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Abstract—Evolution strategies with ¢g-Gaussian mutation, moment in ESs can be useful in allowing the population
which a_llows the self-adaptatipn of_th_e m_utation diStI’ib_uﬁOl’]_ escape from local optima in multimodal problems. For
shape, is proposed for dynamic optimization problems in tts example, in [13], the Cauchy distribution was employed

paper. In the proposed method, a real parameterq, which . . .
allows to smoothly control the shape of the mutation distrilu- to generate new candidate solutions. The use of mutation

tion, is encoded in the chromosome of the individuals and is taken from heavy tail distributions implies jumps of scale-
allowed to evolve. In the experimental study, theg-Gaussian  free sizes, eventually allowing to reach distant regions of

mutation is compared to Gaussian and Cauchy mutation on  the search space faster. This property is interesting foP®O
four experiments generated from the simulation of evolutimary too, as it can allow the population to escape faster froml loca
robots. optima located close to the best solution before the change.
_ Keywords-Evolution strategies, ¢-Gaussian mutation, evolu-  However, when mutation distributions with longer tails are
tionary algorithm, dynamic environments, robotics employed, less local candidate solutions are generated, an
the convergence to the new optima can be slower. Thus, the
use of one or other mutation distribution may result in very

Evolution strategies(ESs) have been succesfully em- different performance on a DOP. Here, the performance of
ployed in complex optimization problems in recent years.mutation generated from two different distributions (Gaus
ESs were proposed in the 1960's to optimize candidatgian and Cauchy) are compared in experiments with DOPs.
solutions composed of real-valued parameters [2], and are The main contribution of this paper is the investigation of
a good choice when gradient based methods present balde use of the;-Gaussian mutation in ESs to address DOPs.
performance due to rugged fitness landscapes in continuolis the g-Gaussian mutation, which was previously used in
optimization problems. Similar to other evolutionary algo evolutionary programming [11], self-adaptation is emgidy
rithms (EAs), new candidate solutions are generated in ESsot only to control the mutation strength parameter, but
by using a stochastic mutation operator. The parameters &flso to control the mutation distribution. TheGaussian
the mutation operator can be modified by self-adaptationistribution allows to smoothly control the shape of the
during the evolutionary process, which provides an intrin-distribution by setting a real parametgand can reproduce
sic mechanism for adaptation to eventual changes in theither finite second moment distributions, like the Gaussia
problem and makes the use of ESs interestingdfipramic  distribution, or infinite second moment distributionsglithe
optimization problem¢DOPs) [1], [7], [12]. Cauchy distribution. Here, the real parametés encoded in

DOPs have attracted increasing attention from the EAhe chromosome of the individuals and is allowed to evolve.
community as many optimization problems in real world areThis way, in theg-Gaussian mutation, the decision on which
DOPs. In DOPs, the evaluation function, dimension of themutation distribution shape should be used (and when) is
search space, and/or the constraints of the problem may natade by self-adaptation.
be fixed [3]. The simplest approach when a problem changes The rest of this paper is organized as follows. Tfhe
iS to restart the optimization process. However, the ogimi  Gaussian mutation is briefly discussed in Secion Il. The
tion procedure may require a substantial computationateff ES with ¢g-Gaussian mutation is presented in Section Ill.
and/or be slow, e.g., in the optimization of control laws in The experimental study with DOPs generated from the
evolutionary robots [10]. When the new solution after thesimulation of evolutionary robots is presented in Sectidn |
change in the problem is related to the previous solutionin the experimental study, ESs witiGaussian, Gaussian,
the search procedure based on previous solutions can sasad Cauchy mutation are compared. Finally, the conclusions
substantial processing time. of the paper are presented in Section V.

