Ant Colony Optimization with Immigrants Schemesin
Dynamic Environments

Michalis Mavrovounioti$ and Shengxiang Yarg

! Department of Computer Science, University of Leicester,
University Road, Leicester LE1 7RH, United Kingdom
mR51@rcs. | e. ac. uk
2 Department of Information Systems and Computing, Brunévérsity,
Uxbridge, Middlesex UB8 3PH, United Kingdom
shengxi ang. yang@r unel . ac. uk

Abstract. In recent years, there has been a growing interest in adiogedg-
namic optimization problems (DOPSs) using evolutionaryslthms (EAS). Sev-
eral approaches have been developed for EAs to increas@émsity of the pop-
ulation and enhance the performance of the algorithm for @#nong these
approaches, immigrants schemes have been found beneficiaAs for DOPs.
In this paper, random, elitism-based, and hybrid immiggashemes are applied
to ant colony optimization (ACO) for the dynamic travellisglesman problem
(DTSP). Three ACO algorithms are proposed and comparedexititing ACO
approaches on a series of test DTSPs. The experimentatsretalw that ran-
dom immigrants are beneficial for ACO in fast changing envinents, whereas
elitism-based immigrants are beneficial for ACO in slowlyanbing environ-
ments. The ACO algorithm with the hybrid immigrants schemtenapts to com-
bine the merits of the random immigrants and elitism-basedigrants schemes.
Moreover, the results show that the proposed algorithmgeofdrm compared
approaches in almost all dynamic test cases and that immigchemes effi-
ciently improve the performance of ACO algorithms in dynamnvironments.

1 Introduction

Ant colony optimization (ACO) algorithms emulate the beibav of real ant colonies
when they search for food from their nest to food sourcessAnmmunicate using
their pheromone trails in order to complete this task asieffity as possible. ACO
algorithms have proved to be able to solve different optatian problems in real-
world applications [3, 4]. Traditionally, researchers édeen focused on stationary
optimization problems, where their environment remainsdiguring the execution of
the algorithm. However, many real-world applications hdyeamic environments. The
problem then becomes more challenging since the optimumsrieebe tracked when
dynamic changes occur [13].

However, traditional ACO algorithms have been designedfationary optimiza-
tion problems [4], and may not be sufficient anymore for DOHsSs is due to the
fact that the pheromone trails of the previous environmdhtnet make sense for a
new environment, after a change occurs. A simple way to addhes problem is to re-
initialize the pheromone trails and consider every chasdbeaarrival of a new problem

instance which needs to be solved from scratch. Unfortlyydtes restart strategy is
computationally expensive and usually not efficient.

Recently, developing ACO algorithms for DOPs has attraatied of attention since
they can be useful for real-world applications. Thus, mgrecgalized strategies have
been proposed to maintain the high quality of output effitye@ver the years, different
pheromone strategies have been proposed for ACO to add@Bs,Dwhich include
local and global restart strategies [9], pheromone maatjor schemes to maintain or
increase diversity [5], and memory-based approaches[7Th@se methods have been
applied on the dynamic travelling salesman problem (DTSMR)td its importance for
many real-world applications.

One of the most efficient and well-studied methods is the mgrbased version of
ACO, known as the population-based ACO (P-ACO) algorithin [i8has a different
framework from a traditional ACO algorithm since it has a plgpion list (memory),
which stores the best ant of every iteration, and is usedriergge the pheromone trails.
Since the memory is of a limited size, some ants are replageéw ones according to
some criteria, i.e., the age of the ants. The P-ACO algorithattracting much interest
in developing new ideas for DOPs, which differ from each othethe way ants are
stored or manipulated in the memory. Taking a closer lookAC®, we see that it has
the characteristics of a genetic algorithm (GA) [12] sincmaintains a population of
solutions throughout the execution process. Thus, it ith#re disadvantage of a GA
when a dynamic change may affect the individual on the ggriotgvel, which needs
to be repaired. Often, the repair procedure requires priowkedge of the problem and
is computationally expensive.

As we have seen on many GAs, immigrants schemes are advantagen ap-
plied to DOPs [15, 16, 18]. Immigrants schemes enable theritthgn to maintain the
diversity of the population to a certain level, by introcaginew individuals into the
current population. In this paper, we apply immigrants sebginto P-ACO. However,
instead of using a long-term memory as in P-ACO, we use a-$éiort memory, where
all the new ants replace the old ones to form a new populdtiater on, a percentage
of the worst ants are replaced by immigrants. We introduceettypes of immigrants
into ACO, which are traditional random immigrants, elitidrased immigrants, and hy-
brid immigrants. The experimental results show that alldlgerithms with immigrant
schemes outperform P-ACO. However, differentimmigraokeses are advantageous
under different environmental conditions.

