. The per-

formance of all algorithms increases when the value of s increase from 50 to 100 to 200 or

when the value of q decreases. It is easy to understand because when s becomes larger,

algorithms have more time to find better solutions before the next change, while the new

optimum is closer to the previous one when q becomes smaller.

5 Conclusions

In this paper, a PSO-based memetic algorithm is proposed and experimentally investigated

in dynamic environments. In the proposed memetic algorithm, a local version of PSO with

a ring-shape topology structure is hybridized with a fuzzy cognition local search method,

which is proposed based on a fuzzy cognition-only model of PSO. To further enhance the

exploration capacity of algorithm, a self-organized random immigrants scheme is also

extended into our proposed memetic algorithm for DOPs. From the experimental results,

the following conclusions can be drawn on the dynamic test problems.

First, a local version of PSO algorithm enhanced by some suitable techniques can

exhibit a better performance in dynamic environments. For most dynamic problems,

Table 7 The t-test results of comparing algorithms regarding the overall offline performance on the
dynamic test problems

t-Test result Algorithms

s = 50, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–multiMPSO s- - s- s-

LPSO-SOFCMA–multiCPSO1 s? ? s? ?

LPSO-SOFCMA–multiCPSO2 s? s? s? s?

MultiMPSO–multiCPSO1 s? s? s? s?

MultiMPSO–multiCPSO2 s? s? s? s?

MultiCPSO1–multiCPSO2 s? s? s? s?

s = 100, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–multiMPSO s- ? s- s-

LPSO-SOFCMA–multiCPSO1 ? s? - ?

LPSO-SOFCMA–multiCPSO2 s? s? ? s?

MultiMPSO–multiCPSO1 s? ? s? s?

MultiMPSO–multiCPSO2 s? s? s? s?

MultiCPSO1–multiCPSO2 s? s? s? s?

s = 200, q) 0.1 1.0 2.0 5.0

LPSO-SOFCMA–multiMPSO s- s? s- s-

LPSO-SOFCMA–multiCPSO1 ? - - ?

LPSO-SOFCMA–multiCPSO2 ? s? s? s?

MultiMPSO–multiCPSO1 s? s- s? s?

MultiMPSO–multiCPSO2 s? - s? s?

MultiCPSO1–multiCPSO2 s? s? s? s?
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LPSO-SOFCMA, which hybridized LPSO with the FCLS operator and the SORI scheme,

outperforms most of other peer algorithms.

Second, the FCLS operator can help MAs execute a robust local refinement in both

stationary and dynamic environments. In the experiments, LPSO-FCMA always performs

better than LPSO-RWMA for the stationary test problem, while multiMPSO always out-

performs multiCPSO for the dynamic test problems.

Third, it is always beneficial that several high fitness particles within different peaks are

selected from the population for local improvements when MAs are applied in dynamic

multi-modal environments. The choice algorithm proposed in this paper proves to be a

good solution for this problem.

Fourth, the diversity scheme can be efficient for improving the performance of algo-

rithms for DOPs. Comparing with the multi-swarm method, SORI seems to be a more

adaptive diversity scheme for algorithms in dynamic environments.

Finally, the environmental dynamics can affect the performance of algorithms. In our

experiments, algorithms perform better with the increasing of the frequency of changes,

while with the decreasing of the severity of changes.

Generally speaking, the experimental results indicate that the proposed algorithm,

where a local version PSO is hybridized with the FCLS operator and the SORI scheme,

seems a good optimizer for dynamic optimization problems.

For the future work, it is straightforward to compare our proposed PSO-based MAs with

some existing state-of-the-art PSOs for DOPs, such as the species-based PSO in Parrott and

Li (2006), multi-swarm quantum swarm optimization in Blackwell and Branke (2006), etc.,

in order to further examine the performance of the proposed algorithm in dynamic envi-

ronments. Another interesting research work is that some other diversity schemes, such as

memory-based mechanisms and speciation approaches, can be considered to be hybridized

with the proposed MAs for DOPs. In addition, it is also valuable to carry out the sensitivity

analysis on the effect of parameters, e.g., rs, rr, and t_ri, on the performance of the PSO-

based MAs for DOPs in the future.
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