
An Improved Adaptive Neural Network for Job-Shop Scheduling

Shengxiang Yang
Department of Computer Science, University of Leicester

University Road, Leceister LE1 7RH, United Kingdom
s.yang@mcs.le.ac.uk

Abstract – Job-shop scheduling is one of the most diffi-
cult production scheduling problems in industry. This paper
presents an improved adaptive neural network together with
heuristic methods for job-shop scheduling problems. The
neural network is based on constraints satisfaction of job-
shop scheduling and can adapt its structure and neuron con-
nections during the solving. Several heuristics are also pro-
posed to be combined with the neural network to guarantee
its convergence, accelerate its solving process, and improve
the quality of solutions. Experimental study shows that the
proposed hybrid approach outperforms two classical heuris-
tic algorithms regarding the quality of solutions.

Keywords: Job-shop scheduling, constraint satisfaction,
heuristics, adaptive neural network

1 Introduction

The job-shop scheduling problem (JSP) is one of the most
difficult production scheduling problems. It aims to allocate
a number of machines over time to perform a set of jobs with
certain constraint conditions in order to optimize certain cri-
terion, e.g., minimizing the makespan. Traditionally there
are three kinds of approaches for solving JSPs: priority rules,
combinatorial optimization and constraints analysis.

Due to the hardness of solving JSPs researchers have also
investigated intelligent methods for JSPs. Foo and Takefuji
[2, 3] first used a neural network to solve JSPs. Thereafter,
several neural network architectures have been devised for
JSPs [6, 7, 9]. Willems [6] first proposed a constraint satis-
faction neural network for traditional JSPs. Yu [9] extended
Willems’s neural network by adding a job constraint block
to deal with free operations. In [7] a constraint satisfaction
adaptive neural network (CSANN) was proposed for gener-
alized JSPs. CSANN has the ability to easily map the con-
straints of a JSP into its architecture and remove the viola-
tion of the mapped constraints during its processing. And
CSANN can adaptively adjust the connection weights and bi-
ases of neurons according to the actual constraint violations
during the run. In [7, 8] several heuristic algorithms were
also proposed to improve the performance of CSANN and
the quality of obtained solutions.

This paper proposes an improved CSANN by simplify-
ing its resource constraint block. In the simplified CSANN,
the resource constraint block is adaptively constructed from

the actual resource constraint satisfaction situation during the
run and has reduced resource constraint units (and hence re-
duced computational complexity). In this paper new heuris-
tics are also proposed to improve CSANN’s performance.
Experimental study shows that the simplified CSANN to-
gether with proposed heuristics has good performance with
respect to the quality of solutions and the computing speed.

2 Job-shop scheduling problem

2.1 Formulation of the JSP

Usually, two types of constraints exist for JSPs, sequence
constraint and resource constraint. The first type means that
two operations of a job cannot be processed at the same time.
The second type states that no more than one job can be han-
dled on a machine at the same time. Job-shop scheduling can
be viewed as an optimization problem, bounded by both se-
quence and resource constraints. Traditionally for a JSP, each
job may have different number of operations that have a de-
terministic processing order on different machines. And the
processing time of each operation on a machine is known and
fixed. Operations can not be interrupted once started (non-
preemption). This kind of scheduling is called deterministic
and static, which is the focus of this paper.

Denote J = {J1, · · · , Jn} and M = {M1, · · · , Mm} as
the job set and the machine set respectively, where n and m
are the numbers of jobs and machines. Let ni be the opera-
tion number of job i. Oikq represents operation k of job i to
be processed on machine q, Tikq and Pikq represent the start-
ing time and processing time of Oikq respectively, Tieiq and
Pieiq represent the start time and process time of the last op-
eration of job i respectively. Denote ri and di as the release
date (earliest starting time) and due date (latest ending time)
of job i. Let Si denote the set of operation pairs [Oikp, Oilq]
of job i, where Oikp must be precessed before Oilq . Let Rq

be the set of operations Oikq to be processed on machine q.
Taking minimizing the makespan as the optimization crite-
rion, the JSP considered can be represented as follows:

Minimize E = maxi∈J (Tieiq + Pieiq), subject to

Tilq − Tikp ≥ Pikp,

[Oikp, Oilq] ∈ Si, k, l ∈ {1, · · · , ni}, i ∈ J (1)

Tjlq − Tikq ≥ Pikq or Tikq − Tjlq ≥ Pjlq ,

Oikq , Ojlq ∈ Rq , i, j ∈ J, q ∈ M (2)

ri ≤ Tijq ≤ di−Pijq , i ∈ J, j ∈ {1, · · · , ni}, q ∈ M (3)

where the cost function is the complete time of the latest
operation. Minimizing the cost function means minimizing
the makespan. Eq. (1) represents the sequence constraint;
Eq. (2) represents resource constraints in a disjunctive for-
mat; Eq. (3) represents the release and due date constraints.

2.2 Giffler and Thompson algorithms

Given a feasible schedule for JSPs, if an operation can
be left-shifted (started earlier) without altering the process-
ing sequences, such a left-shift is called a local left-shift. If
a left-shift of an operation alters the processing sequences
but does not delay any other operations, it is called a global
left-shift. Based on the concept of local and global left-shift,
feasible schedules for JSPs can be classified into four types:
inadmissible, semi-active, active and non-delay. Inadmis-
sible schedules are those that contain excess idle time and
can be improved by local and/or global left-shift(s). Semi-
active schedules are those that allow no local left-shift. Ac-
tive schedules are those that allow neither local nor global
left-shift. Non-delay schedules are active schedules in which
no machine is kept idle while some operation can be pro-
cessed. An optimal schedule is guaranteed to be an active
one but not necessarily a non-delay one [1].

Giffler and Thompson [4] first proposed a systematic
method, henceforth the GT-Active algorithm, to generate any
active schedules for JSPs. Let ES(O) and EC(O) denote
the earliest (possible) start time and earliest (possible) com-
pletion time of an operation O respectively. An active sched-
ule is generated by repeating the algorithm until all opera-
tions are scheduled.

1). Let D be a set of all unscheduled operations. Find an
operation O∗ (with ties broken randomly) that has the
minimum earliest (possible) completion time in D. Let
M∗ denote the machine that processes O∗.

2). Construct the conflict set C which contains unscheduled
operations in D that are processed on M ∗ and whose
processing will overlap with O∗. That is, C := {O ∈
D | O on M∗, ES(O) < EC(O∗)}.

3). Select an operation O ∈ C randomly and schedule it.

In [4] Giffler and Thompson also developed an algorithm,
henceforth the GT-ND algorithm, to generate any non-delay
schedules for JSPs iteratively as follows:

1). Let D be a set of all unscheduled operations. Find an
operation O∗ (with ties broken randomly) that has the
minimum earliest (possible) start time in D. Let M ∗

denote the machine that processes O∗.
2). Construct the conflict set C which contains unscheduled

operations in D that are processed on M ∗ and whose
processing will overlap with O∗. That is, C := {O ∈
D | O on M∗, ES(O) < EC(O∗)}.

3). Select an operation O ∈ C randomly and schedule it.

Both the GT-Active and GT-ND algorithms have become
the basis for many priority-rule based heuristics and hybrid

scheduling systems for JSPs. They will be used as peer
algorithms in this paper for comparing the performance of
CSANN, to be described next, for JSPs.

3 Original CSANN model for JSPs

3.1 Neurons of CSANN

Usually, a neural unit i consists of a linear summator and
a nonlinear activation function f(·), serialized as below:

Ai = f(Ni) = f(

n
∑

j=1

(Wij × Aj) + Bi), (4)

where the summator sums a bias Bi and received activations
Aj(j = 1, · · · , n) from connected units with connection
weight Wij from unit j to unit i. The output of summator
is the net input Ni to neuron i, which is then passed to the
activation function f(·) to obtain the activation Ai.