In ESs, new candidate solutions are traditionally gendrate
by mutation generated from Gaussian distribution [2]. How-
ever, in recent years, researchers have argued that thé use oWhen mutation is applied in ESs, theth candidate
mutation distributions with longer tails and infinite sedon solutionZ; is generated from am-dimensional solutior¥;

I. INTRODUCTION

Il. THE g-GAUSSIAN MUTATION



according to: Algorithm 1 ES(u,)\) with ¢g-Gaussian mutation (QGES)
= > 1: Initialize the population of individuals®{,, &%, qx) fork =1,...,u
T =% +C 7 1) 2: Evaluate the individualsz{,, &%, qx) for k =1,...,
. . . 3: while (stop criteria are not satisfiedio L
where 2 IS an m-dlmensmnal vector generated_ from a 4. Use recombination to generate the individudis, 6, d;) for i —
random distribution with zero mean and the maftixin the 1,..., A from the individuals £, &y, qi) for k=1,...,
standard ES, is a diagonal matrix composed of the element§: for 7 — 1 to A do

S T . . : if rand(0,1) > rq then .
of vector¢ = [o(1) o(2)...0(m)]", which defines the ;. Update the mutation strength vecty according to Eqg. (3).

mutation strength in each coordinate of the search space. s: else

For the ¢-Gaussian mutation generated from anisotropicl%{ engﬁdate the parametgs; according to Eq. (2)
dlstrlbutlon_ ( [11]_ pro_po_ses_ the use of a mUtat'On gener-y. F; — %;+C; z wherez'is ag-Gaussian vector generated from
ated from isotropic distribution), the vectaris generated distribution with parameteg; and C; = diag(5, )

by samplingm independeny-Gaussian random variables, 12:  end for

) : A . . Evaluate the offspringi(, &;, g;) fori = 1,..., A
i.e., theg-Gaussian distribution is employed instead of thej.  seject, to compose the new population with individuals, G,

Gaussian distribution (Gaussian mutation) [2] or the Cguch qx), the p individuals with best fitness from the population com-
distribution (Cauchy mutation) [13]. In theGaussian distri- 5 gosﬁfli of the offspringi;, &;, ¢;) for i =1,..., X
: end while

bution, the real parametercontrols the shape of the random
distribution, which allows to smoothly and continuously
change the shape of the distribution. Fpr< 5/3, the
second order moment is finite and fpe= 1, the g-Gaussian
distribution reproduces the usual Gaussian distributior.

g < 1, the ¢g-Gaussian distribution has a compact form, 5:(j) = oi(5)emN (ODit7eN(0.1) ©)
and decays asymptotically according to a power 'aW forwhere 7, denotes the standard deviation of the Gaussian
I < g <3 Wheng = 2, the g-Gaussian distribution distribution used to generate the random devi&i@, 1);
reproduces the Cauchy distribution [8]. In this paper, the P

. . . . which is common for all elements of the vectdy, and
generalized Box-Muller method proposed in [9] is employed . . ; DT
to generate the-Gaussian random variables 7. is the standard deviation of the Gaussian distribution

In this work, based on the mutation strength self-used fo generate the separated random dewdt@ 1) for

strength parameter of each element= 1,...,m of the
vectorg; is updated according to:

datati 5 t . th ¢ H each elemeny = 1,...,m. The parameters, and ., as
a d"?lp.(? |o|n‘ [ ] (jse dntex.tsechlon), € parargg;em Gi?cl' suggested by the theoretical and empirical work in [2], are
individual i is added to its chromosome and is multiplica- y - byr, = L andr, = —<—, whereb andc are
tively updated as follows: - V2m 2ym’
positive real numbers. Here, (Eq. 2) is given by:
i = Qi N(0,1)), 2
i = giexp (1N (0,1)) (2) o= 8 @

where 7, denotes the standard deviation of the Gaussian _ N vam
distribution andA/(0,1) denotes a sample variable taken Wherea is a positive real number. _
from the Gaussian distribution with zero mean and standard e algorithm ES(,\) with ¢-Gaussian mutation, called
deviation one. This way, different distributions can bercep 4G ES, is presented in Algorithm 1. The main difference

duced during the evolutionary process. of the ES presented in Algorithm 1 from the standard ES
and the fast ES [13] lies in that, in qGES, thé€5aussian
I1l. ES WITH ¢-GAUSSIAN MUTATION mutation is employed (step 11) instead of the Gaussian

mutation (in the standard ES) or Cauchy mutation (in the fast

In ESs, two main selection procedures are usually eMES) and a procedure to update the parametsradopted
ployed. In the [, A\)-ES, a population of: parents creates (steps 6, 8, 9 and 10).

