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Abstract In estimation of distribution algorithms

(EDAs), the joint probability distribution of high-perfor-

mance solutions is presented by a probability model. This

means that the priority search areas of the solution space

are characterized by the probability model. From this point

of view, an environment identification-based memory

management scheme (EI-MMS) is proposed to adapt bin-

ary-coded EDAs to solve dynamic optimization problems

(DOPs). Within this scheme, the probability models that

characterize the search space of the changing environment

are stored and retrieved to adapt EDAs according to

environmental changes. A diversity loss correction scheme

and a boundary correction scheme are combined to coun-

teract the diversity loss during the static evolutionary

process of each environment. Experimental results show

the validity of the EI-MMS and indicate that the EI-MMS

can be applied to any binary-coded EDAs. In comparison

with three state-of-the-art algorithms, the univariate mar-

ginal distribution algorithm (UMDA) using the EI-MMS

performs better when solving three decomposable DOPs.

In order to understand the EI-MMS more deeply, the sen-

sitivity analysis of parameters is also carried out in this

paper.
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1 Introduction

In the real world, optimization problems are usually

time-varying and it is very important to get the optimum

in a short and acceptable time. Many researchers have

contributed to this challenging issue of solving dynamic

optimization problems (DOPs). Evolutionary algorithms

(EAs) are inspired by the evolutionary process in nature.

From the evolutionism point of view, the nature process

simulated by EAs is changing, random, and uncertain in

itself. Therefore, it is very reasonable to use EAs to

solve DOPs. The simplest way to react to an environ-

mental change is to regard each change as the arrival of

a new optimization problem, and solve it from scratch.

However, the time between every two environmental

changes is usually rather short in most DOPs. Hence, the

restart approach cannot satisfy most of real-world DOPs.

In recent years, researchers have developed many

methods to maintain a sufficient diversity level for EAs

to continuously adapt to the changing landscape. They

can be classified into four categories (Jin and Branke

2005): (1) generating diversity after a change, such as

the hyper-mutation method (Cobb 1990); (2) maintaining

the diversity throughout the run, such as the random

immigrants (Grefenstette and Fitzpatrick 1992), sharing

or crowding mechanisms (Cedeno and Vemuri 1997),

and the thermodynamical genetic algorithm (GA) (Mori

et al. 1996); (3) memory-based approaches (Branke

1999), and (4) multi-population approaches, such as the
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self-organizing scouts GA (Branke et al. 2000), the

multi-national GA (Ursem 2000), and the shift balance

GA (Wineberg and Oppacher 2000). Comprehensive

surveys on EAs applied to dynamic environments can be

found in (Branke 2001; Jin and Branke 2005; Morrison

2004).

The essence of DOPs is to search the optimum in the

solution space dynamically. For such a dynamic process,

the historic information generated in the previous search

process is very useful. An intuitional method is to store the

high-performance historic solutions and reuse them later so

as to improve the search process. But this method involves

a large memory space and a complex memory management

scheme. Estimation of distribution algorithms (EDAs) are a

class of probability model based EAs, where the processes

of learning and sampling the probability model replace the

genetic operations (e.g., crossover and mutation) in con-

ventional GAs. A probability model indicates the joint

probability distribution of high-performance solutions.

That is, it characterizes the set of good solutions. If the

historic information could be stored as probability models,

we would not only save the memory space but also sim-

plify the memory management scheme. Consequently,

EDAs are suitable for being extended to be memory-

enhanced EAs to solve DOPs.

To this end, an environment identification-based

memory management scheme (EI-MMS) is proposed in

this paper. Within this scheme, a probability model is

regarded as the learning result of the probability distri-

bution of high-performance solutions in an environment.

A probability model together with the best individual in

the solutions from which the probability model is learnt

are stored as a memory element. In order to retrieve the

memory elements in EI-MMS, an environment identifi-

cation method is proposed to select the suitable element

according to a special environment. The EI-MMS can be

used to extend any binary-encoded static EDA to its

dynamic version and we name the corresponding algo-

rithm as EDA with environment identification based

memory scheme (EI-MEDA).