The rest of the paper is organized as follows. Section 2 fexcthe standard ACO
and P-ACO algorithms. Moreover, it describes how they apdieghto the DTSP, which
is our problem to solve in this paper. Section 3 describepmposed approaches where
we apply immigrants schemes into ACO. Section 4 describeexiperiments carried
out by comparing our proposed approaches with P-ACO. Kin&#ction 5 concludes
this paper with directions for future work.

2 ACO for dynamic environments

ACO algorithms were first proposed and applied for the statip travelling salesman
problem (TSP) [2]. They are inspired by the behaviour of se@k when they coop-
erate to search for food from their nest to the food sourcess Bommunicate using

pheromone, which is a chemical substance produced by adtis aleposited to their
trails. The more pheromone on a specific trail, the highesipdiy of that trail to
be followed by ants. Using this simple scheme, ants are abtomplete their food
searching task as efficiently as possible.

2.1 Standard ACO

The traditional ACO algorithm consists of a populatioruofints, where each ant con-
sists of two modes, the forward mode and the backward mode@lly all ants are
placed on a randomly selected city for a TSP and all pherontraiile are initialized
with an equal amount of pheromone. All ants on their forwaatmchoose the next
city based on pheromones and some heuristic informatias.grbcess continues until
ants have visited each city once and hence constructs omgosolAn iteration is fin-
ished when all ants have constructed their solutions usprglabilistic decision rule,
which is defined as follows:

1% .18
oy = = Wl e @
> ienk [Tl [l

whereT;; is the existing pheromone trail between citgnd cityj, n;; is the heuristic
information available a priory, which is definedB&i,; andd,; is the distance between
the cities.N}* denotes the neighbourhood of cities of awhen being on city. o and

B are the two parameters that determine the relative influehpberomone trail and
heuristic information, respectively.

After each iteration, all ants proceed to their backward enmdorder to deposit
pheromone and update their trails. They retrace theirisolsiand deposit pheromone
according to their solution quality on the correspondiagj$r However, before adding
any pheromone, a constant amount of pheromone is deduaadiftdrails due to the
pheromone evaporation, which is defined as:

Tijk(l_p)Tijav(iaj)a (2)

where0 < p < 1 is the rate of evaporation. Reducing the pheromone valugisien
the algorithm to forget bad decisions made in previoustitena [4]. After evaporation,
all ants deposit pheromone to the corresponding trailseif tbur as follows:

Tij — Tij + ATil;'vv (laj) € Tka (3)
whereAr}: = 1/C* is the amount of pheromone that antleposits and’* is the cost
of the tourT™*.

2.2 Population-Based ACO

The P-ACO algorithm is the memory-based version of an AC@rétlgm, which was
first applied on the stationary TSP [8]. It differs from thaditional ACO algorithm
described above since it follows a different framework. &aitly, the algorithm main-
tains a population of solutions, which is used to update grhene trails without any
evaporation.

The initial phase and the first iterations of the P-ACO aliponi work in the same
way as with the standard ACO algorithm. The pheromone teadsinitialized with an
equal amount of pheromone and the population list of a Kize empty. For the first
K iterations, the iteration best ant deposits a constant ahafipheromone, which is
defined as follows:

Tij 4 Tij + ATSY (i,5) € T, (4)
WhereATi’g = (Tmaz — Tinit)/ K. Here, myq. andr;,;; denote the maximum and initial
pheromone amount, respectively. This positive updatequhore is performed whenever
an ant enters the population list. On iteratiin+ 1, the iteration best ant enters the
population list and updates its pheromone trails as in EqHdwever, one ant that has
entered the population list first needs to be removed in doderake room for the new
one, and thus, a negative update to its pheromone trailsiis, @s follows:

Tij%Tij—ATl];,V(i,j)ETk, (5)
whereA7/: is defined as in Eq. (4).