Based on the general neuron model, CSANN contains
three kinds of units: ST-units, SC-units and RC-units. ST-
units represent operations with the activation of each ST-unit
representing the start time of an operation. SC-units and
RC-units represent whether the sequence constraints and re-
source constraints are satisfied respectively. The net input
and activation functions of an ST-unit, STi, are defined as:

NSTi
(t) =

∑

j

(Wij×ASCj
(t)) +

∑

k

(Wik×ARCk
(t))

+ASTi
(t − 1) (5)

ASTi
(t)=







ri, NSTi
(t) < ri

NSTi
(t), ri≤NSTi

(t)≤di − PSTi

di − PSTi
, NSTi

(t) > di − PSTi

(6)

where in Eq. (5) the net input of STi is summed from three
parts. The first and second parts come from the weighted
activations of SC-units and RC-units related to STi, which
implement feedback adjustments due to sequence and re-
source violations respectively. The third part comes from
previous activation of unit STi itself. The activation func-
tion in Eq. (6) is a linear-segmented function, where ri and
di are the release and due date of job i to which the opera-
tion, corresponding to STi, belongs. PSTi

is the processing
time of the operation. This activation function implements
the release and due date constraints described by Eq. (3).

The net input and activation functions of an SC-unit SCi

or RC-unit RCi have the same definition as shown below:

NCi
(t) = W1 × AST1

(t) + W2 × AST2
(t) + BCi

(7)

ACi
(t) =

{

0, NCi
(t) ≥ 0

−NCi
(t), NCi

(t) < 0
(8)

where Ci represents SCi or RCi and BCi
is the bias, which

equals the processing time of a relative operation. The ST-
units, ST1 and ST2, represent two operations of the same job
for an SC-unit, or two operations sharing the same machine
for a RC-unit. The activation function is linear-segmented.
When the activation of an SC-unit or RC-unit is greater than
zero, it means the relevant sequence or resource constraint is
violated and there will be feedback adjustments from SCi or
RCi to connected ST1 and ST2 with adaptive weights.

��
��

��
��

��
��

�

-

J
J
J

JĴ

��� @@I

�
�

�

�
��

@@I J
J

J
JJ]

�

@@I ���

+1

W1 W2

W3 W4

BSCikl

+1+1 STikp STilq

ASTikp
ASTilq

ISTikp
ISTilq

SCikl

Figure 1: A SC-block unit SCBikl.

��
��

��
��

��
��

�

-

J
J
J

JĴ

��� @@I

�
�

�

+1

W5 W6

W7 W8

BRCqikjl

+1+1 STikq STjlq

ASTikq ASTjlq

ISTikq
ISTjlq

RCqikjl

�
��

@@I J
J

J
JJ]

�

@@I ���

Figure 2: A RC-block unit RCBqikjl .

3.2 Adaptive connection weights and biases

All neurons in CSANN are structured into two problem-
specific constraint blocks: sequence constraint block (SC-
block) and resource constraint block (RC-block). Each SC-
block unit has two ST-units that represent two operations of
a job and one SC-unit that represents whether the relevant
sequence constraint is satisfied, see Figure 1. Similarly, each
RC-block unit has two ST-units representing two operations
on the same machine and one RC-unit representing whether
the relevant resource constraint is satisfied, see Figure 2.

Figure 1 shows an example SC-block unit SCBikl. ST-
units STikp and STilq represent two operations Oikp and
Oilq of job i. Their activations ASTikp

and ASTilq
represent

the start times Tikp and Tilq . The SC-unit SCikl represents
the sequence constraint of Eq. (1) between Oikp and Oilq ,
with BSCikl

being its bias. ISTikp
and ISTilq

represent the
initial value for Tikp and Tilq , which are taken as the initial
net input to STikp and STilq respectively. The weights and
bias are valued as follows:

W1 =−1, W2 =1, W3 =−W, W4 =W, BSCikl
=−Pikp (9)

where W , henceforth, is positive feedback adjustment fac-
tor. At time t during the run of CSANN, if the sequence
constraint between Oikp and Oilq is satisfied, the activation
ASCikl

(t) of SCikl equals zero; otherwise, the activation of
SCikl will be greater than zero and can be calculated by

ASCikl
(t)=−NSCikl

(t)=ASTikp
(t)+Pikp−ASTilq

(t)

= Tikp(t) + Pikp − Tilq(t) (10)

The feedback adjustments from SCikl to STikp and STilq

are shown as follows:

ASTikp
(t + 1)=Tikp(t + 1)=Tikp(t)−W×ASCikl

(t) (11)

ASTilq
(t+1)=Tilq(t+1) = Tilq(t)+W×ASCikl

(t) (12)

where the feedback adjustments put backward the start time
Tikp of Oikp and put forward Tilq of Oilq . Thus, the sequence
constraint violation between Oikp and Oilq may be solved.

