Soft Comput (2005) 9: 815-834
DOI 10.1007/s00500-004-0422-3

FOCUS

Shengxiang Yang - Xin Yao

Experimental study on population-based incremental learning
algorithms for dynamic optimization problems

Published online: 22 April 2005
© Springer-Verlag 2005

Abstract Evolutionary algorithms have been widely
used for stationary optimization problems. However,
the environments of real world problems are often dy-
namic. This seriously challenges traditional evolutionary
algorithms. In this paper, the application of population-
based incremental learning (PBIL) algorithms, a class of
evolutionary algorithms, for dynamic problems is
investigated. Inspired by the complementarity mecha-
nism in nature a Dual PBIL is proposed, which operates
on two probability vectors that are dual to each other
with respect to the central point in the genotype space. A
diversity maintaining technique of combining the central
probability vector into PBIL is also proposed to improve
PBIL’s adaptability in dynamic environments. In this
paper, a new dynamic problem generator that can create
required dynamics from any binary-encoded stationary
problem is also formalized. Using this generator, a series
of dynamic problems were systematically constructed
from several benchmark stationary problems and an
experimental study was carried out to compare the
performance of several PBIL algorithms and two vari-
ants of standard genetic algorithm. Based on the
experimental results, we carried out algorithm perfor-
mance analysis regarding the weakness and strength of
studied PBIL algorithms and identified several potential
improvements to PBIL for dynamic optimization prob-
lems.

S. Yang (D<)

Department of Computer Science,
University of Leicester, University Road,
Leicester, LE1 7RH, UK

E-mail: s.yang@mcs.le.ac.uk

X. Yao

School of Computer Science,
University of Birmingham Edgbaston,
Birmingham, B15 2TT, UK

E-mail: x.yao@cs.bham.ac.uk

Keywords Population-based incremental learning -
Dynamic optimization problem - Dual population-
based incremental learning - Genetic algorithm -
Central probability vector - Exclusive-or operator

1 Introduction

As a class of meta-heuristic algorithms, evolutionary
algorithms (EAs) make use of principles of natural
selection and population genetics. Due to the robust
capability of finding solutions to difficult problems, EAs
have become the optimization and search techniques of
choice for many applications. Especially, they are widely
applied for solving stationary optimization problems
where the fitness landscape does not change during the
course of computation [13]. However, the environments
of real world optimization problems are often dynamic,
where the problem fitness landscape changes over time.
For example, in scheduling problems the scheduling
demands and available resources may change over time.
This forms a serious challenge to traditional EAs since
they cannot adapt well to a changed environment once
converged.

In recent years, there is a growing interest in the re-
search of applying EAs for dynamic optimization
problems since many of the problems that EAs are being
used to solve are known to vary over time [1, 22].
Usually the dynamic environment requires EAs to
maintain sufficient diversity for a continuous adaptation
to the changing landscape. Researchers have developed
many approaches into EAs to address this problem.
Branke [7, 8] has grouped them into four categories: (1)
increasing diversity after a change, such as the hyper-
mutation scheme [9, 24]; (2) maintaining diversity
throughout the run, such as the random immigrants
scheme [15]; (3) memory-based methods, such as the
diploidy and multiploidy approaches [12, 20, 26]; and (4)
multi-population approaches [6].

In this paper, we investigate the application of a class
of EAs, population-based incremental learning (PBIL)

816

algorithms, for solving dynamic optimization problems.
We study the effect of introducing several approaches
into PBIL to address dynamic optimization problems,
such as the multi-population and random immigrants
methods. Inspired by the complementarity mechanism
broadly existing in nature, we propose a Dual PBIL that
operates on two probability vectors that are dual to each
other with respect to the central point in the search
space. To address the convergence problem, we also
introduce a diversity maintaining technique, similar to
the random immigrants method for GAs, into PBIL to
improve its adaptability under dynamic environments.

In this paper, we also formalize a new dynamic
problem generator, first applied in [30], which can gen-
erate required dynamics from a given stationary prob-
lem. Using this generator, we systematically construct a
series of dynamic problems from two benchmark and
one real-word stationary problems and carry out an
experimental study comparing the investigated PBILs
and two variants of standard genetic algorithm. Based
on the analysis of the experimental results, we identify
the weakness and strength of the studied PBILs and
discuss some improvements to PBIL for dynamic opti-
mization problems.

The rest of this paper is organized as follows. The
next section briefly reviews some existing dynamic
problem generators and presents the new dynamic
problem generator. Section 3 details several algorithms
investigated in this paper including our proposed Dual
PBIL. Section 4 describes the test environment for this
study, including the stationary test suite and related
dynamic problems. The basic experimental results and
relevant analysis are presented in Sect. 5. In Sect. 6, we
investigate the introduction of a diversity maintaining
probability vector into PBIL for dynamic optimization
problems. Finally we conclude this paper in Sect. 7 and
give out discussions on future work in Sect. 8.

2 Dynamic problem generators
2.1 Review of existing generators

Over the past few years, in order to study the performance
of EAs for dynamic optimization problems researchers
have developed a number of dynamic problem generators
to create dynamic test environments. Generally speaking,
these generators can be roughly divided into two types.
The first type of constructing dynamic environments is
quite simple. The environment is just switched between
two or more stationary problems (or states of a problem).
For example, many researchers have tested their algo-
rithms on a time varying knapsack problem where the
total weight capacity of the knapsack changes over time,
usually oscillating between two or more fixed values [11,
20, 22, 26]. Cobb and Grefenstette [10] constructed a
significantly changing environment that oscillates be-
tween two different fitness landscapes. For this type of
generators, the dynamics of environmental change is

mainly characterized by the speed of change. It can be fast
or slow relative to EA time and is usually measured in EA
generations.

The second type of dynamic problem generators
starts from a predefined fitness landscape, usually con-
structed in n-dimensional real space [5, 16, 23, 28]. This
stationary landscape is composed of a number of com-
ponent landscapes (e.g., cones), each of which can
change independently. Each component has its own
morphology with such parameters as peak height, peak
slope and peak location. And the center of the peak with
the highest height is taken as the optimum solution of
the landscape. For example, Morrison and De Jong’s
generator [23], called DF1, defines the basic landscape in
n-dimensional real space as follows:

S(x) = max |:]_Ii ~ Ri x \/ > b - Xij)zJ

(1)

where x=(x;, ..., X,) 1s a point in the landscape, m
specifies the number of cones in the environment, and
each cone i is independently specified by its height H,, its
slope R;, and its center X;= (X, ..., X;,). These inde-
pendently specified cones are blended together by the
max function. Based on this stationary landscape, dy-
namic problems can be created through changing the
parameters of each component. With respect to how to
change a parameter, there may be a variety of proper-
ties. For example, one property of the dynamics of
environmental change is related to the magnitude or step
size of change for each parameter. It may be large or
small. Another dynamics property is related to the speed
of change, which can be slow or fast.

2.2 A new dynamic problem generator

In this paper, we formalize a new dynamic problem
generator that can generate dynamic test problems from
any binary encoded stationary problem. Given a sta-
tionary problem f(x) (xe{0, 1}/ where / is the chromo-
some length), we can construct dynamic landscape from
it as follows: we first create a binary mask Me{0, 1}/,
randomly or in a controlled way, periodically or not.
When evaluating an individual x in the population, we
first perform the operation x @ M on it, where “®” is
the bitwise exclusive-or (XOR) operator (i.e., 1 @ 1=0,
1®0=1, 0@ 0=0). The resulting individual is then
evaluated to obtain a fitness value for the individual x.
Suppose that the change happens at generation ¢, then
we have f(x, tt+1)= fix ® M).

In this way, we can revolve the fitness landscape but
still keep certain properties of the original fitness land-
scape, e.g., the total number of optima and fitness values
of optima though their locations are shifted. For
example, if we apply a template M=1111 to Whitley’s
4-bit deceptive function (to be described in Sect. 4.1), the
original optimal point x =1111 becomes sub-optimal
while the original deceptive solution x=0000 becomes
the new optimal point in the changed landscape, but the

optimal fitness value (i.e., 30) and the uniqueness of
optimum keep invariant.

With the new dynamic problem generator, the
dynamics of environmental change can be characterized
by two parameters: the speed of change and the magnitude
or degree of change in the sense of Hamming distance. As
for other generators, the first parameter can be measured
in EA generations. In this paper it will be referred to as the
environmental change period, denoted by 7, and is defined
as the number of EA generations between two changes.
With respect to the degree of change, it can be measured
by the ratio of ones in the mask M, denoted by p. The more
ones in the mask, the severer the change and the bigger the
challenge to EAs. When p=0.0, the problem stays sta-
tionary. When p = 1.0, it brings in the extreme or heaviest
fitness landscape change in the sense of Hamming dis-
tance, analogous to natural environmental change be-
tween sunny daytime and dark night.

Putting things together, we can generate dynamic
problems from a stationary problem as follows. Suppose
that the environment is periodically changed every z
generations the dynamics can be formulated as follows:

J(x,0) =/ (x ©M(k)) (2)

where k=[1/t] is the period index, 7 is the generation
counter, and M(k) is the XORing mask for period k.
And given a value for parameter p, M(k) can be incre-
mentally generated as follows:

(3)

M(k) =M(k - 1)@ T(k)

where T(k) is an intermediate binary template randomly

created for period k containing px / ones. For the first

period k=1, M(1) is initialized to be a zero vector.
Comparing with other generators, the new dynamic

problem generator has the following properties.

— It is genotype-based. That is, it operates on the
problem genotype instead of phenotype. Hence, we
can carry out theoretical analysis more thoroughly in
the genotype space.

— It is easy to realize required dynamics. We can not
only test the speed of environmental change by tuning
the parameter 7, but also test the degree of environ-
mental change by tuning the parameter p easily.

— With this generator we can study the performance of
algorithms on the dynamic version of many well
studied benchmark problems in EA’s community. For
example, the royal road [21] and deceptive [29] func-
tions are selected as test problems in this paper.

— It can be easily combined with other dynamic problem
generators to generate required dynamic environ-
ments.