Considering the fact that the diversity of conventional

EDAs will loss gradually while the learning and sampling

processes of the probability models are executed alter-

nately, in this paper, the reason to diversity loss is briefly

analyzed and an effective diversity compensation method

is introduced into EI-MEDA to enhance its performance in

dynamic environments.

The rest of this paper is organized as follows. Section 2

presents the description of the proposed EI-MEDA. In

Sect. 3, the diversity loss reason is first analyzed and some

diversity loss counteracting methods are then introduced

into EI-MEDA. Section 4 presents the experimental results

and analysis. Finally, conclusions are drawn in Sect. 5.

2 Description of the EI-MEDA

In this section, we present the details about the EI-MEDA.

Any static binary-coded EDA can be extended to its cor-

responding EI-MEDA using EI-MMS. From this point of

view, an EI-MEDA is composed of two main parts: the

basic EDA and EI-MMS. The former aims at searching

optimum in each environment and the latter aims at

adapting to the environment changes.

2.1 Introduction of EDAs

The concept of EDAs was firstly proposed in 1996 (Müh-

lenbein and Paaß 1996). In an EDA, the probability dis-

tribution of high-performance solutions is estimated and is

used to generate new candidate solutions. There are five

main steps in EDAs: selection, learning, sampling,

replacement, and evaluation which is shown in Fig. 1. It

can be seen that the learning and sampling steps replace the

crossover and mutation operations in simple GAs.

2.2 The EI-MMS

This EI-MMS scheme uses additional memory and the

elements stored are the probability models learnt from

the population. Before giving the details, we assume that

the environmental changes are detectable. In all the

algorithms below, the environmental change is detected in

each generation by checking whether there is at least one

memory element whose evaluation value has changed.

In order to utilize the intervals between every two

environmental changes to learn a high-quality probability

model, EI-MEDA updates its memory just after the

Fig. 1 Pseudocode for EDAs
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environment changes. As shown in Fig. 2, the whole

dynamic optimization process is divided into many static

optimization processes. In each static process, EDA sear-

ches the optimum in its conventional way. When the eth

environment comes at generation t, EI-MMS manages its

memory M in three major steps. First, it stores the proba-

bility model obtained from the generation just before the

environmental change, i.e., PMðt � 1Þ; into the memory.

Then, it finds a memory element MðkeÞ (ke ¼ 1; 2; . . .;m)

which best fits the new environment to retrieve using an

environment identification method. Finally, the probability

model of this memory element, i.e., mPMðkeÞ; is sampled

to generate the first generation of population in the new

environment.

2.3 The environment identification method

The environment identification method is very important

due to its role of linking between the memory and the

dynamic environment. A key aspect of EI-MMS is to find

the suitable memory element to retrieve according to the

new environment. An intuitive way of achieving this is to

consider the average fitness of the solutions sampled from a

special element. Considering the computational complexity

and the accuracy, we propose a samples averaging plus best

individual (SA ? BI) method to evaluate the elements in

the memory and select the suitable one.

2.3.1 The samples averaging (SA) method

The idea of this method is to evaluate a memory element

by averaging the fitness of solutions sampled from it. For

each memory element M(k) (k ¼ 1; . . .;m), NS solutions are

sampled from it and the average fitness of these sampled

solutions is calculated in the current environment as the

evaluation value of M(k) as follows.

fMðkÞ ¼
1

NS

XNS

i¼1

f k
indðiÞ ð1Þ

where f k
indðiÞ denotes the fitness of the ith solution sampled

from the probability model, i.e. mPM(k) of M(k). This

method is the most intuitive way to evaluate a memory

element but its computational complexity is high.

2.3.2 The best individual (BI) method

In this method, each memory element consists of two parts:

a probability model and the best individual of the popula-

tion from which the probability model is learnt. Here,

we denote the memory element by MðkÞ ¼ hBMðkÞ;
mPMðkÞi ðk ¼ 1; 2; . . .;mÞ; where BM(k) denotes the best

individual. The evaluation of the memory element M(k) is

defined as follows:

fMðkÞ ¼ f ðBMðkÞÞ ð2Þ

where f(BM(k)) denotes the fitness of BM(k) in the current

environment. This method is similar to the method used in

(Yang 2005b, 2006).