The oldest ant in the population list is removed to make roormttie new one to
enter. This strategy is based on thge of ants. However, other strategies have also
been proposed by researchers, suclQaality, Prob, andAge & Prob [7]. From the
experimental results in [7], the defalge strategy is more consistent and performs
better than the others, since the other strategies haveaghanees to maintain identical
ants into the population list, which leads the algorithni® $tagnation behaviour. This
is due to the fact that high levels of pheromone will be getegkrénto a single trail
and dominates the search space. Moreover, we have seenphgadnce of keeping
the pheromone trails into a certain level from the Max-Mint System (MMAS) [14],
which is one of the state-of-the-art ACO algorithms foristaary problems,

2.3 Responseto dynamic changes

Theoretically, ACO algorithms can adapt to dynamic chargjese they are inspired
from nature, which is a continuous changing environmenprhctice, they can adapt
by transferring knowledge from past environments [1]. Sotfee description of ACO
algorithms above has been made assuming stationary emérs. Considering the
DTSP, ACO needs to be modified in order to adapt to environaheh&inges efficiently.

The dynamics of adding/deleting a city affects both the ¢ypio and, usually, the
phenotypic level of the ant. Therefore, considering thatdblutions are affected by the
change in iteratiom, the pheromone trails will not make sense in iteratios 1. For
the ACO algorithms that follow the traditional frameworkid vital to re-initialize the
pheromone trails after a dynamic change, which acts asarre$the algorithm.

For the P-ACO approach, the solutions stored in the pofuidit are repaired and
the pheromone trails are re-generated accordingly. Thigesty is calledKeepElitst
[10] and uses two greedy heuristics to repair the genotyghepopulation: 1) the
offended cities are removed from the solutions; and 2) thve ciges are placed indi-
vidually in a greedy fashion where they cause the minimurneiase on the phenotype.

3 Incorporating immigrants schemesto ACO algorithms

When addressing DOPs, traditional ACO algorithms cannaptdrell to the environ-
mental changes once the ants reach the stagnation behawvimene they follow the
same path. The algorithm loses its adaption capabilityesindoes not maintain di-
versity within the population. A good start has been madé wie P-ACO algorithm
with the use of memory, which maintains a certain level oedéity and enables ACO
algorithms to be more efficient for DOPs. However, it is a kiegn memory and the
solutions need to be repaired once a city is added or remtigdailly, the repair pro-
cedures requires prior knowledge of the problem and is coatipmally expensive.

As mentioned above, the application of immigrants schenassbeen found effi-
cient for GAs for DOPs. The principle is to introduce new iriduals into the current
population by replacing a percentage of individuals in thpydation [6]. The percent-
age should be relatively small because a high percentagéeadyhe algorithm into a
too high level of diversity. High diversity does not alwaysam good performance on
DOPs, because it may lead the algorithm into randomizatién18].

In this paper, we apply immigrants schemes into the ACO #lgorto maintain a
certain level of diversity in the population and enhancaliteamic performance. The
proposed ACO framework follows the P-ACO pheromone updalieypwhere a popu-
lation list is attached to the pheromone table and updattdiie with no evaporation;
see Egs. (4) and (5). However, we use a short-term memoryewtherants of the cur-
rent iteration replace the ants of the old iteration. Moexpa percentage of immigrants
replace the worst ants of the current population.

The advantages of using a short-term memory are closelteceta the survival of
ants in a dynamic environment, where no ant can survive irertftan one iteration.
This way, there is no need to use any repair algorithm bedaesshanges do not affect
the ants. Furthermore, there is one main concern that iagafamigrants schemes, i.e.,
how to generate immigrants.

3.1 Random Immigrants ACO

The random immigrants ACO (RIACO) algorithm uses an immiggascheme where
ants are generated randomly, and replace the worst ones afittent population stored
in the short-term memory every iteration. It is believed thle continuous adaption
of such algorithms makes sense only when the environmemalges of a problem are
small to medium” [13]. This is due to the fact that the old eamiment has more chance
to be similar with the new one. After a change occurs, trarisigknowledge from the
old environment may provide a good solution efficiently.

Considering this argument, RIACO may be suitable when cesrmge not slight
since it provides diversity without considering any knodde from the old environ-
ment. Moreover, it may be suitable in fast changing envirents where information
from the past may not be useful, since the algorithm does a Bufficient time to
converge onto a good solution in order to gain knowledge.

3.2 Elitism-Based Immigrants ACO

The elitism-based immigrants ACO (EIACO) algorithm usesiramigrants scheme
where ants are generated by mutating the best ant of theopieiteration. These im-

migrants also replace the worst ones in the short-term meewary iteration as in RI-
ACO. This immigrants scheme transfers knowledge from oldrenments and, thus,
may be advantageous when changes are small to medium. FFootfeg it may be suit-
able in slowly changing environments. Different from RIACEIACO needs sufficient
time to locate a good optimum which can be useful to the neviremment since the
global optimum may be similar.