3 Description of algorithms investigated
3.1 Population-based incremental learning

The population-based incremental learning algorithm,
first proposed by Baluja [3], is a combination of evolu-

817

tionary optimization and competitive learning. PBIL has
proved to be very successful on numerous benchmark
and real-world problems [4, 19]. Theoretical work on
PBILs has also been carried out [14, 17].

The aim of PBIL is to generate a real valued proba-
bility vector which, when sampled, creates high quality
solutions with high probability. PBIL starts from an
initial probability vector with values of each entry set to
0.5." This means when sampling by this initial proba-
bility vector random solutions are created because the
probability of generating a 1 or 0 on each locus is equal.
However, as the search progresses, the values in the
probability vector are gradually learnt towards values
representing high evaluation solutions. The evolution
process is described as follows.

At each iteration, a set of samples (solutions) are
created according to the current probability vector.” The
set of samples are evaluated according to the problem-
specific fitness function. Then the probability vector is
learnt (pushed) towards the solution(s) with the highest
fitness. The distance the probability vector is pushed
depends on the learning rate parameter. After the
probability vector is updated, a new set of solutions is
generated by sampling from the new probability vector
and this cycle is repeated. As the search progresses, the
entries in the probability vector move away from their
initial settings of 0.5 towards either 0.0 or 1.0. The
search progress stops when some termination condition
is satisfied, e.g., the maximum allowable number of
iterations f.,,x is reached or the probability vector is
converged to either 0.0 or 1.0 for each bit position.

The pseudocode for the PBIL investigated in this
paper is shown in Fig. 1. Within this PBIL, at iteration ¢
a set S’ of n=120 solutions are sampled from the
probability vector P’ and only the best solution B’ from
the set S’ is used to learn the probability vector P'. The
learning rate « is set to a commonly used value 0.05.

3.2 Parallel PBIL

Using multi-population instead of one population has
proved to be a good approach for improving the per-
formance of EAs for dynamic optimization problems.
Similarly, multi-population can be introduced into PBIL
by using multiple probability vectors [4, 27]. Each
probability vector is sampled to generate solutions
independently, and is learnt according to the best solu-

'"For the convenience of description in this paper we will call the
probability vector that has 0.5 for all of its entries central proba-
bility vector or just central vector because it represents the central
point in the genotype space.

*For each bit position of a solution, assuming binary encoded, if a
random created real number in the range of [0.0, 1.0] is less than the
probability value of corresponding element in the probability vec-
tor, the bit is set to 1 (or 0), otherwise it is set to 0 (or 1 respec-
tively).

818

begin
t:=0;
// initialize probability vector
for i := 1 to | do P°[i] := 0.5; endfor;
repeat
S* := generateSamplesFromProbVector(P?, n);
evaluateSamples(S?);
B? := selectBestSolution(S*);
// update probability vector toward best solution
for i:=1to !l do
P'[i] := (1 — a) * P'[i] + o * B'[i];
endfor;
t:=t+1;
until terminated = true;
end;

/] €.9g., t > tmax

PBIL’s parameter settings:
l: chromosome length (problem specific).
a: the learning rate (0.05).
n: sample size generated by the prob. vector (120).

Fig. 1 Pseudocode for the PBIL with one probability vector

tion(s) generated by itself. For the sake of simplicity, in
this paper we investigate a PBIL with two parallel
probability vectors, called Parallel PBIL (PPBIL2). The
pseudocode for PPBIL2 is shown in Fig. 2.

Within PPBIL2, one of the two probability vectors P,
is initialized to the central probability vector (for the
sake of performance comparison with the PBIL) and the
other P, is randomly initialized. P, and P, are sampled
and updated independently. Initially P, and P, have an
equal sample size. However, in order to give the prob-
ability vector that performs better more chance to gen-
erate samples, the sample sizes of the probability vectors
are slightly adapted within the range of [fyin, #max] =
[0.2x n, 0.8x n]=[24, 96] according to their relative
performance. If one probability vector outperforms the
other, its sample size is increased by a constant value
A=0.05x n=6 while the other’s sample size is decreased
by A; otherwise, if the two probability vectors tie, there
is no change to the sample sizes. The learning rate for
both P; and P, is the same as that for the PBIL.

3.3 Dual PBIL

Dualism and complementarity are quite common in
nature. For example, in biology the DNA molecule
consists of two complementary strands that are twisted
together into a duplex chain. Inspired by the comple-
mentarity mechanism in nature, a primal-dual genetic
algorithm has been proposed and applied for dynamic
optimization problems [30]. In this paper we investigate
the application of dualism into PBIL and propose a
Dual PBIL, denoted DPBIL2. For the convenience of

begin
t:=0;
// initialize probability vectors
fori:=1to!l do
P{[i] := 0.5; P2[i] := rand[0.0,1.0];
endfor;
// initialize sample sizes for probability vectors
n? :=ng :=n/2;
repeat
S} .= generateSamplesFromProbVector(P{,n});
S% := generateSamplesFromProbVector(PZ, nb);
evaluateSamples(S%, S%);
B! := selectBestSolution(S%);
B} := selectBestSolution(S5);

// update probability vectors toward best solutions
for i:=1to !l do

P{[i] == (1 — a) + P{[i] +a* B[i);

Pili] := (1 — «) * P3[i] + o % B3[i];
endfor;
// update sample sizes for probability vectors
if f(BY) > f(B%) then n} := min{n! + A, nmaz };
if f(B}) < f(B%) then n} := maz{nt — A, nmin};
nh :=n—nt;
t:=t+1;

until terminated = true;
end;

// €9g., t > tmaz

PPBIL2’s parameter settings:
l: chromosome length (problem specific).
o the learning rate (0.05).
n: total sample size by two prob. vectors (120).
nt, nb: sample size by prob. vector 1 and 2 at time ¢.
A: constant step size of adjusting n1 and n2 (6).
Nmin: Min sample size by each prob. vector (24).
Nimaz: Max sample size by each prob. vector (96).

Fig. 2 Pseudocode for the Parallel PBIL (PPBIL2)

description, we first introduce the definition of dual
probability vector here. Given a probability vector
P=(P[1], ..., P[)eI=[0.0, 1.0]’ of fixed length /, its dual
probability vector is defined as P’=dual(P)=(P1], ...,
P'[)el where P[i{]=1.0-Pl](i=1, ..., [). That is, a
probability vector’s dual probability vector is the one
that is symmetric to it with respect to the central prob-
ability vector. With this definition, DPBIL2 consists of a
pair of probability vectors that are dual to each other.
The pseudocode of DPBIL2 is given in Fig. 3.

From Figs. 2 and 3 it can be seen that DPBIL2 differs
from PPBIL2 only in the definition of the probability
vector P, and the learning mechanism. The other aspects
of DPBIL2, such as the sampling mechanism, the sample
size updating mechanism, and relevant parameters, are
the same as those of PPBIL2. Within DPBIL2 P, is now
defined to be the dual probability vector of P;. As the
search progresses only P, is learnt from the best gener-
ated solution since P, changes with P; automatically. If

begin
t:=0;
// initialize probability vectors
for i:=1to !l do
P[i] := 0.5; P[] := 1.0 — PP[i];
endfor;
// initialize sample sizes for probability vectors
nd :=n3 :=n/2;
repeat
St := generateSamplesFromProbVector(Pf, nt);
S% := generateSamplesFromProbVector(PZ, n});
evaluateSamples(S?, S%);
B! := selectBestSolution(S%);
B} := selectBestSolution(S%);

// update probability vectors
for i:=1to !l do
if f(B}) > f(B%) then //learn P toward B}
P{li] := (1 - a) * P[i] + a * Bi[i];
else // learn P} away from Bj
P{[i] := (1 — @) *x P{[i] + a * (1.0 — B5[i);
Pili] := 1.0 — P{[d];
endfor;
// update sample sizes for probability vectors
if f(BY) > f(B%) then n} := min{n! + A, nmas};
if f(BY) < f(B%) then n} := maz{nt — A, nmin};
nh :=n—nt;
t:=t+1,
until terminated = true;
end;

/] €e.g., t > tmaz

DPBIL2’s parameter settings are the same as PPBIL2’s.

Fig. 3 Pseudocode for the dual PBIL (DPBIL2)

the best overall solution is sampled by P} (i.e., A(B})=
f(B%)) then P is updated towards B}; otherwise, P is
updated away from B5, the best solution created by P5.
The reason to P} learning away from B5 lies in that it is
equivalent to P5 learning towards B5.

The motivation of introducing a dual probability
vector into PBIL lies in two aspects: increasing diversity
of generated samples and fighting significant environ-
mental changes. On the first aspect, usually with the
progress of parallel PBILs the probability vectors will
converge towards each other and the diversity of gen-
erated samples is reduced. This situation doesn’t occur
with dual probability vectors. On the second aspect,
when the environment is subject to significant changes
the dual probability vector is expected to generate high
evaluation solutions and hence improve PBIL’s adapt-
ability.

3.4 Standard genetic algorithm

Genetic algorithms (GAs) are one kind of well studied
evolutionary algorithms. The standard genetic algorithm

819

maintains a population of individuals, usually encoded
as fixed length binary strings. The initial population is
randomly created. New populations are created through
a process of selection, recombination (crossover) and
mutation. At each generation, the fitness of each indi-
vidual in the population is calculated according to the
problem-specific evaluation function. Then the individ-
uals are probabilistically selected from the current pop-
ulation based on their fitness to generate a mating pool,
which is called selection for reproduction. Afterwards,
the recombination and mutation operators are applied
to some or all individuals in the mating pool. The
recombination operator randomly combines parts of
two ‘‘parents” that are randomly selected from the
mating pool to produce two “offsprings”. And the
mutation operator randomly flips each bit of a string
with a small probability p,, to create a new string. This
process continues until some termination condition is
satisfied, e.g., the maximum allowable number of gen-
erations 7, is reached [18]. Usually with the iteration of
the GA, the average fitness of the population will pro-
gressively improve due to the selective pressure applied
through the process. The best individual in the final
population should be a highly evolved solution to the
given problem.