In contrast with the SA method, the accuracy is sacri-

ficed for the sake of the computational complexity. The BI

method uses the fitness of the best individual to evaluate

the probability model learning from a set of individuals.

This may lead to inaccuracy. For example, it is impossible

to differentiate two elements when the fitness of their best

individuals is equal.

2.3.3 The SA ? BI method

In order to balance the accuracy and the computational

complexity, we combine the above two methods, resulting

in the SA ? BI method. For comparing two memory ele-

ments, if the fitness of the best individuals are different, the

BI method is applied; otherwise, the SA method is applied

to differentiate the memory elements. Figure 3 shows how

to select a memory element with the SA ? BI method,

where a maximization problem is assumed. The pseudo-

code of the proposed EI-MEDA with the SA ? BI method

is shown in Fig. 4, where Npop denotes the population size

and ps denotes the truncation selection rate (i.e., for each

generation, the ps � Npop best samples generated from the

current model PM(t) are selected to build up the model

PMðt þ 1Þ for the next generation).

3 Diversity loss and counteracting methods

The conventional EDA is likely to search the space where

it has visited, just like the GA without a mutation opera-

tion. When the probability distribution of a decision vari-

able is close to 1 or 0, it is difficult to change its value

anymore. This is the so-called fixed-point problem and it

may mislead the search process to a local optimum. Some

researchers have contributed to this challenge (Branke

et al. 2007; Shapiro 2003, 2005, 2006).

mPM(ke-2)

Memory

e Environment

ED DA EDA

Retrieve

Update
Environment 
Identification

mPM(ke-3)

PM(t-1)
mPM(ke-1)
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PM(t-1) PM(t-1)

Fig. 2 Illustration of the EI-MMS
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3.1 The reason to the diversity loss

It is well known that the variance of a sample of size N has

an expected value of r2ð1� 1=NÞ where r2 is the variance

in the parent distribution. Most EDAs do not compensate

for this. When the new probability model is produced, it

attempts to model the new population, and therefore, has a

reduced variance. When this is iterated repeatedly, the

variance of the sampled population gets smaller and

smaller and decays to zero. The probability model evolves

to one which can only generate identical configurations. In

Shapiro (2005) analyzed the dynamics of EDAs in terms of

Markov chains and declared that the general EDAs cannot

satisfy two necessary conditions for being effective search

algorithms. Hence, we must counteract the diversity loss to

improve the efficiency of an EDA.

3.2 Basic diversity compensation methods

As mentioned above, EI-MMS is in fact a diversity main-

taining method according to the environmental changes. It

is also important to counteract the diversity loss in static

EDA which searches the optimum in each environment.

Here, we introduce some basic diversity compensation

methods for binary EDAs. According to the experimental

study in Branke et al. (2007), the method that combines the

loss correction and boundary correction methods, denoted

LC ? BC in this paper, is outstanding to counteract the

diversity loss. Hence, we use the LC ? BC method as

the basic diversity compensation method in EI-MEDA. The

details are given below and the experimental results are

shown in the next section.

3.2.1 The loss correction (LC) method

Let l be the length of a chromosome and ciði ¼ 1; . . .; lÞ be

the probability that the allele of the ith gene is equal to 1, ci

is transformed to c0i to counteract the diversity loss as

follows:

c0i ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4ð1�ciÞ=Ls

p
2

; ci� 1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� LS

p
Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4ð1�ciÞ=Ls

p
2

; ci� 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� LS

p
Þ

0:5; otherwise

8
>><

>>:
ð3Þ

where LS ¼ ps�Npop�1

ps�Npop�ps
:

3.2.2 The boundary correction (BC) method

For the BC method, ci is transformed to c0i to counteract the

diversity loss as follows:

c0i ¼
b; ci\b
1� b; ci [ 1� b
ci; otherwise

8
<

: ð4Þ

where b is a preset parameter to prevent the distribution

from converging to 1 or 0. To guarantee the minimal

diversity level, b is set to 1/l in this paper unless stated

otherwise.