Figure 2 shows an example RC-block unit RCBqikjl , rep-
resenting the resource constraint of Eq. (2) between Oikq and
Ojlq on machine q. At time t during the run of CSANN, the
weights and bias are adaptively valued with two cases.

Case 1: If ASTikq
(t) ≤ ASTjlq

(t), i.e., Tikq(t) ≤ Tjlq(t),
Eq. (13) holds

W5 =−1, W6 =1, W7 =−W, W8 =W, BRCqikjl
=−Pikq (13)

In this case, RCBqikjl represents a sequence constraint
described by the first disjunctive equation of Eq. (2). If vio-
lation exists, the activation of RCqikjl and feedback adjust-
ments from RCqikjl to STikq and STjlq are calculated by

ARCqikjl
(t) = ASTikq

(t) + Pikq − ASTjlq
(t)

= Tikq(t) + Pikq − Tjlq(t) (14)

ASTikq
(t+1)=Tikq(t+1)=ASTikq

(t)+W7×ARCqikjl
(t)

= Tikq(t) − W × ARCqikjl
(t) (15)

ASTjlq
(t+1)=Tjlq(t +1)=ASTjlq

(t)+W8×ARCqikjl
(t)

= Tjlq(t) + W × ARCqikjl
(t) (16)

Case 2: If ASTikq
(t) ≥ ASTjlq

(t), that is, Tikq(t) ≥
Tjlq(t), Eq. (17) holds

W5 =1, W6 =−1, W7 =W, W8 =−W, BRCqikjl
=−Pjlq (17)

In this case RCBqikjl represents a sequence constraint de-
scribed by the second disjunctive equation of Eq. (2). If there
exists violation, the activation of RCqikjl and the feedback
adjustments are calculated by

ARCqikjl
(t) = ASTjlq

(t) + Pjlq − ASTikq
(t)

= Tjlq(t) + Pjlq − Tikq(t) (18)

ASTikq
(t+1)=Tikq(t+1)=ASTikq

(t)+W7×ARCqikjl
(t)

= Tikq(t) + W × ARCqikjl
(t) (19)

ASTjlq
(t+1)=Tjlq(t+1)=ASTjlq

(t)+W8×ARCqikjl
(t)

= Tjlq(t) − W × ARCqikjl
(t) (20)

3.3 Network complexity and run mechanism

The architecture of CSANN consists of two layers. The
bottom layer consists of only ST-units. The top layer consists
of SC-units and RC-units that are connected to ST-units at the
bottom layer according to the JSP to be solved.

For a traditional JSP with m machines and n jobs where
each job goes through all machines (i.e., ni = m for all i)
in certain sequencing order, it requires mn ST-units repre-
senting the mn operations, n(m − 1) SC-units representing
the n(m − 1) sequence constraints described by Eq. (1), and
mn(n − 1)/2 RC-units representing the mn(n − 1)/2 re-
source constraints described by Eq. (2). Totally, there are
n(0.5mn + 1.5m− 1) neurons for the whole CSANN.

Given a problem-specific CSANN, it can be run itera-
tively: first, run SC-block units, and then run RC-block units
in order till the activations of all SC- and RC-units equal 0.
The final activations of ST-units form a feasible schedule.

4 Improved model — CSANN-II

4.1 Simplifying the RC-block for CSANN

In the original CSANN model, for each machine any com-
bination of two jobs corresponds to one RC-block unit, which
results in n(n−1)/2 RC-block units for each machine1. This
number can be greatly reduced to n − 1 using the following
dynamic adaptive scheme when CSANN is running.