Genetic algorithms are closely related to PBILs. In
fact PBIL is an abstraction of the GA that explicitly
maintains the statistics contained in GA’s population
[4]. In this study, one variant of the standard GA (SGA),
as shown in Fig. 4, is taken as a peer EA to compare the
performance of PBILs for dynamic optimization prob-
lems. The peer SGA has the following typical genetic
operator and parameter settings: generational, uniform
crossover with a crossover probability p.=0.6, tradi-
tional bit mutation with a mutation probability
pm=0.01, and fitness proportionate selection with the
stochastic universal sampling (SUS) [2] scheme. There is

begin
t:=0;
initializePopulation(P(0), n);
evaluatePopulation(P(0));
repeat
P’(t) := selectForReproduction(P(t));
crossover(P’(t), pc);
mutate(P’ (), pm);
evaluatePopulation(P’(t));
t:=t+1;
until terminated = true;
end;

// e€.g., t> tmaz

SGA'’s parameter settings:
n: population size (120).
Pe: uniform crossover probability (0.6).
Pm: bit mutation probability (0.01).

Fig. 4 Pseudocode for the standard GA (SGA)

820

no elitist scheme used in the SGA and the population
size n is set to 120.

4 Algorithm test environments

In order to compare different PBILs and SGA, a set of
well studied stationary problems, including one GA-easy
royal road function, one GA-hard deceptive function,
and one real world knapsack problem, is selected as the
test suite. A series of dynamic optimization problems are
constructed from these stationary problems using the
dynamic problem generator described in Sect. 2.2.

4.1 Stationary test problems

4.1.1 Knapsack problem

The knapsack problem is a well known NP-complete
combinatorial optimization problem. The problem is to
select from a set of items with varying weights and
profits those items that will yield the maximal summed
profit to fill in the knapsack without exceeding its limited
weight capacity. Given a set of m items and a knapsack,
the 0-1 knapsack problem can be described as follows:

max p(x z DiXi 4)
subject to the weight constraint

Z W,'ngc (5)
i=1

where x = (x| ... X,,,), x;1s 0 or 1, w; and p; are the weight
and profit of item i respectively, and C is the capacity of
the knapsack. If x;=1, the ith item is selected.

In this paper, a knapsack problem with 100 items
using strongly correlated sets of randomly generated
data is constructed as follows:

w; = uniformly random integer [1, 50] (6)

pi = w; + uniformly random integer [1, 5] (7)
100

(8)

C = 0.6 x Zw,»
i=1

And given a solution x, its fitness f(x) is evaluated as
follows. If the sum of the item weights is within the
capacity of the knapsack, the sum of the profits of the
selected items is used as the fitness. If the solution selects
too many items such that the summed weight exceeds the
capacity of the knapsack, the solution is judged by how
much it exceeds the knapsack capacity (the less, the
better) and its fitness is evaluated to be the difference
between the total weight of all items and the weight of
selected items, multiplied by a small constant 10~'° to
ensure that the solutions that overfill the knapsack are

not competitive with those which do not. Together, the
fitness of a solution x is evaluated as follows:

100 . 100
f() Z,’:]pixia lle 1W1xz<C
X)= _ 100 100
10 10 X (i=1 Wi_Zi:I W,‘X,‘), else

©)

4.1.2 Royal road function

This function is the same as Mitchell, Forrest and
Holland’s royal road function R1 [21]. It is defined on a
64 bit string consisting of eight contiguous building
blocks of 8 bits, each of which contributes ¢;=8 (i=1,
., 8) to the total fitness if all of the § bits are set to one.
The fitness of a bit string x is computed by summing the
coefficients ¢; corresponding to each of the given build-
ing blocks s; of which x is an instance (denoted by x€s,).
That is, the royal road function is defined as follows:

8
= Z c,~5,-(x)

where 0,(x)= {1, if x€s;; 0, otherwise}. This function has
an optimum fitness of 64.

(10)

4.1.3 Deceptive function

Deceptive functions are devised as difficult test functions
for GAs. They are a family of functions where there exist
low-order building blocks that do not combine to form
higher-order building blocks: instead they form building
blocks resulting in a solution, called deceptive attractor
[29], which is sub-optimal itself or near a sub-optimal
solution. It is even claimed that the only challenging
problems for GAs are problems that involve some de-
gree of deception. Based on an algorithm of constructing
fully deceptive functions, Whitley [29] developed a 4-bit
fully deceptive problem as follows:

£(0000) =28 £(0001)=26 (0010)=24 £(0011)=18
£(0100) =22 £(0101)=6 £(0110)=14 £(0111)=0
£(1000) =20 £(1001)= 2 f(1010)_10 f(1011)=2
f(1100)=8 f(1101)=4 f(1110)=6 f(1111)=30

In this study, we construct a deceptive function
consisting of 30 copies of Whitley’s 4-bit fully deceptive
function (order-4 subproblem). This function has an
optimum fitness of 900 and a representation of 120 bits.

4.2 Constructing dynamic test environments

In this paper, we construct dynamic test environments
from above stationary problems in the following way.
The fitness landscape of each stationary problem is
periodically changed every t generations during the run
of algorithms. Based on our preliminary experiments on

the stationary problems (see Sect. 5.2), 7 is set to 10, 100
and 200 respectively to create three dynamic problems
with respect to this parameter only. The environmental
change speed parameter 7 is set to these values because
on the stationary problems all algorithms are sort of
consistently on different search stages at generations of
these values. For example, on the stationary problems
almost all algorithms are at quite early searching stage at
generation 10, at medium searching stage at generation
100, and at late stage or converged at generation 200. By
setting 7 to these values we can test each algorithm’s
capability of adapting to dynamic environment under
different degree of convergence (or searching stage).

In order to test the effect of another dynamics
parameter, the degree of environmental change, on the
performance of algorithms, the value of p is set to 0.05,
0.2,0.4, 0.6, 0.8, and 0.95 respectively for each run of an
algorithm on a problem. These values represent different
environmental change levels, from very light shifting
(p=0.05) to medium variation (p=0.2, 0.4, 0.6, 0.8) to
significant change (p=0.95). In order to study the
behavior of algorithms in randomly changing environ-
ment we also set p to be a random number uniformly
distributed in [0.01, 0.99], i.e., p=rand(0.01, 0.99).

Totally, we systematically construct a series of 21
dynamic problems, three values of 1 combined with se-
ven values of p, from each stationary test problem. The
environmental dynamics parameter settings are sum-
marized in Table 1.

5 Experimental study
5.1 Experimental design

Experiments were carried out to compare the perfor-
mance of PBILs as well as the SGA on the test envi-
ronments constructed above. In addition to the above
described PBILs, we also test the effect of the re-start
scheme on the performance of PBIL in dynamic envi-
ronments. A complete re-start of EAs after a change in
the environment has occurred is the simplest option to
maintain diversity in the population and react to chan-
ges in the environment. However, it is not always pos-
sible to detect a change and do a re-start deliberately. In
this study, for the sake of algorithm performance com-
parison we also investigate the PBIL with an ideal
re-start scheme, called PBILr, where whenever the

Table 1 The index table for environmental dynamics parameter
setting

T Environmental dynamics index
10 1 2 3 4 5 6 7
100 8 9 10 11 12 13 14

200 15 16 17 18 19 20 21
p= 005 02 04 06 038 rand(0.01, 0.99)

821

environment changes the PBIL is re-started from
scratch. That is, with PBILc all elements in the proba-
bility vector is reset to 0.5 whenever the environment
changes.

For each experiment of combining different algo-
rithm and test problem (no matter stationary or dy-
namic), 50 independent runs were executed with the
same set of 50 random seeds. For each run of different
algorithm on each problem, the best-of-generation fit-
ness was recorded every generation. And for each run of
an algorithm on a dynamic problem, ten periods of
environmental changes are allowed.?

The overall performance of an algorithm on a prob-
lem is measured by the mean best-of-generation fitness.
It is defined as the best-of-generation fitness averaged
across the number of total runs and then averaged over
the data gathering period. More formally this is:

_ 1 & (1
Fpg = 621: (NZFBGU>
i= J=

where Fpg is the mean best-of-generation fitness, G is
the number of generations which is equivalent to ten
periods of environmental changes (i.e., G=10xt), n=>50
is the total number of runs, and Fpg, is the best-of-
generation fitness of generation i of run ;.

(11)

5.2 Experimental results on stationary problems

In order to help analyze the experimental results on
dynamic problems later on in this paper, preliminary
experiments were carried out on the stationary test
problems. For each run of different algorithm on each
problem the maximum allowable number of generations
was set to 200. The preliminary experimental results are
shown in Fig. 5 where the data were averaged over 50
runs.

From Fig. 5, it can be seen that in general all
PBILs outperform SGA. This result is consistent with
other researchers’ study [4]. On the knapsack and royal
road problems PBIL outperforms PPBIL2 and
DPBIL2 while PPBIL2 performs as well as DPBIL2.
This result shows that on stationary problems intro-
ducing extra probability vector may not be beneficial
because the existence of an extra probability vector
that performs worse may slow down the learning speed
of the other probability vector that performs better.
However, on the deceptive function the situation seems
quite different. PBIL and PPBIL2 performs equally
well while both are beaten by DPBIL2 during late

3For the convenience of analyzing experimental results on dynamic
problems, we herein call the first period stationary since the
behavior of an algorithm on a dynamic problem during this period
is the same as that on the relevant stationary problem. And the
other nine periods are called dynamic.

480
@ ! T
SGA ——
1470 + PBIL -------

Best-Of-Generation Fitness

0 50 100 150 200
Generation

Best-Of-Generation Fitness

O 1 1 1
0 50 100 150 200
Generation
(©) 900 . : ——— -
SGA //"
850 PBIL ------- [P -
% PPBIL2 -eeeeeeeee ‘J)"ﬁ:rﬁ’
£ 800 | DPBIL2 ----- = e i
i
g
g 750
g
S 700
o)
;—% 650
m
600
550 1 | 1
0 50 100 150 200

Generation

Fig. 5 Experimental results with respect to best-of-generation
fitness against generations of algorithms on stationary problems:
a Knapsack, b Royal road, and ¢ Deceptive. The data were
averaged over 50 runs

searching stage. This happens because the deceptive
attractor x=00 ... 0 in this function strongly draws the
probability vectors of PBIL and PPBIL2 towards its
trap. The existence of the dual probability vector in
DPBIL?2 slows down the process of trapping, and after
about 140 generations when the fitness level 840 of the
deceptive attractor is reached, the dual probability
vector helps escaping the local optimum and pushes
the searching towards the global optimum.