Fig. 3 Pseudocode for the SA ? BI method

Fig. 4 Pseudocode for the proposed EI-MEDA
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3.2.3 The LC ? BC method

For the LC ? BC method, LC and BC are applied in turn.

In other words, LC is first applied to ci; then the resulting c0i
is taken as the input to the BC method. As shown in

Fig. 5a, at the beginning of the searching process, i.e., ci is

close to 0.5, the effect of LC is the strongest because it

always returns ci to 0.5. At the early searching stage, this

effect that LC counteracts ci from evolving towards 0 or 1

enables the population search more widely in the solution

space. But, LC cannot prevent the population from con-

verging because it does not guarantee the minimal diversity

level. On contrast, as shown in Fig. 5b, BC can prevent a

distribution from converging by forcing the distribution

with a minimal diversity level. Therefore, the combination

of LC and BC, as shown in Fig. 5c, cannot only enable the

algorithm to search widely but also prevent the population

from converging when the distributions are close to their

extreme value, i.e., 0 or 1.

4 Experimental study

4.1 Dynamic test environments and measurement

Here, we present a bitwise exclusive-or (XOR) DOP gen-

erator, which was first proposed in Yang (2003) and Yang

and Yao (2005) and then finalized in Yang (2005a) and

Yang and Yao (2008). This DOP generator can construct

three types of dynamic environment (cyclic, cyclic with

noise, and random environment) from any binary-encoded

function f ðxÞ; x 2 f0; 1gl
by an XOR operator. For each

environmental period k, a XORing mask MðkÞ is incre-

mentally generated as follows:

MðkÞ ¼Mðk � 1Þ � TðkÞ ð5Þ

where ‘‘�’’ is the XOR operator and TðkÞ is an interme-

diate binary template randomly created with q� l ones for

the environmental period k. With this DOP generator, the

random environment can be constructed. The parameter q
controls the severity of the environmental changes while s
controls the change speed. It is worth noting that the

environment changes at every s fitness evaluations in this

paper. This is different from Yang and Yao (2005, 2008),

where the environment changes every s generations.

With the DOP generator, cyclic dynamic environments

are constructed as follows. First, we can generate 2K

XORing masks as the base states in the search space ran-

domly (see Yang 2005a; Yang and Yao 2005 for details).

Then, the environment can cycle among these base states in

a fixed logical ring. Furthermore, for constructing cyclic

with noise environment, each time the XORing mask MðkÞ
moves to the next state after bitwise flipping with a small

probability pn; called the noise rate in this paper. For the

first period k ¼ 1; Mð1Þ is set to a zero vector. Then, the

population at generation t is evaluated as follows:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

0 0.2 0.4 0.6 0.8 1
γ

0 0.2 0.4 0.6 0.8 1
γ

γ
′

None
LC

(a)

γ
′

None
BC

(b)

γ
′

None
LC+BC

(c)

Fig. 5 The effect of LC, BC, and LC ? BC on c0; assuming Npop ¼
20; b ¼ 0:05; and ps ¼ 0:5: a LC, b BC, c LC ? BC
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f ðx; teÞ ¼ f ðx�MðkÞÞ ð6Þ

where te is the fitness evaluation number and k ¼ dte=se is

the environmental period index.

In order to measure the performance of algorithms, the

collective mean fitness (Morrison and De Jong 1999) is

used in this paper. This measurement calculates the

average of the best-of-generation fitness across the whole

generations. Suppose each experiment is performed NE

times independently with the same experimental settings,

the collective mean fitness ðFCMFÞ is formulated as

follows:

FCMF ¼
1

G

XG

i¼1

1

NE

XNE

j¼1

FBOGði; jÞ
 !

ð7Þ

where G is the total generation number and Ne denotes the

quantity of the environment periods in each run and

FBOGði; jÞ denotes the best-of-generation fitness of the ith

generation in the jth run.