The mutation of the best ant is carried out using the invarsjoerator, where two
cities are randomly selected and the sub-tour between theewérsed. However, there
are two types of inversion: 1) the simple one is as explaited@; and 2) the adaptive
one is based on the inver-over operator [11]. From the exygaris in [11], the adaptive
inversion is much more efficient than the simple one, sineersé inversions are car-
ried out under some criteria. In addition, the second cityicv is randomly selected,
is inherited from another individual in the population oot itself. In our case, the
operator is slightly changed by randomly generating arviddal instead of choosing
one from the population. Moreover, this type of inversios hdaptive characteristics
which may be more suitable for DOPs.

3.3 Hybrid Immigrants ACO

The hybrid immigrant ACO (HIACO) algorithm uses an immigieecheme that com-
bines both random and elitism-based immigrants. The remamlicy is the same as in
RIACO and EIACO algorithms. However, half of the immigraate randomly gener-
ated and the other half are generated by mutating the be$t BY@O attempts to com-
bine the merits of both RIACO and EIACO, where one is good owlst and slightly
changing environments and the other on fast and significahtinging environments.
Therefore, HIACO may possibly be suitable under all envinental conditions.

4 Simulation Experiments

4.1 Experimental Setup

In the experiments, we compare RIACO, EIACO, and HIACO with®O with its
best population update policy, that Age. All the algorithms have been applied on the
kr 0A200 problem instance, obtained from TSPE|Bvhich consists of 200 cities. The
dynamic environment was generated by taking away half eftigss and constructing a
“spare pool” of cities before running the algorithms. Evérigerations, a percentage of
m cities were randomly chosen from the spare pool and excliawgk a percentage
of m random ones from the actual instance (the other half citids} way, the siz¢”
of the problem instance remains the same through the whole ru

The parameterg andm indicate the frequency and magnitude of dynamic changes,
respectively. Thef parameter is defined as the number of iterations betweenrwo e
vironmental changes. The parameter is defined as the percentage of selected cities
from the spare pool that replaces other cities from the aatséance. The common
parameters used for the algorithms were set according wuidelines in [4, pp. 71] as
follows: « = 1 andg = 2 for Eq. (1), andr,;: = 1/(C —1). For P-ACO,K was set to

3 Available on http://comopt.ifi.uni-heidelberg.de/soding/TSPLIB9S/

3 andr,,.. was set to 1.0 for Egs. (4) and (5) as in [7, 8]. For all thregopsed algo-
rithms, K was set to 25, in which we replace 6 ants, which is approxipats of K,
with immigrants. Recall that a higher percentage of immigsalestroys information
from past iterations because of randomization. Moreqvavas set to 25 ants for all
algorithms in order to have the same number of evaluatiogadh iteration, that is, 25
evaluations per iteration. All the algorithms deposit astant amount of pheromone as
defined in Egs. (4) and (5) and there is no need to evaluatertimigrant ants for the
proposed algorithms or the repaired ants for P-ACO.

For each algorithm on a DTSP instance, 30 independent ruresexecuted on the
same random environmental changes. The algorithms weceigdfor 1000 iterations
and the overall offline performance is calculated as foltows

N
Bj) (6)
1

18
Po ine — & ~r
1 G;(Nj

whereG = 1000 is the total number of iterationgy = 30 is the total number of runs,
and P;; defines the best ant after a change of iteratiofirun j [13]. Our implementa-
tion closely follows the guidelines of the ACOTSfPamework.

The value off was set to 20 and 100, indicating environmental changesgtf hi
and low frequencies, respectively. The percentage afas set to 10, 25, 50, and 75,
indicating the degree of environmental changes from srtalinedium, to large, re-
spectively. As a result, eight dynamic environments, 2&alues off x 4 values ofn,
were generated from the stationary TSP instance to systaitaanalyze the adaption
and searching capability of each algorithm on the DTSP.

4.2 Experimental Results

The experimental results regarding the offline performaridbe algorithms with the
corresponding statistical results of two-tailetest with 58 degrees of freedom at a
0.05 level of significance are presented in Table 1. Moredwodvetter understand the
dynamic behaviour of the algorithm, the results are ploiteBig. 1 for the first 500
iterations withf = 20, m = 10 andm = 75, andf = 100, m = 10 andm = 75. From
the experimental results, several observations can be maciemparing the behaviour
of the existing approaches against the proposed apprgaatedshe behaviour of the
three proposed approaches.