5.3 Experimental results on dynamic problems

The experimental results on dynamic problems and
some key statistical test results are summarized in Ta-
ble 2 and Table 3 respectively. The experimental results
are also plotted in Fig. 6, where the environmental
dynamics setting can be indexed according to Table 1.
From Table 2, Table 3 and Fig. 6 several results can be
observed.

First, the performance of PBILr increases with the
value of 7 but doesnot change much with the value of p.
This is easy to understand. Given the perfect re-start
scheme, each time the environment changes PBILr is in
fact starting from the same initial state to search the
equivalent problem regardless of the changing degree,
i.e., the value of p. And with the increasing of t PBILr
has more time to search solutions with higher fitness
before the next change.

PBILr outperforms other algorithms in many dy-
namic problems, especially when the environment
changes slowly (and hence convergence becomes a
problem). This is due to the maximum diversity the re-
start scheme introduces into the population. However,
in slightly changing environments (p=0.05) PBILr is
beaten by other PBILs in many cases due to the lack of
information transfer from the last generation of the last
dynamic period. Since it is usually not possible to detect
environmental change timely and perform the re-start
scheme immediately when the environment changes, we
will exclude PBILr in following algorithm performance
comparison and analysis.

Second, from Fig. 6 it is easy to see that for each fixed
7 DPBIL2 outperforms other algorithms (even including
PBILr) on most of the dynamic problems when the
environment is subject to significant changes, e.g., when
p is set to 0.95. In fact, from Table 3 it can be seen that
when p=0.95, DPBIL2 statistically significantly out-
performs PBIL and PPBIL2 on all dynamic problems
and SGA on all dynamic knapsack and deceptive func-
tions. This result confirms our expectation of introduc-
ing the dual probability vector into DPBIL2. When the
environment suffers significant changes, the dual prob-
ability vector takes effect quickly to adapt DPBIL2 to
the changed environment. This effect on DPBIL2 also
takes place when p is set to 0.6 and 0.8. DPBIL2 still
statistically significantly outperforms PBIL and PPBIL2
on most dynamic problems when p equals 0.6 and 0.8
and SGA on most dynamic knapsack problems and
deceptive functions when p=0.8.

Third, PBIL is now beaten by both PPBIL2 and
DPBIL2 on most dynamic problems except when the
value of p is small. When p is small, the dynamic
problems are close to their corresponding stationary
problems. For stationary (and nearly stationary) prob-
lems introducing an extra probability vector may not be
beneficial, which has been verified in our preliminary
experiments in Sect. 5.2 (see Fig. 5). However, when the
value of p increases the introduction of an extra prob-
ability vector helps improving PBIL’s performance.

823

Table 2 Experimental results of SGA, PBIL, PBILr, PPBIL2, and DPBIL2 on dynamic problems with respect to overall mean best-of-

generation fitness

Dynam- Knapsack problem Royal road function Deceptive function

ics

TP SGA PBIL PBILr PPBIL2 DPBIL2 SGA PBIL PBILr PPBIL2 DPBIL2 SGA PBIL PBILr PPBIL2 DPBIL2
10 0.05 1,413.2 1,432.7 1,415.1 1,430.0 1,429.1 269 178 8.7 17.2 16.1 615.7 654.2 585.7 652.6 639.7
10 02 1,411.7 14219 1,4150 1,420.1 1,419.2 16.6 104 8.6 10.3 10.0 599.8 605.7 585.7 605.7 597.5
10 04 1,4103 14152 1,4153 1,4142 14134 11.0 89 87 8.8 8.6 589.6 588.6 586.2 588.6 585.4
10 0.6 14094 1410.7 1,415.1 1,411.0 14114 9.8 8.6 8.6 8.5 8.4 585.8 583.9 585.7 5852 583.5
10 0.8 1,408.2 1,408.7 1.415.5 1,407.6 14125 11.2 87 8.6 8.5 8.7 585.2 584.7 585.5 586.3 588.3
10 095 1407.8 1407.2 1,4149 1,406.6 1,420.1 157 10.1 8.6 10.0 11.1 584.1 595.9 586.5 608.1 612.5
10 rand 1,409.5 1,411.9 1,4153 1,411.1 14138 11.5 9.0 8.6 8.9 8.9 588.9 588.2 585.8 591.8 589.6
100 0.05 1,4149 1,416.2 1,438.7 1,443.8 1,443.6 455 225 250 222 21.5 658.4 782.1 691.4 7814 777.1
100 0.2 1,414.3 1,399.8 1,438.8 14148 14132 363 87 247 9.6 9.2 647.0 667.6 692.0 663.2 655.2
100 0.4 1,413.8 1,383.4 1,438.6 1,400.3 1,407.1 289 57 246 6.3 6.5 633.1 604.2 692.3 608.8 604.3
100 0.6 1,413.3 1,373.1 1,438.6 1,391.7 1,408.6 247 52 247 6.0 5.8 622.1 595.5 691.9 601.3 601.5
100 0.8 1,412.8 1,367.3 1,438.7 1,385.7 1,4153 232 53 246 64 8.5 611.8 612.8 691.6 619.0 644.1
100 0.95 1,412.5 1,365.2 1,438.7 1,379.8 1,440.2 238 9.8 245 11.2 222 605.9 731.6 693.5 720.8 758.2
100 rand 1,413.6 1,371.7 1,438.6 1,393.5 14152 272 6.8 245 7.7 8.8 627.4 621.1 692.8 627.2 6354
200 0.05 1,4149 1,3929 1,454.1 1,430.3 1,440.8 499 19.0 394 1938 18.3 662.2 793.5 763.7 791.5 798.6
200 0.2 1,414.6 1,373.6 1,454.0 1,404.6 14059 414 69 397 175 7.1 6559 682.1 764.4 678.9 676.1
200 0.4 1,414.5 1,3409 1,454.0 1,381.7 1,401.4 345 5.1 394 54 5.7 648.4 613.6 764.2 618.8 612.6
200 0.6 1,414.2 1,331.6 1,454.1 1,369.1 1,402.1 30.1 4.6 39.1 55 5.5 640.6 601.4 764.4 609.9 607.7
200 0.8 1,413.8 1,316.5 1,454.0 1,355.8 1,412.7 275 48 394 5.6 7.7 6324 632.3 764.6 634.0 669.4
200 0.95 1,413.5 1,281.1 1,454.1 1,329.3 1,441.1 26.5 88 39.0 10.2 24.1 626.6 761.0 764.1 7542 786.7
200 rand 1,414.2 1,334.6 1,454.0 1,367.9 1,408.8 329 59 39.1 64 8.1 6434 632.1 764.0 636.4 6433

Fourth, as opposed to stationary problems, SGA
now outperforms PBILs on many dynamic problems,
especially when the value of 7 is large. This happens

because when 7 is large the algorithms are given more
time to search before the next environmental change and
hence they are more likely to converge. Convergence

Table 3 Statistical comparison of algorithms on dynamic problems by one-tailed r-test with 98 degrees of freedom at a 0.05 level of

significance

t-test result

Knapsack problem

Royal road function

Deceptive function

=10, p=
DPBIL2 - SGA
DPBIL2 - PBIL
DPBIL2 - PPBIL2
PPBIL2 - PBIL
PBILr - PBIL
PBILr - PPBIL2
PBILr - DPPBIL2

t=100, p=
DPBIL2 - SGA
DPBIL2 - PBIL
DPBIL2 - PPBIL2
PPBIL2 - PBIL
PBILr - PBIL
PBILr - PPBIL2
PBILr - DPPBIL2

=200, p=
DPBIL2 - SGA
DPBIL2 - PBIL
DPBIL2 - PPBIL2
PPBIL2 - PBIL
PBILr - PBIL
PBILr - PPBIL2
PBILr - DPPBIL2

0.05 0.2 04 0.6
+ o+ o+ o+

~ — —

Il
I
S o+ 2

o
~
=

S 44442428

[\S}
S ++H++ 4+

n
++++++ 2 A+

+++ 4+ +
++++++ |

8
8

0.
—+
+
+
+
+
+

0.
+
+
+
+
+
+
—+

0.8
+
+
+
+
+

+

0.95 rand

I+ + 20 +++
A+

Nel
w
-
8
=3
o

L S i S T S S

e

Nel
%)
—
IS
=3
o

+++++++2
++++++ |

0.05 02 04 06 08 0.95

~
~

I

(==}
=
vy
.o
o
(==}
~

++++ 0+
S 4+ ++0+ 1S

IS +4+ 4222
o
s
~
=

| o
[\S}
+FHFFCHT 2 A FCH T2

+++2 22
e
At

+

22

oo

TH++++ 1S +H++++ 12

e+ + 1

O
wn

B
W

rand

22

g ++++++1 8
B B
o o

+4++2 ++ |

0.05 0.2 04 0.6
+ - -

2

[o)}

2

+ ot

0.05

o
| <
~
=

2

o+t +
e i o e B S e A o - S S A

At

e}

L+ ++2

o]

R S o e S S s e T e o

rand

E +++ 4+ ++
o

A2+

The t-test result regarding Alg. 1-Alg. 2 is shown as “+

statistically equivalent to Alg. 2 respectively

s

2 o

L)

> or '~

when Alg. 1 is significantly better than, significantly worse than, or

824

—_
2
L=
—_
W
(=
(=]

Mean Best-Of-Generation Fitness

| PPBIL2 ¥ (.
1300 ' ppRIL2 --o-
1250 i 2 i ;
1 78 14 15 21
Environmental Dynamics Index
(b)

60 | !l I! T

Mean Best-Of-Generation Fitness

800

—~
o
~

750

700

650

600

Mean Best-Of-Generation Fitness

o0 L L B ;
1 78

Environmental Dynamics Index

Fig. 6 Experimental results of SGA, PBIL, PBILr, PPBIL2, and
DPBIL2 with respect to mean best-of-generation fitness against
different environmental dynamics parameter settings on dynamic
problems: a Knapsack, b Royal road, and ¢ Deceptive

deprives PBILs of the adaptability to changing envi-
ronments. However, the mutation mechanism embedded
in SGA gives it more diversity than PBILs and hence
better adaptability to environmental changes. Hence,
SGA outperforms PBILs in many dynamic problems.
It seems that SGA performs much better on dynamic
royal road functions than on dynamic knapsack prob-

lems and dynamic deceptive functions when the value of
7 is large. The reason lies in the intrinsic characteristics
of the royal road function where there exists a big gap
with respect to the fitness levels of its component
building block. Only when all ones appear in a building
block it will contribute 8 to the whole fitness, otherwise
for all other cases it will contribute 0. This makes the
effect of the mutation scheme in SGA more significant
on dynamic royal road functions.