A > p offspring. The besy: offspring are then selected to
compose the next population. In the 4 \)-ES, the new IV. EXPERIMENTAL STUDY
population is composed of the bestindividuals obtained In the experiments presented here, DOPs are generated
from the union of theu parents and\ offspring. It can be through the simulation of evolurionary mobile robots navi-
observed that while theu(+ A\)-ES is elitism-based, i.e., it gating in dynamic environments or with faults. In evolution
always preserves the best individuals from one generatioary robotics, artificial evolution is the fundamental foine
to the next one, they( A\)-ES is not elitism-based. Thus, the adaptation and design of robots and their control laws.
for DOPs, a procedure to detect the changes in the probleiarticularly here, ESs are employed to adjust the synaptic
should be used when th@ ¢ \)-ES is employed. weights in an Elmarartificial neural network(ANN) used

In this paper, the (, \)-ES with ¢-Gaussian mutation, to control simulated mobile robots. In the experiments, the
as described in the previous section, is used. While theobots are simulated in DOPs using a modified version of
g-parameter is updated according to Eq. (2), the mutatiothe Evorobot simulator developed by Nolfi [6].



The four experiments presented in this section are genesensors located in one side of the robot are set to zero when
ated from the experiment proposed in [4], where a Kheperit is affected by the fault. In the second fault, the respense
robot with eight infrared distance sensors (six sensors if the remaining two sensors (located in the other side) are
one side and two in another side of the robot), two ambienset to zero. This way, the robot should learn how to navigate
light sensors, and one floor brightness sensor navigates imsing different sets of sensors in each change cycle.
an arena. The robot has a measurable limited energy, which The last experiment (Exp. D) was carried out to in-
is recharged every time the robot crosses a battery rechargestigate how a changing environment affects the learning
area. The battery recharge area is indicated by a differeqirocess. Environmental changes frequently occur in real
color of the floor and by a light source mounted in a towerworld problems, where some aspects of the environment are
inside the area. frequently modified. Besides, robots are frequently ewblve

In the experiments, the fithess function is given by thein simulations to avoid damage, and, when a satisfactory
accumulated averaged rotation speed of the two wheels dfehaviour is reached, the ANN employed to control the
the robot during its life time, i.e., while the battery has simulated robot are transferred to the real ones. In Exp. D
energy and while the robot does not crash into a wall orchanging environment), the environment where the robot is
an obstacle, considering a maximum limit of 60 secondsevolving is changed after = 25 or 7 = 50 generations.

A fully charged battery allows the robot to move for 20 The robot evolves for the first generations in the default
seconds. The fithess is not computed while the robot remairsrena, which is changed in its dimensions and in the number
in the battery recharge area. Although the fitness functiomf cylindrical obstacles present in the environment every
does not specify that the robot should return to the battergenerations.

recharge area, the individuals that develop the abilityrtd fi For all experiments, the number of changes during the
it and periodically return to it while exploring the arena evolutionary process was set to ten. In the runs, the in-
without hitting the obstacles accumulate more fitness. Thelividuals of the initial population were randomly chosen.
ANN used to control the robots has 17 inputs (8 infraredThe evolving robot always starts in a fixed position on
sensors, 2 light sensors, 1 floor brightness sensor, 1 sensitve arena, but the initial orientation was randomly varied
for the battery energy, and 5 recurrent units), 5 hidderin a range of 10 degrees. A white noise with a range
neurons, and 2 outputs (2 motors in the wheels of the robotpqual to 0.05 was added to the measures generated by the

In the first three experiments (Exp. A, Exp. B, andinfrared and light sensors. The individuals are represknte
Exp. C), we are interested in investigating the reconfiguby a vector of integer values corresponding to the synaptic
ration of the robot after faults [10]. In these experiments,weights of the ANN. Following [4], in each generation, the
the environment where the robot evolves is switched everg0 best individuals() are selected and each one generates
7 = 25 or 7 = 50 generations (called the change cycle du-5 children @ = 100) by mutation (recombination was not
ration) between two configurations. In both configurationsused).
the size of the arena is 40ctd5cm. The first configuration In order to compare the three types of mutation, three
is free of obstacles (default arena). The position of theESs were executed 50 times (with different random seeds)
light source and recharge area are changed in the secoid each experiment withr = 25 and 7 = 50 generations.
configuration, and a cylindrical obstacle is added. In the first algorithm, qGES, the parametgrof the ¢-