1). Before each iteration of the RC-block, sort the ST-units
related to each machine according to their activations,
i.e., present start times of relevant operations to be pro-
cessed on the machine, in a non-decreasing order;

2). From the first to the last in the ordered ST-unit list, con-
struct one RC-block unit for two adjacent ST-units. This
results in n − 1 RC-block units for each machine.

The new CSANN with above adaptive RC-block con-
structing scheme is henceforth called CSANN-II. For
CSANN-II, for a traditional JSP with m machines and n
jobs where each job passes trough all machines in certain
sequencing order, it requires mn ST-units, n(m − 1) SC-
units, and m(n − 1) RC-units. Totally, CSANN-II consists
of 3mn − m − n neurons, in the order of O(mn), instead
of n(0.5mn + 1.5m − 1) neurons, in the order of O(mn2),
for CSANN, a deduction of magnitude n with respect to the
network complexity.

For each iteration of CSANN-II, sorting the ST-units for
each machine requires O(n log n) calculations by the quick
sort algorithm. It also requires n(m−1) SC-unit calculations
and m(n − 1) RC-unit calculations, resulting in a computa-
tional complexity of O(mn log n). In contrast, each itera-
tion of CSANN requires n(m − 1) SC-unit calculations and
mn(n − 1)/2 RC-unit calculations, which is in the order of
O(mn2). Hence, for each iteration of the neural network,
CSANN-II achieves a deduction of magnitude n/ logn over
CSANN with respect to the computational complexity.

4.2 Heuristic algorithms for CSANN

4.2.1 Swapping the order of two adjacent operations

This heuristics has two aspects: accelerating the solving
process and guaranteeing feasible solutions [7, 8]. The for-
mer, called Heuristic Alg. 1(a), is for two adjacent operations
of the same job, while the latter, called Heuristic Alg. 1(b),
is for two adjacent operations on the same machine.

For Heuristic Alg. 1(a), assuming [Oikp, Oilq] ∈ Si, at
time t during the running of neural networks, if ASTikp

(t) ≥

1Assuming each of the n jobs of a JSP passes through all machines.

ASTilq
(t) (i. e., Tikp(t) ≥ Tilq(t)), exchange the order of

Oikp and Oilq by exchanging their start times as follows:

ASTikp
(t + 1) = Tikp(t + 1) = Tilq(t) (21)

ASTilq
(t + 1) = Tilq(t + 1) = Tikp(t) (22)

In fact, Eqs. (21) and (22) form a more direct method of
removing sequence constraint violations than the feedback
adjustment scheme in CSANN. Thus, the adjustment time
for removing sequence constraint violations is shortened and
the solving process is speeded up.

During the running of CSANNs, due to conflicts result-
ing from sequence constraint and resource constraint vio-
lation feedback adjustments, the phenomenon of dead lock
may happen [7]. Dead lock will stop CSANNs from obtain-
ing a feasible solution. Heuristic Alg. 1(b) was proposed
to break dead lock (and hence guarantee obtaining feasible
schedules) by exchanging the order of two adjacent opera-
tions on the same machine via exchanging their start times.
Heuristic Alg. 1(b) works as follows.

For each RC-block unit RCBqikjl , a variable Tqikjl(t) is
defined to count the number of continuous and similar feed-
back adjustments, accumulated over iterations, from RCqikjl

to STikq and STjlq due to the resource constraint violation
between Oikq and Ojlq on machine q. Two feedback ad-
justments are called similar if they have the same effect on
STikq and STjlq , e.g., both putting Tikq forward and Tjlq

backward. Whenever the resource constraint between Oikq

and Ojlq is satisfied or a different feedback adjustment oc-
curs within RCBqikjl , Tqikjl(t) will be reset to zero. How-
ever, during the running of CSANNs, if dead lock happens
Tqikjl(t) will keep increasing over iterations of CSANNs.
And when Tqikjl(t) reaches a prescribed threshold T (e.g.,
T = 5), the equations below will take effect and swap the
order, i.e., the start times, of Oikq and Ojlq on machine q.