Fifth, given a value of 7 when the environment
changes randomly with respect to the changing severity,
i.e., p=rand(0.01, 0.99), the performance of algorithms
is similar to the situation of setting p to medium values,
e.g., 0.4 or 0.6. This fits well with the fact that the ex-
pected value of rand(0.01, 0.99) is about 0.5. It is also
notable that when p=rand(0.01, 0.99), DPBIL2 still
significantly outperforms PBIL and PPBIL2 on most
dynamic problems and SGA on several cases. This
happens because the dual probability vector inside
DPBIL2 improves its adaptability if by chance the
environment is subject to significant changes, i.e., p is
randomly set to a big value.

Finally, from Fig. 6 an interesting result that can be
seen is that for each fixed t with the increasing of the value
of p (excluding the random situation) DPBIL2 performs
consistently across the three series of dynamic problems
(knapsack, royal road and deceptive). When p increases
from 0.05t00.2,0.4,0.6,0.8 t0 0.95 the performance curve
of DPBIL2 looks like a big ““U”. PBIL and PPBIL2 have
this performance curve on dynamic royal road and
deceptive functions, while on the dynamic knapsack
problems they have the performance curve of “falling
stone”. SGA has a “falling stone” performance curve on
almost all dynamic problems. The reason to this obser-
vation lies in the intrinsic characteristics of the problems
and will be further explained below.

In order to better understand the experimental re-
sults, we need to have a deeper look into the dynamic
behavior of different algorithms. The dynamic behavior
of different algorithms with respect to best-of-generation
fitness against generations on the three series of dynamic
problems is shown in Figs. 7, 8, and 9 respectively,
where the data were averaged over 50 runs. In these
figures 7 is set to 10 (left column) and 200 (right column)
respectively, and p is set to 0.05, 0.4, and 0.95 from top
row to bottom row respectively. From these figures it
can be easily observed that for PBILr on all dynamic
problems its dynamic behavior for each dynamic period
is almost the same as that for the stationary period.

For DPBIL2 on all dynamic problems the dynamic
performance drops heavier and heavier when the value
of p increases from 0.05 to 0.4. However, when p=0.8
(not shown in Fig. 7) and 0.95 the situation is different.
Now, when 7= 10 its performance rises instead of drops
with the increment of dynamic periods due to less con-
vergence and high adaptability brought in by the dual
probability vector, while when =200 with the incre-
ment of dynamic periods DPBIL2’s performance main-
tains almost the same on dynamic knapsack problems or

1450 T T T T

1440

1430

1420

Best-Of-Generation Fitness

1410

1400 : .
0 100

1430

1425

1420

1415

1410

Best-Of-Generation Fitness

1405

1400 . L .
0 100

1440 T

1430

1420 -

1410

Best-Of-Generation Fitness

00 1 ¢ T .
AN
1390 / : [
1380 1 1 1 1
0 20 40 60 80 100
Generation

825

1500

B Pt V. ot

oy
th
N
£
T
1

2
.

1400

smemmmeTITITOTenmETD
1

LT,

1300

o recrm -

EES N s Ao

1200

1100

1000

Best-Of-Generation Fitness

900

1600

800 1 1 1
800 1200

Generation

2000

1500 T

1400

1300

RIIT

1200

wn

Q

>
1

)
=}
—
ol

i

|

I

1

T

Best-Of-Generation Fitness

1100 -

1000 1 L 1 1
0 800 1200 1600

Generation

2000

1500

1400

1300

1200

1100

1000

Best-Of-Generation Fitness

900

1600

800 1 L 1
800 1200

Generation

2000

Fig. 7 Dynamic behavior of algorithms on dynamic knapsack problems. The environmental dynamics parameter 7 is set to 10 (Left
Column) and 200 (Right Column) respectively and p is set to 0.05, 0.4, and 0.95 from top to bottom row respectively

drops much less severe on dynamic royal road and
deceptive problems. For both values of t whenever the
environment changes the dual probability vector adapts
DPBIL?2 quickly to the new environment. This stops its
performance from significant drop for dynamic periods.
All in all, this results in DPBIL2’s big “U” performance
curve on all the dynamic problems.

For PBIL and PPBIL2, generally speaking, when the
value of p increases from 0.05 to 0.4 their dynamic
performance drops heavier and heavier on all dynamic
problems, which is similar to DPBIL2’s dynamic per-

formance. However, when p=0.95 their dynamic per-
formance is different from DPBIL2’s. When p =0.95, the
dynamic behavior of PBIL and PPBIL2 is sort of
switching between odd and even environmental periods.
They start from a harsher state for even environmental
periods than for odd environmental periods. The reason
to this lies in that after the stationary period for the
following odd period the environment is in fact greatly
returned or repeated from previous odd period given
p=0.95. Hence at the start of odd environmental peri-
ods the performance of PBIL and PPBIL2 doesnot drop

826

Best-Of-Generation Fitness

0 1 | 1 |
0 20 40 60 80 100
Generation
25 T T T T
SGA
L PBIL ------- _

20 PBILr - -

PPBIL2 -

DPBIL2 ---

Best-Of-Generation Fitness

100

25 T T T T

Best-Of-Generation Fitness

) P —
DPBIL2 ---—

O 1 |
0 20 40 60 80

Generation

100

Best-Of-Generation Fitness

0 | 1 1 1
0 400 800 1200 1600 2000
Generation
60 P T T T T
SC}A

gLS sy i sy DUPBIL -

50 ll’ L A T : EPBILI:” -
] : PPBIL2

BI

Best-Of-Generation Fitness

800 1200
Generation

2000

1600

Best-Of-Generation Fitness

1200
Generation

1600 2000

Fig. 8 Dynamic behavior of algorithms on dynamic royal road functions. The environmental dynamics parameter 7 is set to 10 (Left
Column) and 200 (Right Column) respectively and p is set to 0.05, 0.4, and 0.95 from top to bottom row respectively

as heavy as it does at the start of even periods. This
benefits the whole performance of PBIL and PPBIL2
and also results in the big “U” overall performance
curve for them on dynamic royal road and deceptive
functions. However, the inside mechanism is that PBIL
and PPBIL2 are sort of waiting for the return of previ-
ously well sought environment, which is totally different
from DPBIL2 where the high performance is achieved
by rapid adaptation to the newly changed environment.
On dynamic knapsack problems, PBIL and PPBIL2 do
not have the big “U” overall performance curve because
their performance drops too much during the start of

even environmental periods to be compensated by the
benefit gained during odd periods.

In order to better understand the above discussion,
in Fig. 10 we present extra experimental results with
the extreme environmental dynamics of p=1.0 and
7=200 on the dynamic problems. From Fig. 10 it can
be clearly seen that when the environment changes
DPBIL2 immediately adapts to the new environment
while PBIL and PPBIL2 switch between two states: one
low fitness state of even environmental periods where
PBIL and PPBIL2 are poorly searching or in fact
waiting for the return of their previously adapted

750 T T T T
SGA
PBIL -------
700 PBILr -
PPBIL2 - -
DPBIL2 ---=-

650

600

Best-Of-Generation Fitness

5 5 0 1 1 1 1
0 20 40 60 80 100
Generation
620 T T T T
SGA
PBIL -------
610 PBILr --------

PPBIL2

600

590

Best-Of-Generation Fitness

580

570

100

680 T T T T
SGA —— !

B PBIL -------
5 000 PBILr -
g PPBIL2 - -
i 640 DPBIL2 --——-—
8§
g
% 620
Q
S5 600
2

580

560 1 1 1 1

0 20 40 60 80 100

Generation

827

900

850

800

750

700

650

Best-Of-Generation Fitness

600

550 1 L 1 1
800 1200 1600

Generation

2000

900
850
800
750

700
650
600
550
500

450 1 L 1 L
800 1200 1600

Generation

Best-Of-Generation Fitness

(=]
N
(=3
o

2000

900

850

800

750

700

650

Best-Of-Generation Fitness

600

550 L L
0 400 800 1200

Generation

1600

2000

Fig. 9 Dynamic behavior of algorithms on dynamic deceptive functions. The environmental dynamics parameter 7 is set to 10 (Left
Column) and 200 (Right Column) respectively and p is set to 0.05, 0.4, and 0.95 from top to bottom row respectively

environment, and the other high fitness state of odd
periods.

For SGA the mutation scheme gives it certain learning
capacity in dynamic environments. Hence, its average
performance for each dynamic period does not drop too
heavily with the growing of dynamic periods. However,
when the environment undergoes severer and severer
changes, i.e., when the value of p changes from 0.05 to
0.95, SGA faces harsher and harsher starting points when
the environment changes. Hence, the performance of
SGA degrades consistently with the increasing of p and

SGA does not have a big “U” performance curve on most
dynamic optimization problems.

6 Introducing the central probability vector
6.1 Modified algorithms
One major problem for EAs to solve dynamic optimi-

zation problems is due to the convergence of population
or probability vector. Once converged, the EA loses the

828

1500

\
4

..‘--“n.

RN
9

} 4
I
LY

1400 F

g

SEESIITITLL

1200 -

1100

Best-Of-Generation Fitness

2000
Generation

Best-Of-Generation Fitness

1600 2000

900

850

800

750

700

650

Best-Of-Generation Fitness

600

I 1
0 400 800 1200

Generation

1600

550
2000

Fig. 10 Dynamic behavior of algorithms on dynamic problems:
(Top) Knapsack, (Middle) royal road, and (Bottom) Deceptive. The
environmental dynamics parameter t is set to 200 and p is set to 1.0

required diversity to adapt to the changing environment.
To address this problem, Grefenstette [15] introduced
the random immigrants approach into GAs where in
every generation the population is partly replaced by
randomly created individuals (random immigrants).
Since the approach only replaces a small ratio, e.g. 10%,
of the population, it introduces diversity without dis-
rupting the ongoing search progress greatly.