First, RIACO, EIACO, and HIACO significantly outperform tfRe ACO algorithm
on almost all cases. On cases where the frequency is shd?t#@0O algorithm is not
able to maintain a population list of useful solutions besait has slow convergence.
This can be observed from Fig. 1, where under large freqesrtACO converges
slowly to a better optimum than other algorithms. Howevenew the magnitude of
changes is small with a large frequency, it is significantdse¢han the other algorithms;
see Table 1. On the other hand, RIACO, EIACO and HIACO are #ablerovide a
good solution faster after a change since they gain morediiyeby incorporating
immigrants to the population.

4 Available on http://www.aco-metaheuristic.org/aco-eod

Table 1: In the first section, values in bold indicate the bestlts of the overall offline
performance. In the second section—" or “s+" means that the first algorithm is
significant better or significantly worse than the secondtétlgm, respectively, whereas

“~" indicates no significant difference between algorithms

Algorithms & Instances kr oA200
f=200m= 10% 25% 50% 75%
P-ACO 27339.89 28497.20 29072.95 29290.05
RIACO 25798.46 26016.24 26029.56 25975.49
EIACO 25822.68 26001.00 26018.47 25996.12
HIACO 25752.20 25985.19 25961.28 25907.79
f=100,m = 10% 25% 50% 75%
P-ACO 24284.40 25010.38 25359.90 25394.80
RIACO 24513.54 24799.98 24903.43 24852.92
EIACO 24455.14 24688.14 24749.48 24682.73
HIACO 24421.26 24604.94 24784.14 24683.38
t-Test Results
f=200m= 10% 25% 50% 75%
P-ACO<RIACO s+ s+ s+ s+
P-ACO<EIACO s+ s+ s+ s+
P-ACOsHIACO s+ s+ s+ s+
RIACO<EIACO ~ ~ ~ ~
RIACO<HIACO ~ ~ s+ s+
EIACO<HIACO s+ ~ s+ s+
f=100,m = 10% 25% 50% 75%
P-ACO<RIACO s— s+ s+ s+
P-ACO<EIACO s— s+ s+ s+
P-ACO<HIACO s— s+ s+ s+
RIACO<EIACO ~ ~ s+ s+
RIACO<HIACO ~ ~ s+ s+
EIACO<HIACO ~ ~ ~ ~

Second, RIACO performs slightly better than EIACO on casksre the frequency
is small, as expected. This is because EIACO needs to cant@ragood optimum in
order to be effective. This task needs sufficient time as thiéhP-ACO algorithm. Re-
call that in EIACO we use an adaptive inversion, which pregichore exploration than
the simple inversion; otherwise RIACO is performing sigrafit better. On the other
hand, EIACO performs significant better than RIACO in almalstslowly changing
environments since it has sufficient time to locate a goodtiwl; see Table 1.

Third, HIACO improves the performance of EIACO and RIACO ases where
the frequency is small. Incorporating random and elitissdal immigrants, diversity
is achieved with random ones and the guidance on promisgapan the search space
is achieved by the elitism-based ones. As a result, diyeisitontrolled more since
RIACO may generate high levels of diversity and become ewtiffe due to the lose

40000 T T T T 40000

35000

35000

30000 -1 30000

Best-Ant Fitness

2

>

Q

(o]

|

|

I

I
Best-Ant Fitness

1 |]
\ | AL
25000 "1‘J“\“<~4LJL. VAR WA AR 25000 i ML)

20000 L L L L 20000 L L L L
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
f=100,m=10 f=100,m=75
40000 T T T T 40000 T T T T

35000 35000

30000 30000

Best-Ant Fitness
Best-Ant Fitness

25000 25000
b,

20000 L L L L 20000 L L L L
0 100 200 300 400 500 0 100 200 300 400 500

Iteration Iteration

Fig. 1: Overall offline performance for different dynamisti@roblems

of useful solutions found during past iterations. Howet#ACO is not improving on
cases where the change frequency is large, but it keeps this wfeEIACO since they
are not significant different; see Table 1.

5 Conclusions

Different types of immigrants schemes have been succésafplied to EAs to address
DOPs efficiently. In this paper, we apply random, elitisnsdxd and hybrid immigrants
schemes into ACO for the DTSP, resulting in the RIACO, EIA@Ad HIACO algo-
rithm, respectively. The difference of these algorithras In the way immigrant ants are
generated. The immigrant ants are generated randomly ®C@8land are generated
by mutating the best ant of the previous iteration for EIAC&3pectively. For HIACO,
half of the immigrant ants are generated randomly and ther dthlf are generated us-
ing the elitism-based scheme. All immigrants replace thestvants of the population
on every iteration in order to gain sufficient diversity viithhe population, which can
be useful for the DTSP.