In Exp. A (faults in the light sensors), the responses ofGaussian mutation is allowed to evolve during the optimiza-
the light sensors are reduced by a factor which is changetion process (Algorithm 1). In the other two algorithms, the
every 7 generations. In Exp. B (faults in motor 2), the parametey is fixed, i.e., it starts with a given value and is
power of the second motor of the robot is reduced by anot modified during the evolutionary process. In algorithm
factor changed in each generations. The factor applied GES, ¢ = 1, i.e., theg-Gaussian distribution reproduces
in the response of the light sensors (Exp. A) and in thehe Gaussian distribution. In algorith@ES, ¢ = 2, i.e.,
power of the second motor (Exp. B) in each one of the 1@he Cauchy distribution is reproduced by theGaussian
change cycles (including the first generations) is given distribution. Thus, the three types of mutatigaGaussian,
by vy = {1.0,0.5,0.2,0.9,0.7,0.4,0.8,0.6,0.1,0.7}, e.g., Gaussian, and Cauchy are compared in the experiments.
only 50% of the power computed by the respective ANN's In all experiments, the initia-Gaussian parametey
output is applied in the second motor in the second changm qGES was set to 1.0 (a value where the Gaussian
cycle (between generations+ 1 and 27) of Exp. B. In  distribution is reproduced),, = 0.8, and the minimum and
Exp. C (faults in the infrared sensors), we are interested imaximum values of thg-Gaussian parametgrwere set to
investigating the reconfiguration after intermittent fauh 0.8 and0.8¢, respectively, i.e., values respectively smaller
the infrared sensors. During the evolutionary process, thand higher than the values qf where the Gaussian and
responses of the infrared sensors of the robots are affecté@huchy mutations are reproduced. The parametensd b,
by two faults, which are switched every= 25 or 7 = 50 respectively used to computg andr., were set to 1, while
generations. In the first fault, the responses of the simieft  in Eq. (4),a = 1.5.
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Figure 1. Averaged fitness of the best individual in Experitmé (faults
in the light sensors of the evolutionary robot) for= 25 for GES (where
the Gaussian mutation is reproduced), CES (where the Caucigtion is
reproduced), and gGEg-Gaussian mutation).
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Figure 2. Averaged fitness of the best individual in Experit (faults
in the motor 2 of the evolutionary robot) for = 25.
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Figure 3. Averaged fitness of the best individual in Expenitm@ (faults
in the infrared sensors of the evolutionary robot) foe= 25.
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Figure 4.  Averaged fithess of the best individual in Expenm®
(changing environment) for = 25.
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Figure 5. Averaged fitness of the best individual in Exp. A foe= 50.
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Figure 6. Averaged fitness of the best individual in Exp. B foe 50.

performance) averaged over 50 runs. The mean best fitness
reached in each change cycle for rums given by:

Figures 1, 2, 3, and 4 respectively show the mean best fi= %Z py (5)
fitness found in each change cycle averaged over 50 runs for i=1

the four experiments witlh = 25 generations, while Figures wherer is the change cycle duration, = 10 is the number
5, 6, 7, and 8 respectively show the mean best fitness founaf changes in runj, and f* is the best fitness found in
in each change cycle averaged over 50 runs for the fouchange cycle in run j.

experiments withr = 50 generations.

ij

In Table I, the statistic comparison of the algorihtms

Table | presents the experimental results with respect toegarding the mean best fitness found in each change cycle
the mean best fitness found in each change cycle (offlinéeq. (5)) is carried out by the Wilcoxon Signed Rank Test
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Table I
STATISTICAL COMPARISON OF ALGORITHMSGES, CESAND QGES
REGARDING THE MEAN BESFOF-GENERATION FITNESS FOUND IN EACH
CHANGE CYCLE.
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7 | Exp. | QGES - GES _ qGES - CES

25 [ A | 1.95E-002 (s+) 2.56E-003 (5+)
B | 1.20E-001(+) 1.05E-003 (s+)
C | 1.94E-001 (+) 2.10E-002 (s+)
D | 457E-002 (s+) 7.32E-001 (+)

50 | A | 1.OIE-002 (s+) 2.99E-003 (5+)
B | 2.95E-002 (s+) 1.92E-002 (s+)
C | 1.44E-001 (+) 4.12E-002 (s+)
D | 5.91E-002 (+)  9.88E-001 (-)
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Figure 8. Averaged fitness of the best individual in Exp. D foe 50.