In this paper, incorporating a similar technique into
PBILs is also investigated. The idea is to introduce the
central probability vector into PBIL since from it ran-
dom solutions can be sampled. We add a central prob-

begin
t:=0;
// initialize probability vectors
for i := 1 to [do PJ[i] := 0.5; P[] := 0.5; endfor;
// initialize sample sizes for probability vectors
n1 = 0.9xn; ng := 0.1 xn;
repeat
St := generateSamplesFromProbVector(Pf,n1);
S% := generateSamplesFromProbVector Pz, n2);
evaluateSamples(St, S5);
B! := selectBestSolution(S?);
B} := selectBestSolution(S%);

// update probability vectors
fori:=1to!l do
if f(B!) > f(B%) then // learn P toward B!
Pifi] = (1— o) * P{[i] + o + Bi[i}

else PI[i] := (1 —) * P{[i] + a * B%[i];
endfor;
t:=t+1;
until terminated = true; /] €e.g., t > tmaa

end;

PBILc’s parameters I, a and n are the same as PBIL’s.

Fig. 11 Pseudocode for PBILc

ability vector into PBIL, PPBIL2, and DPBIL2 and call
the obtained algorithms PBILc, PPBIL3, and DPBIL3
respectively. The pseudocodes for PBILc, PPBIL3, and
DPBIL3 are shown in Fig. 11, 12, and 13 respectively.
Within PBILc, PPBIL3, and DPBIL3, we set the
sample size of the central probability vector to a small
constant value, 0.1x n, in order to limit its effect on the
algorithm as a whole. The sampling mechanism is the
same as that in PPBIL2 and DPBIL2. The probability
vectors are independently sampled to generate their own
set of solutions. However, the central probability vector
doesn’t change or learn over time. Within PPBIL3 the
other two probability vectors learn from the best solu-
tion generated by themselves independently. However, if
the best solution generated by the central probability
vector is better than their best solution, they learn from
that solution. Within PBILc and DPBIL3, the learning
mechanism is a little different. As in DPBIL2 only the
first probability vector P, learns. In PBILc, if P;’s best
sample B; has higher fitness than P,’s best sample B,, P,
will learn towards B;; otherwise, P; will learn towards
B,. In DPBIL3 if P;’s best sample B; has the overall
highest fitness, P; will learn towards Bj; if P3’s best
sample Bj; has higher fitness than both P;’s and P,’s, P,
will learn towards Bs; otherwise, if f(B,) > f(B;) and

f(B2)= f(B3), P, will learn away from B,.

As in PPBIL2 and DPBIL2, within PPBIL3 and
DPBIL3 the sample size of the two varying probability
vectors is initialized to an equal value and is slightly
adapted by a constant value A=6 within the range of

829

begin
t:=0;
// initialize probability vectors
for i:=1tol do
PY[i] := 0.5; PY[i] := rand[0.0,1.0]; Ps[i] := 0.5;
endfor;

// initialize sample sizes for probability vectors

nd :=nd := 0.45 xn; nz := 0.1 % n;

repeat

St .= generateSamplesFromProbVector(Pf,n!);
S% := generateSamplesFromProbVector(P%, n);
S% := generateSamplesFromProbVector(Ps, n3);
evaluateSamples(S}, S5, S%);

B! := selectBestSolution(S?);

B} := selectBestSolution(S%);

B} := selectBestSolution(S%);

// update probability vectors
for i:=1tol do
if f(BY) > f(B%) then // learn P toward B}
Pf[i] :== (1 — @) * P}[i] + a * Bi[i];
else P[] := (1 — a) * Pf[i] + a * Bi[i];
if f(B%) > f(B%) then // learn Pj toward B}
Pi[i] :== (1 — @) * P[i] + a * B4[i];
else Pi[i] := (1 — a) * Pi[i] + a * Bi[i];
endfor;

// update sample sizes for probability vectors
if f(B?) > f(B%) then n! := min{n! + A, nmas };
if f(B}) < f(B%) then n} := maz{n} — A, nmin};
nb :=n—n3 —nl;
t:=t+1;
until terminated = true;
end;

/] €9, t > tmax

PPBIL3’s parameter settings:
I, a, A, n, nt, nb: the same as PPBIL2’s
nga: constant sample size by the 3rd prob. vector (12).
Nmin: Min sample size by prob. vector 1 and 2 (24).
Nmaz: Max sample size by prob. vector 1 and 2 (84).

Fig. 12 Pseudocode for PPBIL3

[Mmin, n_max; =[0.2X n, 0.7x n] =[24, 84] according to their
relative performance. If one probability vector outper-
forms the other, its sample size is increased by A while
the other’s decreased by A; otherwise, there is no change.
The learning rate o is set to 0.05 for all PBILs.

In order to compare the effect of introducing the
central probability vector into PBILs with the random
immigrants technique in GAs one variant of SGA, called
RIGA, which combines the random immigrants tech-
nique within SGA is also studied as a peer algorithm.
RIGA differs from SGA only in that when the popula-
tion has undergone the crossover and mutation opera-
tions and just before it is put to evaluation, a subset of
randomly selected individuals (10% of the population) is
replaced by randomly created individuals. Then the

begin
t:=0;
// initialize probability vectors
for i :=1 to I do PP[i] := P{[i] := P3[i] := 0.5; endfor;
// initialize sample sizes for probability vectors

nd :=n3 :=0.45 xn; nz := 0.1 n;

repeat
St := generateSamplesFromProbVector(Pf, nt);
S% := generateSamplesFromProbVector(PZ, nb);
S5 := generateSamplesFromProbVector(Ps, n3);
evaluateSamples(St, S&, S%);
B! := selectBestSolution(S%);
B := selectBestSolution(S%);
B} := selectBestSolution(S%);

// update probability vectors
fori:=1tol do
if £(B}) > maz{f(B5), f(B})} then
Pi[i] := (1 — &) * P{[i] + o x By[d];
else if f(B%) > maz{f(B}), f(B%)} then
Pii) == (1— a) PlJi] + o » B4l
else Pi[i]:= (1 —a) * P{[i] + a * (1.0 — B4[i]);
P§[i] == 1.0 — P{[i];
endfor;
// update sample sizes for probability vectors
if f(B}) > f(B%) then n} := min{n} + A, nmas};
if f(BY) < f(B%) then n! := maz{n} — A, nmin};

nb :=n—n3 —nt;

ti=t41;
until terminated = true; /] e.g., t > tmaa
end;

DPBIL3’s parameter settings are the same as PPBIL3’s.

Fig. 13 Pseudocode for DPBIL3

population is evaluated and put to next evolution cycle.
The genetic operators and relevant parameter settings
for RIGA are all the same as those for SGA.

6.2 Experimental results

The experimental settings for RIGA, PBILc, PPBIL3
and DPBIL3 are the same as previous settings. The
experimental results are shown in Fig. 14 (where the
environmental parameter setting is indexed the same
way by Table 1) and Table 4. Some key statistical test
results are given in Table 5. From Tables 4, Table 5 and
Fig. 14 the following results can be observed.

First, generally speaking PBILc, PPBIL3, and
DPBIL3 outperform their peers PBIL, PPBIL2, and
DPBIL2 respectively, especially when the environmental
dynamics parameter 7 is large and p is set to medium
values of 0.4 and 0.6 or rand(0.01, 0.99). When t=10,
the effect of introducing the central probability vector is
not significant in many cases or is negative in some

830

—_
o

) 1500 — — — ,
1480 |- | |
1460
1440
1420

1400

Mean Best-Of-Generation Fitness

1380

1360

~
=
~
[=))
(=]

W
(=]

B
(=)

30

20

Mean Best-Of-Generation Fitness

10

(©) 800 —

750 - PPBIL3 8- !‘
DPBIL3 --o— &
700

650

600

Mean Best-Of-Generation Fitness

50 L L L ;
1 78 14 15 21

Environmental Dynamics Index

Fig. 14 Experimental results of RIGA, PBILc, PPBIL3, and
DPBIL3 with respect to mean best-of-generation fitness against
different environmental dynamics parameter settings on dynamic
problems: a Knapsack, b royal road, and ¢ Deceptive

cases. This is because convergence is not very serious
when the environment changes quickly. When p is set to
medium values, PBILc, PPBIL3, and DPBIL3 achieve
statistically significantly better performance over their
peers respectively, see Table 5 for the t-test results with
respect to PBILc-PBIL, PPBIL3-PPBIL2, and DPBIL3-
DPBIL2. This happens because the central probability

vector works well under dynamic environments with
medium degree of changes. In the genotype space with p
set to a medium value each time when the environment
changes an optimal solution is shifted about halfway
away from its original point toward its complementary
point in terms of Hamming distance, and falls into the
very area represented by the central vector.

Second, both PPBIL3 and DPBIL3 now outperform
RIGA on most dynamic knapsack and deceptive prob-
lems, see the z-test results with respect to PPBIL3-RIGA
and DPBIL3-RIGA in Table 5. This result happens
because the advantage of introducing diversity by the
mutation mechanism in RIGA is now overrun by the
effect of the central probability vector in PPBIL3 and
DPBIL3. However, on dynamic royal road functions it
seems that the central probability vector in PPBIL3 and
DPBIL3 is not strong enough for them to beat RIGA.

Third, comparing PBILc with PPBIL2 and DPBIL2,
from the #-test results in Table 5 with respect to PBILc-
PPBIL2 and PBILc-DPBIL?2 it can be seen that when
is large PBILc significantly outperforms PPBIL2 on al-
most all dynamic problems and it outperforms DPBIL2
on most dynamic problems except when p is set to 0.95.
This means when convergence becomes a problem, the
central probability vector is more helpful than just an
extra or dual probability vector. However, when the
environment suffers significant changes, e.g., p=0.95,
introducing the dual probability vector is more helpful
than the central probability vector.