In order to understand the effect of memory scheme and

diversity compensation measures on the population diver-

sity during the running of an algorithm, we also recorded

the diversity of the population every generation. The

diversity of the population at time t in the kth run of an

algorithm on a DOP is defined as

Divðk; tÞ ¼ 1

l� NpopðNpop � 1Þ
XNpop

i¼1

XNpop

j6¼i

HDði; jÞ ð8Þ

where l is the encoding length, Npop is the population size,

and HDði; jÞ is the Hamming distance between the ith and

jth individual in the population. The mean population

diversity of an algorithm on a DOP at time t over NE runs is

calculated as follows:

Divðk; tÞ ¼ 1

NE

XNE

k¼1

Divðk; tÞ ð9Þ

4.2 Test functions

Decomposable unitation-based functions (DUFs), such as

trap and deceptive functions, have been widely studied in

the EA community in the attempt to understand what

constructs difficult problems for EAs, especially for GAs

(Goldberg 2002). In this paper, in order to analyze the

performance of investigated algorithms in dynamic envi-

ronments, three DUFs (denoted DUF1, DUF2, and DUF3)

are selected as the stationary test functions. Each DUF

consists of 25 copies of 4-bit building blocks and each

building block contributes a maximum value of 4 to the

total fitness, as shown in Fig. 6. The building block of the

three DUFs are defined in Eqs. (10), (11), and (12),

respectively.

fDUF1ðxÞ ¼ uðxÞ ð10Þ

fDUF2ðxÞ ¼
4; if uðxÞ ¼ 4;
2; if uðxÞ ¼ 3;
0; otherwise

8
<

: ð11Þ

fDUF3ðxÞ ¼
3� uðxÞ; if uðxÞ\4;
4; otherwise

�
ð12Þ

where u(x) denotes the number of ones in a building block.

DUF1 is, in fact, the OneMax function, which aims to

maximize the number of ones in a chromosome. OneMax

functions are usually taken as easy functions for EAs. For

DUF2, in the search space of the 4-bit building block, the

unique optimal solution is surrounded by only four sub-

optimal solutions, while all the other 11 solutions form a

wide plateau with zero fitness. The existence of this wide

gap makes it much more difficultly for EAs to search on

DUF2 than on DUF1. DUF3 is a fully deceptive function

(Goldberg 2002). Fully deceptive functions are usually

considered hard problems for EAs because the low-order

building blocks inside the functions do not combine to

form the higher order optimal building block: instead they

combine into deceptive sub-optimal building blocks

(Whitley 1991). Generally, the three DUFs form an

increasing difficulty for EAs in the order from DUF1 to

DUF2 to DUF3.

In this paper, the dynamic test problems are constructed

by applying the XOR DOP generator to the three DUFs and

the corresponding dynamic DUFs are denoted DDUF1,

DDUF2, and DDUF3, respectively.

4.3 Experimental results and analysis

In this section, we present the results of four groups of

experiments. The first group of experiments shows the

validity of EI-MEDA by comparing it with EDAs without

the environment identification based memory method. The

second group of experiments compares the performance of

EI-MEDA with some state-of-the-art algorithms for DOPs.

Fig. 6 The building block of the three DUFs
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The third group of experiments aims to show that EI-

MEDA can fit for any binary-coded EDAs. Finally, in order

to deeply understand the proposed EI-MEDA, the sensi-

tivity analysis of the effect of key parameters in EI-MEDA

is also carried out in the fourth group of experiments.

In the experiments, some common settings are given as

follows. Each algorithm was run 50 times in each experi-

ment (i.e., NE ¼ 50). The total number of environmental

changes Ne was set to 200. The dimension of each DDUF is

100 (i.e., each DDUF is encoded with 100 bit binary

strings). The memory size m was set to 20 and the trun-

cation selection rate ps was set to 0.5.