Table |

RESULTS OF THE MEAN BESTOF-GENERATION FITNESS FOUND IN EACH
CHANGE CYCLE FOR THE EXPERIMENTS WITH EVOLUTIONARY ROBOTS

T Exp. GES CES gqGES
25 A median | 7.39E-001 6.46E-001 7.57E-001
mean | 6.65E-001 5.62E-001 6.96E-001
std 1.84E-001 2.15E-001 1.72E-001
B median | 6.95E-001 6.49E-001  7.25E-001
mean | 6.22E-001 5.50E-001 6.70E-001
std 1.93E-001 2.20E-001 1.57E-001
C median | 5.83E-001 4.25E-001 6.33E-001
mean | 5.06E-001 4.61E-001 5.47E-001
std 2.17E-001 1.69E-001 2.07E-001
D median | 6.46E-001 6.72E-001  6.80E-001
mean | 6.34E-001 6.63E-001 6.69E-001
std 1.14E-001 8.15E-002 6.50E-002
50 A median | 7.43E-001 7.20E-001 7.70E-001
mean | 6.66E-001 6.06E-001  7.22E-001
std 1.93E-001 2.18E-001  1.49E-001
B median | 6.59E-001 6.06E-001 6.97E-001
mean | 5.55E-001 5.42E-001 6.32E-001
std 2.08E-001 2.14E-001 1.63E-001
C median | 5.47E-001 3.87E-001 5.85E-001
mean | 4.82E-001 4.48E-001 5.23E-001
std 2.03E-001 1.89E-001 1.70E-001
D median | 6.43E-001 6.78E-001 6.77E-001
mean | 6.08E-001 6.40E-001 6.50E-001
std 1.47E-001 1.20E-001 9.50E-002

Averaged fitness of the best individual in Exp. C#oe 50.

the matched samples of the results regarding Alg. X and
Alg. Y comes from a distribution with median equal to zero.
For each experiment, the result regarding the comparison
Alg. X - Alg. Y is shown, in parentheses, as=" when

the values of the median of Alg. X and Alg. Y are equal.
When the values of the median are different but phelue

is higher than 0.05, i.e., the test indicates that the hygsish
that the median of the difference between the results ace zer
cannot be rejected at the 5% level, the result is respegtivel
shown as 4" when the median of Alg. Y is smaller than
the median of Alg. X and~" when the median of Alg. Y is
higher than the median of Alg. X. Otherwise, when the result
is statistically significant, the result is respectivelysin as
“s+” or “s—" when the median of Alg. Y is smaller or
higher than the median of Alg. X.

In the experiments, ESs find, in the first change cycle
(before the first change) of most runs, weights of the ANNs
(individuals) that allow the simulated robots navigatelie t
environment, and periodically return to the battery regbar
area when the battery charge is low. It can be observed
in the figures, that GES (where the Gaussian mutation is
reproduced) presents better resuts than CES (where the
Cauchy mutation is reproduced) in the first change cycle. In
the simulated evolutionary robot, large modifications ia th
vector of synaptic weights cause a large change in the durren
navigation strategy found by the evolutionary processsThi
way, mutation distributions with smaller tails producetbet
results in the first change cycle as more solutions are
generated close to the current best solution. In gGES, emall
values ofg are selected by self-adaptation during the first
change cycle. Hence, the performance of qGES is close to
the performance of GES in the first change cycle.

When changes ocurr in the environment, new navigation
strategies should be found. In Exp. A, the changes in
the problem are, in general, small, as the changes in the
light of the environment cause small modifications in the
weights of the ANNs. As a result, it can be observed that
GES presents better mean results than CES in most change
cycles. However, it is possible to observe that CES presents

[5]. Table Il shows they-value of the Wilcoxon Signed Rank better results that GES in some change cycles where the
Test for each experiment, which indicates the significance&hanges in the light were more drastic (see vector It
for testing the null hypothesis that the difference betweercan be observed that gGES presents the best result in this



experiment, with the performance significantly better thanto escape from local optima generated by the changes in the
that of other algorithms. In qGES, the valueqof modified problem. In later stages, after the environmental changes,
according to the problem: small values are generally sstect the parameter; reaches small values, which improves the
when the changes in the problem are small, while largetocal search (like the Gaussian mutation). In the futurieept
values ofq are selected when the changes are drastic. control methods for the parameter should be investigated.
Similar results can be found in other experiments. In
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