ASTikq
(t + 1) = Tikq(t + 1) = Tjlq(t) (23)

ASTjlq
(t + 1) = Tjlq(t + 1) = Tikq(t) (24)

4.2.2 Adapting expected makespan

For a JSP without due date constraints, before running
CSANNs, an expected makespan is prescribed, which is what
the scheduler wants to achieve and can be used as the com-
mon due date of all jobs. The value of expected makespan
affects the performance of CSANNs greatly: if set too loose,
the quality of obtained schedules will be low, while set too
tight, it will take CSANNs too long to obtain a schedule.
This qualifies the importance of selecting a proper expected
makespan for CSANNs to run.

In this paper an adaptive scheme, called Heuristic Alg. 2,
is proposed to obtain a proper expected makespan by adding
a preprocessing stage. Let

∑

P denote the total processing
time of all operations and

∑

O total number of operations
(e.g.,

∑

O = mn). Heuristic Alg. 2 is shown as follows:

1). Set the initial expected makespan EM(0) = 0.5×
∑

P ;

2). Run CSANN for τ times and calculate the mean itera-
tions Ī =

∑

I/τ that CSANN used to reach a schedule;
3). If Ī <ρ×

∑

O, EM(k+1)=EM(k)−0.01×
∑

P and
go to step 2; Otherwise, stop the preprocessing stage
and return EM(k) as the final expected makespan.

where in step 3, τ and ρ are parameters for the preprocessing
stage. The aim of Heuristic Alg. 2 is to obtain a proper ex-
pected makespan that makes the average iterations CSANNs
require for a schedule to be linear with respect to

∑

O.

4.2.3 Improving the quality of solutions

The feasible schedules obtained by CSANN and CSANN-
II are usually inadmissibe, where there may exist many idle
times for each machine while some operations are available
to be processed. The schedules can be improved by compact-
ing away these idle times. In [8], an algorithm, henceforth
called Heuristic Alg. 3(a), is used to obtain a semi-active
schedule from the schedule obtained by CSANN as follows:

1). Given a feasible schedule obtained by CSANN, sort all
operations in non-decreasing order of their start times.

2). From the first to the last in the ordered operation list,
each operation is moved forward to its earliest possible
start time by carrying out local left-shift only.

In this paper another algorithm, henceforth called Heuris-
tic Alg. 3(b), is proposed to generate an active schedule from
the feasible schedule obtained by CSANN by replacing step
2 of Heuristic Alg. 3(a) with the following:
2). From the first to the last in the ordered operation list,

each operation is moved forward to its earliest possible
start time by first carrying out global left-shift (if possi-
ble) and then local left-shift.

4.3 Hybrid CSANN and heuristics for JSPs

The hybrid approach for JSPs consists of CSANN or
CSANN-II and the proposed heuristics. Usually, the hy-
brid approach is executed many times to obtain a number of
schedules and best of all schedules will be used as the final
schedule. The running strategy is shown as follows:

1). Construct a neural network for a specific JSP, prescribe
values for W , T , τ , ρ, and the maximum number of
schedules MaxSched to be calculated;

2). Perform the preprocessing stage with Heuristic Alg. 2
to obtain a proper expected makespan;

3). Run CSANN or CSANN-II for one schedule with above
obtained expected makespan;

4). If MaxSched is reached, stop; otherwise, go to step 3.
The procedure of running CSANN or CSANN-II for one

schedule is shown as follows:
1). Randomly initialize Tikp(0) for each operation Oikp,

and take it as the initial net input ISTikp
to STikp;

2). Run each SC-unit SCikl of the SC-block, calculate its
activation with Eq. (10). ASCikl

(t) 6= 0 means the vi-
olation of related sequence constraint, then adjust acti-
vations of related ST-units with Eqs. (11) and (12) or
Eqs. (21) and (22) if Heuristic Alg. 1(a) is triggered;

Table 1: Experimental results of comparing methods.