4.3.1 Validation of EI-MEDA

The purpose of this group of experiments is to verify the

validity of EI-MEDA. In EI-MEDA, the LC ? BC and EI-

MMS schemes work together to maintain the population

diversity. The former works when the algorithm searches in

a static environment while the latter works to respond to an

environmental change. From this point of view, we com-

pare EI-MEDA with several variants of EDAs, using the

univariate marginal distribution algorithm (UMDA)

(Mühlenbein and Paaß 1996) as an example EDA. We

compare the following four algorithms: the original UMDA

(denoted by UMDA), UMDA with LC ? BC [denoted by

UMDA(LC ? BC)], UMDA with both EI-MMS and

LC ? BC (i.e., EI-MUMDA), UMDA with restart method

(denoted by RUMDA), and UMDA with restart and

LC ? BC methods [denoted by RUMDA(LC ? BC)]. The

parameters are set as follows: s ¼ 1;000; q ¼ 0:2; pn ¼
0:01; and Npop ¼ 100:

Table 1 shows the performance of each algorithm. From

Table 1, it can be seen that by introducing LC ? BC into

the conventional UMDA, the performance of the algorithm

UMDA(LC ? BC) is enhanced a lot since the population

diversity loss is compensated in each generation. In addi-

tion, if the EI-MMS scheme which reacts to environmental

changes is applied to reuse memory information, the per-

formance of the algorithm can be further enhanced.

Therefore, it is obvious that no matter how the environment

changes, EI-MUMDA benefits from both LC ? BC and

EI-MMS and performs the best on all DDUFs.

In contrast to EI-MUMDA, the algorithms that use the

restart method [RUMDA and RUMDA(LC ? BC)] com-

pensate the population diversity in a totally blind way and

hence, their performance is worse. Since RUMDA and

RUMDA(LC ? BC) do not use any historic information

and restart from scratch when the environment changes,

their performance is not greatly affected by the environ-

mental dynamics type (i.e., cyclic, cyclic with noise, or

random).

Another noticeable result is that although both the restart

and LC ? BC schemes improve the performance of

UMDA [i.e., both RUMDA and UMDA(LC ? BC) beats

UMDA], it is not good to use them together in UMDA [i.e.,

the performance of RUMDA(LC ? BC) is worse than both

RUMDA and UMDA(LC ? BC)]. This happens because

the effect of enhancing the diversity level by the restart and

LC ? BC schemes may be too strong for RUM-

DA(LC ? BC) to perform efficient search in a new

environment.

Figure 7 shows the average dynamic population diver-

sity of four algorithms in the first 100� 100 fitness eval-

uations (i.e. ten environmental changes). From Fig. 7, it

can be seen that UMDA poorly maintains its population

diversity and can not adapt for the environmental changes.

UMDA(LC ? BC) can maintain its population diversity at

a minimal diversity level using the LC ? BC method. In

each generation, at least 1=l� Npop individuals are ran-

domly generated by the LC ? BC method. When the

environment changes, the population has to converge to the

new optimum using the learning and sampling operations

of the conventional UMDA. This leads to the small

fluctuations in the population diversity level of

UMDA(LC ? BC).

Table 1 The FCMF value of UMDA, UMDA(LC ? BC), EI-MUMDA, RUMDA, and RUMDA(LC ? BC) over 50 runs on DDUFs in three

types of dynamic environments

DDUF Environmental type UMDA UMDA(LC ? BC) EI-MUMDA RUMDA RUMDA(LC ? BC)

DDUF1 Cyclic 72.52 92.92 98.25 87.59 86.16

Cyclic with noise 57.93 92.46 95.25 87.62 86.15

Random 50.64 89.20 89.23 87.60 86.13

DDUF2 Cyclic 52.14 86.01 96.39 73.97 71.02

Cyclic with noise 29.09 85.07 89.74 73.90 70.95

Random 19.24 76.67 76.91 73.95 71.00

DDUF3 Cyclic 51.45 69.37 77.09 54.78 53.32

Cyclic with noise 38.06 70.82 72.75 54.70 53.34

Random 33.04 66.02 66.18 54.76 53.38

Environment identification-based memory scheme for EDAs in dynamic environments
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The LC ? BC method is originally designed for com-

pensating diversity in static environment and is lack of

efficiency to track the moving optimum. If the information

in the past optimization process could be used to infer the

distribution of the new optimum and the population could

be heuristically generated, the efficiency of dynamic opti-

mization would be enhanced greatly.