Comparing with P-ACO, an existing ACO framework developadDdOPs, on dif-
ferent cases of dynamic environments, the following codiclg remarks can be drawn.
First, immigrants schemes are advantageous for ACO algosit Second, the perfor-
mance of EIACO is significant better than RIACO in slowly charg environments.
Third, the performance of RIACO is slightly better than EI®@n most fast changing
environments, while the performance of HIACO is significhetter than both of them.

10

Forth, the performance of HIACO on slowly changing envir@mts is competitive with
EIACO. Finally, P-ACO may be a sufficient choice in very slgwhd slightly changing
environments, or in cyclic environments since it is a mervlmaged approach [17].

For further work, it would be interesting to compare the aildpns on other dy-
namic environmental cases, i.e., cyclic environments wipast environments reap-
pear, and investigate the effect of other parameters ategies within the proposed
algorithms, i.e., which ants should immigrants replace.

Acknowledgement

This work was supported by the Engineering and Physicain8egResearch Council
(EPSRC) of UK under Grant EP/E060722/1.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intefige From Natural to Artificial
Systems. Oxford University Press, New York (1999)

2. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimation by ant colonies. In: Proc. of
the 1st European Conf. on Artif. Life, pp. 134-142 (1992)

3. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optinaition by a colony of cooperating

agents. IEEE Trans. on Syst., Man and Cybern., Part B: Cy@é(t), 29-41 (1996)

. Dorigo, M., Stizle, T.: Ant Colony Optimization. The MIT Press, London, argl (2004)
. Eyckelhof, C. J., Snoek, M.: Ant Systems for a Dynamic TBPANTS’02: Proc. of the 3rd

Int. Workshop on Ant Algorithms, pp. 88—99 (2002)

6. Grefenestette, J. J.: Genetic algorithms for changingr@mments. In: Proc. of the 2nd
Int. Conf. on Parallel Problem Solving from Nature, pp. 1B%4-(1992)

7. Guntsch, M., Middendorf, M.: Applying population base€® to dynamic optimization
problems. In: Proc. of the 3rd Int. Workshop on Ant AlgorithnhNCS 2463, pp. 111-122
(2002)

8. Guntsch, M., Middendorf, M.: A population based approtmhACO. In: EvoWorkshops
2002: Appl. of Evol. Comput., pp. 72—-81 (2002)

9. Guntsch, M., Middendorf, M.: Pheromone modificationtegées for ant algorithms applied
to dynamic TSP. In: EvoWorkshops 2001: Appl. of Evol. Comppip. 213-222 (2001)

10. Guntsch, M., Middendorf, M., Schmeck, H.: An ant colomtimization approach to dy-
namic TSP. In: Proc. of the 2001 Gen. and Evol. Comput. Cppf.860-867 (2001)

11. Guo, T., Michalewicz, Z.: Inver-over operator for theP $: Proc. of the 5th Int. Conf. on
Parallel Problem Solving from Nature, pp. 803—-812 (1998)

12. Holland, J.: Adaption in Natural and Artificial Systeraiversity of Michigan Press (1975)

13. Jin, Y., Branke, J.: Evolutionary optimization in urteém environments - a survey. |[EEE
Trans. on Evol. Comput. 9(3), 303—317 (2005)

14. Stizle, T., Hoos, H.: The MAX-MIN ant system and local searchtfa traveling salesman
problem. In: Proc. of the 1997 IEEE Int. Conf. on Evol. Comppp. 309-314 (1997)

15. Yang, S.: Genetic algorithms with memory and elitismeldaisnmigrants in dynamic envi-
ronments. Evol. Comput. 16(3), 385-416 (2008)

16. Yang, S.: Genetic algorithms with elitism based immiggdor changing optimization prob-
lems. In: EvoWorkshops 2007: Appl. of Evol. Comput., LNCS384pp. 627—636 (2007)

17. Yang, S.: Memory-based immigrants for genetic algorgtin dynamic environments. In:
Proc. of the 2005 Genetic and Evol. Conf., vol. 2, pp. 111221(P005)

18. Yu, X., Tang, K., Chen, T., Yao, X.: Emprical analysis wbkitionary algorithms with im-
migrants schemes for dynamic optimization. Memetic Comp(it), 3—24 (2009)

(G20