Finally, from Table 5 an interesting and sort of
confusing observation is that RIGA outperforms SGA
on several dynamic royal road functions when p is set to
medium values and on dynamic knapsack problems
when 7=10 and p=0.05 while it is beaten by SGA on
most other dynamic problems. The reason lies in the
interactive effect between SGA and the problems.
According to our extra experimental results (not shown
in this paper) decreasing the mutation probability p,, in
SGA from 0.01 to 0.001 increases SGA’s performance
on the stationary knapsack problem and deceptive
function while decreasing its performance on the sta-
tionary royal road function. This means strengthening
the mutation and hence the diversity may not be bene-
ficial for the knapsack and deceptive problems. This also
sort of explains that the effect of introducing random
immigrants into SGA is problem-dependent.

Similarly, in order to better understand the effect of
the central probability vector, we give the dynamic
behavior of RIGA, PBILc, PPBIL2, DPBIL2, PPBIL3,
and DPBIL3 with respect to best-of-generation fitness
against generations on dynamic problems in Figs. 15,
16, and 17 respectively, where the value of t equals 200
and p equals 0.05, 0.4, and 0.95 from top to bottom row
respectively. From these figures it can be seen that when
p is small or large, the central probability vector does
not help much. However, when p is set to medium values
(e.g., 0.4), the performance of PBILc, PPBIL3 and
DPBIL3 is greatly improved in comparison to their
peers (the performance of PBIL is not shown) respec-

831

Table 4 Experimental results of RIGA, PBILc, PPBIL3, and DPBIL3 on dynamic problems with respect to overall mean best-of-
generation fitness

Dynamics Knapsack problem Royal road function Deceptive function

T p RIGA PBILc PPBIL3 DPBIL3 RIGA PBILc PPBIL3 DPBIL3 RIGA PBILc PPBIL3 DPBIL3

10 0.05 1,411.1 1,432.0 1,429.2 14272 25.6 17.3 16.6 15.6 5929 650.1 650.9 636.4
10 0.2 1,411.0 14218 14204 1,418.0 17.3 10.2 10.1 9.8 588.6 6033 603.8 594.7
10 04 1,410.4 14158 14148 1,413.2 13.3 8.9 8.8 8.6 587.1 588.2 5883 584.1
10 0.6 1,409.7 14122 14119 1,411.1 12.1 8.6 8.5 8.5 5855 5837 5847 582.2
10 038 1,409.0 1,409.5 11,4098 1,412.0 12.6 8.6 8.6 8.7 584.6 5834 5842 586.5
10 095 1,409.0 1,408.0 11,4084 14178 1,5.7 9.8 10.0 10.7 5833 5919 598.8 609.2
10 rand 1,409.8 14128 14128 1,413.5 13.7 8.9 8.9 8.7 585.7 586.7 589.7 586.9
100 0.05 1,411.1 11,4593 1,458.1 1,457.3 44.2 26.3 27.4 25.1 5956 780.2 781.5 771.7
100 0.2 1,411.1 11,4423 14428 14395 35.4 17.5 20.1 16.5 595.1 6973 7129 691.9
100 0.4 1,411.0 1,433.6 1,433.6 1,429.6 28.3 14.8 17.0 13.8 5946 697.0 7029 688.1
100 0.6 1,411.1 14271 14282 1,428.0 25.0 13.5 16.1 13.5 5939 6903 6932 688.3
100 0.8 1,411.0 1421.8 14238 14393 23.8 14.3 16.7 15.8 594.1 703.7 T711.5 689.2
100 095 14108 14189 14214 1,455.6 239 15.9 18.2 239 593.7 7422 77525 754.4
100 rand 1,410.9 1,433.5 14333 1,4379 27.8 15.5 17.9 17.1 5946 7174 7234 705.6
200 0.05 1,411.1 1.461.2 1,462.0 1,459.8 48.5 25.8 26.8 24.5 5959 789.6 794.0 793.1
200 0.2 1,411.1 1,448.0 1,450.0 1,445.7 40.9 18.6 21.1 17.7 5955 7133 736.3 711.8
200 0.4 1411.1 14421 1,443.1 1,437.4 34.1 17.0 21.3 16.6 5952 7456 756.7 744.4
200 0.6 1,411.1 1,438.6 14395 1437.1 30.6 16.9 20.1 15.6 5952 7563 760.0 741.7
200 0.8 14109 1,4344 14365 1,446.3 29.1 17.0 20.1 17.4 5948 749.0 764.8 712.0
200 095 1,411.1 1,432.0 11,4352 1,459.8 28.2 17.9 19.9 25.6 5947 7639 7735 782.9
200 rand 1,411.1 1,444.0 1,4446 14454 33.7 18.0 21.1 17.8 5952 7589 766.5 741.6

tively during dynamic periods. The central probability RIGA due to the random immigrants scheme its per-
vector stops their performance from significant drop- formance is degraded heavily during the stationary
ping. From Figs. 15 and 17 it can also be seen that for period and hence the following dynamic periods on

Table 5 Statistical comparison of algorithms on dynamic problems by one-tailed r-test with 98 degrees of freedom at a 0.05 level of
significance

t-test Result Knapsack problem Royal road function Deceptive function

=10, p= 0.05 0.2 04 0.6
PPBIL3 - PPBIL2 ~ + +
DPBIL3 - DPBIL2
PPBIL3 - RIGA
DPBIL3 - RIGA
PBILc - PBIL
PBILc - PPBIL2
PBILc - DPBIL2
RIGA - SGA

rand 0.05 0.2 04 0.6 0.8 095 rand 0.05 0.2 04 0.6 0.8 0.95 rand
+ ~

2

~ ~ ~ ~ ~ ~ ~ ~ — — ~

oo
| +2
Ne)
wn

~ ~

K
2

[
[
4+ + 2

|
+2 22
I+ 2
Jr
I+ 22
2
|
| I+ 42
| 2+ |

I+ 4+ |
|
|
I+ 22

I+ 4+ 1 ++1
I+ 4+ ++1
L A
+ 4+ ++ + 2
I+ + 42
[

I

I

I

I

2
2
2
|

S
vy
o
N
Nel
)
-

o

=3

o
[=]
S
vy
[\S]
~
(@)}
oo
N}
A
=

o

=]

[oN

=100, p=
PPBIL3 - PPBIL2
DPBIL3 - DPBIL2
PPBIL3 - RIGA
DPBIL3 - RIGA
PBILc - PBIL
PBILc - PPBIL2
PBILc - DPBIL2
RIGA - SGA

=200, p=
PPBIL3 - PPBIL2
DPBIL3 - DPBIL2
PPBIL3 - RIGA
DPBIL3 - RIGA
PBILc - PBIL
PBILc - PPBIL2
PBILc - DPBIL2
RIGA - SGA

++

f=]
P++Q ++22
I ++2 ++22
(o)}
Il +4+2 4+ 1 221 122
oo
++2
O
D
++ 3
=]
o
P
S
(93]

I+ +++++2 + 1 +++ 1
[
[
[

220+ +

L ++++1 +£

'+ ++ 1 ++2 222021120
o
I+ 42

(o)}
P+++++++2 + 1 ++++20+2

Il +4++++++2
Il +4++++++9
I+ ++++++2
I+ ++++++2
L+ 4+ +++++
I+ 4+ + |
I+ + +

I+ ++++++2
l+4+++++4+2
l+4+++++4+2
I+ ++++++2
I+ +++++

2+t

S
vy
o
N
(@)}
oo
O
)
-
o
=3
o
[=]
S
vy
~
(@)}
oo
Nel
A
=
o
=3
o
2
S
vy
{8}
~
[*)}
oo
Ne}
A
S
=
QU

+ 4
++9°
S}
I ++2
I+ +2
'+ +S ++++
I +4+2 2
+ +

I+++++++2
I+ ++++++2
l+++++++2
P+ ++++++2
I+ ++++++2
I++++++2
L+ 4+ +++++
P+ ++ 1
I+ 4+ + |
C+++
o+ ++
20+ + 1
P+ ++++++2
I+ ++++++2
I+++++++2
l+++++++2
I+ ++1 +2
I+ ++++++

+ 4+t
+ 4+t
+ 1+

LL)

The t-test result regarding Alg. 1-Alg. 2 is shown as “+”, “—
statistically equivalent to Alg. 2 respectively

, or “~” when Alg. 1 is significantly better than, significantly worse than, or

832

1500 T T T T

1450

8 1400 NS
7 ; - BT
i A T i
s 1350 - ! A S B TR -
g : i1 1 4
=] ! [ﬂ
1 .]
g 1300 | ; Vo 4
= . i
L : ' f i
&) ! i
o 1250 RIGA : .
Q :
% 1200 : -
&8 :

1150 |- : A

1100 1 i 1 1

0 400 800 1200 1600 2000
Generation

1500 T T T T
" 1450
3
=
= 1400
=
g
g
8 1350
L
Q
3 1300
7
B 1250

1200 1 1 1 1

0 400 800 1200 1600 2000
Generation

1500 T T T T
1400
1300

1200

Best-Of-Generation Fitness

1100

1000 1 1 1 1
0 400 800 1200 1600

Generation

2000

Fig. 15 Dynamic behavior of algorithms on dynamic knapsack
problems. The environmental dynamics parameter 7 is set to 200
and p is set to 0.05, 0.4, and 0.95 from top to bottom respectively

dynamic knapsack problems and dynamic deceptive
functions.

7 Conclusions

In this paper we investigate the application of PBIL
algorithms for dynamic optimization problems. We
study the effect of introducing several approaches, such
as the re-start, multi-population, and random immi-
grants methods, from EA’s community into PBIL to

60 T T T T

50 b

RIGA
PBILc -------
PPBIL2 --------
PPBIL3 - :
DPBIL2 --—- |
DPBIL3 -~

40

30

20

Best-Of-Generation Fitness

10

0 1 1 1 1
0 400 800 1200 1600 2000
Generation
T T T
RIGA

PBILc -------

Best-Of-Generation Fitness

800 1200 2000
Generation

1600

Best-Of-Generation Fitness

1600

0 400 800 1200 2000

Generation

Fig. 16 Dynamic behavior of algorithms on dynamic royal road
functions. The environmental dynamics parameter 7 is set to 200
and p is set to 0.05, 0.4, and 0.95 from top to bottom respectively

improve its performance in dynamic environments. In-
spired by the complementarity mechanism broadly
existing in nature, we propose a Dual PBIL that oper-
ates on a pair of probability vectors that are dual to each
other with respect to the central point in the genotype
space. In order to counterbalance the problem caused by
the convergence of probability vectors, the central
probability vector is also introduced into PBILs.