According to this idea, EI-MUMDA stores the past

probability models and reuse them to generate the initial

population in a new environment. In the environment with

cyclic or cyclic with noise environments, a probability

model in the memory will be refined if it is retrieved back. In

addition, by using the environment identification, the initial

population in an environment can be generated around the

possible optimum according to the memory. This is more

efficient than the conventional evolutionary operators.

From the first two rows in Fig. 7, it can be seen that the

diversity level of EI-MUMDA is lower and more smooth

than that of UMDA(LC ? BC). In the randomly changing

environment, from the bottom row of Fig. 7, it can be seen

that the diversity level curves of EI-MUMDA and

UMDA(LC ? BC) overlap with each other. This is

because the memory in EI-MUMDA can not refine its

elements (probability models) properly due to the ran-

domly changing environment. Therefore, one can say that

EI-MEDA performs well in dynamic environments, espe-

cially in dynamic environments with cyclic characteristic.

As for RUMDA and RUMDA(LC ? BC), although the

restart method enables the original UMDA to react to

environmental changes, these two algorithms are still

defeated by EI-MUMDA. Because the restart method

compensates population diversity in a blind and random

way. As shown in Fig. 7, when environment changes (at

every 1,000 fitness evaluations), the population is regen-

erated randomly and the diversity level goes up to about

0.5. In such a blind diversity compensation way, no useful

information can be used to guide the population to track the

optimum.

Fig. 7 The average dynamic population diversity of algorithms over

50 runs in the first 100� 100 fitness evaluations on DDUF1 (left
column), DDUF2 (middle column), and DDUF3 (right column) in

three types of environments: cyclic environment (top row), cyclic

environment with noise (middle row), and random environment

(bottom row)
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4.3.2 Comparison with the state-of-the-art algorithms

In this group of experiments, we compare EI-MUMDA

with the following three algorithms: memory enhanced

population-based incremental learning algorithm (MPBIL)

(Yang 2005b), MPBIL with two populations and restart

scheme (MPBIL2r) (Yang and Yao 2008), and random

immigrants GA (RIGA) (Grefenstette and Fitzpatrick

1992). For MPBIL, an explicit memory is applied, which is

randomly initialized and regularly updated. For MPBIL2r,

a second population with restart method is added based on

MPBIL. The population sizes of the two populations in

MPBIL2r are adjustable according to their performance.

When the environment changes, the first population sear-

ches associated with the memory while the second popu-

lation searches from scratch. For RIGA, it differs from

standard GA only in that in each generation, a set of worst

individuals in the population are replaced by random

immigrants. In the following experiments, the learning rate

and memory size for MPBIL and MPBIL2r were set to 0.25

and 20, respectively. The crossover probability, mutation

probability, and immigrant rate for RIGA were set to 0.6,

0.1, and 0.1, respectively. The population size of each

algorithm was set to 100.

Figure 8 plots the performance (FCMF) of each algorithm

over 50 runs on different DDUFs, and the Wilcoxon rank

sum test results of comparing EI-MUMDA with MPBIL,

MPBIL2r, and RIGA are presented in Table 2, where

‘‘ ? ’’, ‘‘ - ’’, or ‘‘*’’ mean that the first algorithm is

significantly better than, significantly worse than, or sta-

tistically equivalent to the second algorithm, respectively.

The sample size and significant level of the Wilcoxon rank

sum test are 50 and 0.05, respectively.

From the experimental results in Fig. 8 and Table 2, it

can be seen that EI-MUMDA performs significantly better

than RIGA and defeats MPBIL and MPBIL2r in most sit-

uations. The main reason lies in that EI-MUMDA updates

its memory when an environmental change takes place. In

this way, the probability models stored in the memory are

improved as far as possible during two environmental

changes. High-quality probability models can characterize

the environments better and more likely represent the

probability distribution of the optimum. As a result, saving

and retrieving these high-quality probability models enable

algorithms to track the optimum better.