Measure Alg. FT06 FT10 FT20

Makespan CSANN-II 55/55/0.0 982/1009/9.9 1292/1334/12.7
(min/ave/std) CSANN 55/55/0.0 1053/1097/18.6 1450/1492/19.3

GT-Active 55/56.2/0.8 1048/1102/17.9 1336/1383/16.7
GT-ND 55/56.7/0.9 1035/1112/18.6 1301/1372/16.1

Time Used CSANN-II 31/129/166.5 222/753/607.1 820/941/168.6
in Seconds CSANN 26/854/1047.8 433/1062/526.7 1607/1848/382.7

(min/ave/std) GT-Active 4/4.3/0.5 16/16.9/0.6 33/34.2/1.0
GT-ND 4/4.18/0.4 16/17.1/0.8 32/33.1/0.9

Makespan t-Test Result

CSANN-II – CSANN 0.0 -29.56 -48.17
CSANN-II – GT-Active -10.43 -32.21 -16.38

CSANN-II – GT-ND -14.04 -34.43 -13.18

Time Used t-Test Result

CSANN-II – CSANN -4.83 -2.72 -15.34
CSANN-II – GT-Active 5.30 8.57 38.04

CSANN-II – GT-ND 5.31 8.57 38.08

3). For CSANN-II, construct the RC-block adaptively;
4). Run each RC-unit RCqikjl of the RC-block, calculate

its activation with Eq. (14) or Eq. (18). ARCqikjl
(t) 6=0

means the violation of resource constraint correspond-
ing to Eq. (2). Then adjust ASTikq

(t+1) and ASTjlq
(t+1)

with Eqs. (15) and (16) or Eqs. (19) and (20), or with
Eqs. (23) and (24) if Heuristic Alg. 1(b) is triggered;

5). Repeat step 2 to 4 until all neurons become stable with-
out changes, i.e., all sequence and resource constraints
are satisfied and an feasible schedule is obtained;

6). Use Heuristic Alg. 3(a) or 3(b) to obtain a semi-active
or active schedule from the feasible schedule obtained
by CSANN or CSANN-II respectively.

5 Experimental study

The experimental study was finished on an Intel Pentium
4 PC running at 2.8GHz under GNU C++ programming en-
vironment in linux system. The benchmark problems, Muth
and Thompson’s FT06, FT10 and FT20 JSPs [5], were taken
as the test problems to compare the performance of CSANN-
II, CSANN, GT-Active and GT-ND. For CSANNs parame-
ters are set as: W = 0.5, T = 5, τ = 10 and ρ = 2.

For each run of an algorithm on a test JSP, 105 schedules2

were calculated with the intermediate best-so-far schedule
recorded every 100 schedule. And for each run the final best
schedule and time used were also recorded. In order to avoid
the effect a random seed may have, 50 runs with different
random seeds were carried out for each algorithm on each
test problem and the mean results over 50 runs are reported.

The experimental results regarding makespan of final best
schedule and time used in second are given in Table 1, where
min/ave/std means minimum, average and standard deviation
over 50 runs of algorithms respectively. Statistical compari-
son of algorithms by one-tailed t-test is also given in Table 1,

2For CSANNs the schedules calculated during the preprocessing stage
were also counted into the total 10

5 schedules.

 54

 56

 58

 60

 62

 64

0 200 400 600 800 1000

M
ea

n
B

es
t-

S
o-

F
ar

 M
ak

es
pa

n

No. of Schedules (x 100)

CSANN
CSANN-II
GT-Active

GT-ND

 1000

 1050

 1100

 1150

 1200

 1250

0 200 400 600 800 1000

M
ea

n
B

es
t-

S
o-

F
ar

 M
ak

es
pa

n

No. of Schedules (x 100)

CSANN
CSANN-II
GT-Active

GT-ND

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

0 200 400 600 800 1000

M
ea

n
B

es
t-

S
o-

F
ar

 M
ak

es
pa

n

No. of Schedules (x 100)

CSANN
CSANN-II
GT-Active

GT-ND

(a) (b) (c)

Figure 3: Experimental results on the test JSPs: (a) FT06, (b) FT10, and (c) FT20.

Table 2: Experimental results with fixed run time.