This paper also formalizes a new dynamic problem
generator that can generate required dynamics from any
binary encoded stationary problem. This generator is
genotype-based, easy to realize required dynamics, and

900
850
]
£ 800
[s
g
=2 750
S
g
3 700 ;
5 i
A 650-; :
2 DPBIL3 -------
600 W’W\WI\WNJWWWWWWVMW
550 1 1 1 1
0 400 800 1200 1600 2000
Generation
900
850
2 800
£
= 750
=
=]
g 700
3
5 650
3 600
7
2 550 _
500 -
450 1 1 1 1
0
900
850
800 f '
750 —5

SoeRarIanss

700

Best-Of-Generation Fitness

650 7‘
600 WWWWWM
550 1 1 1 1
0 400 800 1200 1600 2000
Generation

Fig. 17 Dynamic behavior of algorithms on dynamic deceptive
functions. The environmental dynamics parameter 7 is set to 200
and p is set to 0.05, 0.4, and 0.95 from top to bottom respectively

convenient for theoretical analysis. Based on the new
dynamic problem generator, a series of dynamic prob-
lems are systematically constructed from several bench-
mark stationary problems. These dynamic problems are
used as the test base for the experimental study to
compare the investigated PBILs and two variants of
standard GA.

From the experimental results, the following conclu-
sions can be achieved on the tested dynamic problems.

First, on the stationary problems introducing extra
probability vector into PBIL may not be beneficial.

833

Second, if it is feasible to timely detect environmental
changes, the re-start scheme is a good choice for PBIL in
dynamic environments, especially when the environment
changes slowly and hence convergence becomes a
problem. However, it is usually not possible to detect
environmental changes timely, which greatly degrades
the re-start scheme for PBIL in dynamic environments.

Third, when the environment is subject to significant
changes in the sense of genotype space, introducing the
dual probability vector into PBIL can achieve very high
performance improvement.

Fourth, introducing the central probability vector
can improve PBIL’s performance under dynamic envi-
ronments, especially when the environment is subject to
medium degree of changes in the genotype space.

Finally, the effect of introducing the random immi-
grants scheme into SGA is problem dependent.

Generally speaking, the experimental results indicate
that PBILs with dual and central probability vectors
seem to be a good choice as EAs for dynamic problems.

8 Future work

This paper starts an interesting work on applying PBILs
for dynamic optimization problems. Based on this paper
there are several works to be carried out in the future.

First, PBILs investigated in this paper are relatively
simple. It is an interesting work to investigate more
mechanisms, such as mutation, population interaction
schemes [4], and the hypermutation technique from EA’s
community into PBILs and compare their performance
for dynamic optimization problems.

Second, it is also an interesting future work to extend
the results in this paper to other estimation of distribu-
tion algorithms (EDAs) [19, 25], of which PBILs are a
sub-class, and compare obtained algorithms with other
GAs or EAs for dynamic optimization problems.

Finally, based on the new dynamic problem genera-
tor it is an important work to carry out theoretical
analysis of the performance of PBILs and other EAs for
dynamic optimization problems, e.g., with respect to the
environmental change speed and change severity.

Acknowledgments The authors would like to thank Dr. Jiirgen
Branke and the anonymous reviewers for their thoughtful sugges-
tions and helpful comments. Shengxiang Yang was supported by
UK EPSRC under Grant GR/S79718/01.

References

1. Biack T (1998) On the behavior of evolutionary algorithms in
dynamic fitness landscape. In: Proceedings of the 1998 IEEE
international conference on evolutionary computation, pp 446—
451

2. Baker JE (1987) Reducing bias and inefficiency in the selection
algorithms. In: Grefenstelle JJ (ed) Proceedings of the 2nd
international conference on genetic algorithms. Lawrence Erl-
baum Associates, pp 14-21

3. Baluja S (1994) Population-based incremental learning: a
method for integrating genetic search based function optimi-

834

10.

11.

12.

13.

14.

15.

16.

17.

zation and competitive learning. Technical report CMU-CS-94-
163, Carnegie Mellon University, USA

. Baluja S, Caruana R (1995) Removing the genetics from the

standard genetic algorithm. In: Proceedings of the 12th inter-
national conference on machine learning, pp 38-46

. Branke J (1999) Memory enhanced evolutionary algorithms for

changing optimization problems. In: Proceedings of the 1999
congress on evolutionary computation 3:1875-1882

. Branke J, KauBler T, Schmidt C, Schmeck H (2000) A multi-

population approach to dynamic optimization problems. In:
Adaptive computing in design and manufacturing

. Branke J (2001) Evolutionary approaches to dynamic optimi-

zation problems—updated survey. In: GECCO Workshop on
evolutionary algorithms for dynamic optimization problems,
pp 134-137

. Branke J (2002) Evolutionary optimization in dynamic envi-

ronments. Kluwer, Dordrecht

. Cobb HG (1990) An Investigation into the use of hypermutation

as an adaptive operator in genetic algorithms having continuous,
time-dependent nonstationary environments. Technical report
AIC-90-001, Naval Research Laboratory, Washington

Cobb HG, Grefenstette J (1993) Genetic algorithms for
tracking changing environments. In: Proceedings of the 5th
international conference on genetic algorithms, pp 523-530
Dasgupta D, McGregor D (1992) Nonstationary function
optimization using the structured genetic algorithm. In: Pro-
ceedings of the 2nd international conference on parallel prob-
lem solving from nature, pp 145-154

Goldberg DE, Smith RE (1987) Nonstationary function opti-
mization using genetic algorithms with dominance and dip-
loidy. In: Grefenstelle JJ (ed) Proceedings of the 2nd
international conference on genetic algorithms. Lawrence Erl-
baum Associates, pp 59-68

Goldberg DE (1989) Genetic algorithms in search, optimiza-
tion, and machine learning. Addison-Wesley, Reading
Gonzalez C, Lozano JA, Larrafiaga P (2000) Analyzing the
population based incremental learning algorithm by means of
discrete dynamical systems. Complex Syst 12(4):465-479
Grefenstette JJ (1992) Genetic algorithms for changing envi-
ronments. In: Mdnner R, Manderick B (eds) Proceedings of the
2nd international conference on parallel problem solving from
nature, pp 137-144

Grefenstette JJ (1999) Evolvability in dynamic fitness land-
scapes: a genetic algorithm approach. In: Proceedings of the
1999 congress on evolutionary computation, vol 3, pp 2031-
2038

Hohfeld M, Rudolph G (1997) Towards a theory of popula-
tion-based incremental learning. In: Proceedings of the 4th
IEEE conference on evolutionary computation, pp 1-5

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

. Holland JH (1975) Adaptation in natural and artificial systems.

University of Michigan Press, Ann Arbor

. Larrafiaga P, Lozano JA (2002) Estimation of distribution

algorithms: a new tool for evolutionary computation. Kluwer,
Dordrecht

Lewis J, Hart E, Ritchie G (1998) A comparison of dominance
mechanisms and simple mutation on non-stationary problems.
In: Proceedings of the Sth int conf on parallel problem solving
from nature, pp 139-148

Mitchell M, Forrest S, Holland JH (1992) The royal road for
genetic algorithms: fitness landscapes and GA performance. In:
Proceedings of the 1st European conference on artificial life, pp
245-254

Mori N, Kita H, Nishikawa Y (1997) Adaptation to changing
environments by means of the memory based thermodynamical
genetic algorithm. In: Bdck T (ed) Proceedings of the 7th
international conference on genetic algorithms. Morgan Ka-
ufmann Publishers, pp 299-306

Morrison RW, De Jong KA (1999) A test problem generator
for non-stationary environments. In: Proceedings of the 1999
congress on evolutionary computation, vol 3, pp 2047-2053
Morrison RW, De Jong KA (2000) Triggered hypermutation
revisited. In: Proceedings of the 2000 congress on evolutionary
computation, pp 1025-1032

Miihlenbein H, Paab G (1996) From recombination of genes to
the estimation of distributions I. Binary parameters. In: Voigt
H-M, Ebeling W, Rechenberg I, Schwefel H-P (eds) Proceed-
ings of the 4th international conference on parallel problem
solving from nature, pp 178-187

Ng KP, Wong KC (1995) A new diploid scheme and domi-
nance change mechanism for non-stationary function optimi-
sation. In: Eshelman LJ (ed) Proceedings of the 6th
international conference on genetic algorithms

Servais MP, de Jaer G, Greene JR (1997) Function optimiza-
tion using multiple-base population based incremental learning.
In: Proceedings of the 8th South African workshop on pattern
recognition

Trojanowski K, Michalewicz Z (2000) Evolutionary optimiza-
tion in non-stationary environments. J Comp Sci Technol
1(2):93-124

Whitley LD (1991) Fundamental principles of deception in
genetic search. In: Rawlins GJE (ed) Foundations of genetic
algorithms, vol 1, pp 221-241

Yang S (2003) Non-stationary problem optimization using the
primal-dual genetic algorithm. In: Proceedings of the 2003
congress on evolutionary computation, vol 3, pp 2246-2253

	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Sec6
	Sec7
	Sec8
	Fig1
	Fig2
	Sec9
	Fig4
	Fig3
	Sec10
	Sec11
	Sec12
	Sec13
	Sec14
	Sec15
	Sec16
	Sec17
	Sec18
	Tab1
	Sec19
	Fig5
	Tab2
	Tab3
	Fig6
	Fig7
	Fig8
	Sec20
	Sec21
	Fig9
	Fig10
	Fig11
	Sec22
	Fig12
	Fig13
	Fig14
	Tab4
	Tab5
	Sec23
	Fig15
	Fig16
	Sec24
	Ack
	Bib
	CR1
	CR2
	CR3
	Fig17
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30