Makespan (min/ave/std)
Alg. FT06 FT10 FT20

CSANN-II 55/55/0.0 982/1012/11.3 1292/1337/13.1
CSANN 55/55/0.0 1053/1105/17.9 1450/1507/22.7

GT-Active 55/55.1/0.3 1017/1075/13.5 1325/1351/11.8
GT-ND 55/55.7/0.5 1035/1073/15.2 1301/1339/13.7

t-Test Result

CSANN-II – CSANN 0.0 -31.15 -45.79
CSANN-II – GT-Active -2.33 -25.44 -5.44

CSANN-II – GT-ND -9.75 -22.70 -0.49

where the t-test values shown in bold font are significant with
98 degrees of freedom at a 0.05 significance level. The ex-
perimental results regarding best-so-far makespan obtained
by different methods against schedules are plotted in Figure
3, where the data were averaged over 50 runs.

From Table 1 and Figure 3 it can be seen that CSANN-II
significantly outperforms CSANN regarding both the qual-
ity of obtained schedules on FT10 and FT20 and the solving
speed on all test JSPs. CSANN-II also significantly outper-
forms GT-Active and GT-ND with respect to the quality of
obtained schedules on all test JSPs but spends significantly
more computational time.

In order to carry out a fairer comparison between algo-
rithms regarding the computational time, further experiments
were carried out to run algorithms on the test JSPs for certain
fixed time. For each run, the algorithms are given a maxi-
mum of 60, 300, and 600 seconds on FT06, FT10, and FT20
respectively. The results regarding the final makespan are
shown in Table 2, where the data were averaged over 50 runs.
Table 2 shows that CSANN-II still significantly outperforms
CSANN, GT-Active and GT-ND on nearly all test JSPs.

6 Conclusions
This paper proposes an improved CSANN, CSANN-II, by

simplifying its RC-block. In CSANN-II, the RC-block is
adaptively constructed according to the real resource con-
straint satisfaction situation when CSANN-II is running.
Consequently, the size of the RC-block is deduced by a mag-
nitude of n and the computational time per iteration is de-

duced by a magnitude of n/ logn, where n is the number of
jobs in JSPs. In this paper new heuristics are also proposed
to improve the performance of CSANNs, e.g., adapting the
expected makespan parameter and improving the quality of
obtained schedules. Experimental study shows that CSANN-
II together with proposed heuristics outperforms not only
the original CSANN but two typical heuristic algorithms for
JSPs on the selected benchmark problems with respect to the
quality of solutions and the computing speed.

CSANN-II can act as a good basis for constructing fur-
ther hybrid intelligent systems for JSPs and other scheduling
problems. For example, combining it with local search and
genetic algorithms for JSPs is now under investigation.

References

[1] K. R. Baker, Introduction to Sequence and Scheduling,
John Wiley & Sons, New York, 1974.

[2] S. Y. Foo and Y. Takefuji, “Neural networks for solving
job-shop scheduling: Part 1. Problem representation,”
Proc. IEEE IJCNN, vol. 2, pp. 275–282, 1988.

[3] S. Y. Foo and Y. Takefuji, “Stochastic neural networks
for solving job-shop scheduling: Part 2. Architecture and
simulations,” Proc. IEEE IJCNN, vol. 2, pp. 283–290,
1988.

[4] B. Giffler and G. Thompson, “Algorithms for solving
production scheduling problems,” Operations Research,
vol. 8, pp. 487–503, 1960.

[5] J. F. Muth and G. L. Thompson, Industrial Scheduling,
Prentice Hall, Englewood Cliffs, NJ, 1963.

[6] T. M. Willems, “Neural networks for job-shop schedul-
ing,” Control Engg. Prac., vol. 2, no. 1, pp. 31–39, 1994.

[7] S. Yang and D. Wang, “Constraint satisfaction adaptive
neural network and heuristics combined approaches for
generalized job-shop scheduling,” IEEE Trans. on Neu-
ral Networks, vol. 11, no. 2, pp. 474–486, 2000.

[8] S. Yang and D. Wang, “A new adaptive neural network
and heuristics hybrid approach for job-shop scheduling,”
Comp. & Oper. Res., vol. 28, no. 10, pp. 955–971, 2001.

[9] H.-B. Yu, “Research of intelligent production scheduling
methods and their applications”, PhD Thesis, Northeast-
ern University, China, 1997.