4.3.3 Testing the effect of EI-MMS for binary-coded EDAs

In order to verify that the EI-MMS scheme can work

effectively for binary-coded EDAs, we apply EI-MMS to

the binary-coded UMDA and Bayesian optimization algo-

rithm (BOA) (Pelikan 2002), respectively. The former is

the simplest EDA, where the decision variables are

independent to each other. In contrast, the latter is a

complex EDA, where the relationships between the deci-

sion variables are modelled by a Bayesian network. The

corresponding algorithms are denoted by EI-MUMDA and

EI-MBOA respectively. Here, EI-MUMDA is compared

with restart UMDA (RUMDA) and EI-MOBA is compared

with restart BOA (RBOA) on DDUF2. In all of the above

four algorithms, the LC ? BC scheme is also used to

compensate the diversity loss in the population. The rele-

vant parameters were set as follows: the population size

Npop ¼ 100; s ¼ 1;000; q ¼ 0:2; and pn ¼ 0:01:

Figure 9 shows the best fitness obtained by each algo-

rithm in the first 50 environments. It can be seen that EI-

MUMDA and EI-MBOA outperform RUMDA and RBOA

respectively in all situations. This means that EI-MMS

works effectively for both simple and complex binary-

coded EDAs.

In addition, from Fig. 9 it can be seen that the variation

of the performance of EI-MMS enhanced algorithms (EI-

MUMDA and EI-MBOA) in each environment is affected

by the environment type. The performance variation is

small when the environment changes cyclically. When

noise is added into the cyclic environment, the perfor-

mance variation goes larger. The performance changes

violently, e.g., the performance of restart algorithms

(RUMDA and RBOA), in the random environment. The

reason is that in a cyclic environment EI-MMS can perform

very well to guide the EDA and reduce the blindness when

a new environment comes. This is good for reducing the

performance variation. When noise is added into the cyclic

environment or the environment changes randomly, it

becomes more difficult to correctly retrieve and update the

memory. The inaccurate memory management increases

the variation of the performance of EI-MUMDA and EI-

MBOA.

4.3.4 Sensitivity analysis on the effect of parameters

In order to further understand EI-MEDA, in this group of

experiments, we perform the sensitivity analysis of the

effect of key parameters, including the environmental

dynamics parameters, population size, and memory size, on

the performance of EI-MEDA in dynamic environments.

EI-MUMDA and RUMDA were used as example EDAs

and, in order to draw some fair and general conclusions, the

DDUF1 function was used as the test function in this group

of experiments.

4.3.4.1 Effect of the environmental change speed First,

we investigate how the environmental parameter s affects

the performance of EI-MEDA in the environments with

different values of q. Table 3 presents the comparison

between EI-MUMDA and RUMDA. Each element in the
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table is the average performance difference between EI-

MUMDA and RUMDA, i.e., FCMFðEI�MUMDAÞ �
FCMFðRUMDAÞ; over 50 runs. Figure 10 shows the FCMF

value of EI-MUMDA under the environments with dif-

ferent s and q. In the experiments, the population size Npop

was set to 100 and the noise rate pn was set to 0.01.

From Fig. 10, it can be seen that the slower the envi-

ronment changes (i.e., the larger the value of s), the better

EI-MUMDA can track the optimum dynamically. This is

because a slowly changing environment involves a long

static period between every two changes. Hence, EI-

MUMDA can perform a better search during the static

period and a memory element can be correctly selected

according to the new environment.

As shown in Table 3, in the environments with cyclic

characteristic (i.e., cyclic and cyclic with noise), the

advantage of EI-MUMDA is more significant while the

value of s decreases. This means that EI-MMS enhances

the algorithm to track the optimum more effectively in

comparison with the restart scheme, especially in fast

changing environments. For random environments, EI-

MUMDA still outperforms RUMDA in general but is

defeated when q is 0.5. The reason lies in that the envi-

ronment with q ¼ 0:5 is the most difficult to identify. If the

algorithm can not correctly select a suitable memory ele-

ment to retrieve, the new population sampled from it may

miss the possible optimum.

In other words, the inaccurate environment identifica-

tion may misguide the search in the new environment. This

can also be demonstrated by Fig. 10c where EI-MUMDA

performs the worst when the environmental dynamics

parameter q is 0.5. When q is less or more than 0.5, the

difficulty for environment identification is less. Extremely,

when the environment changes completely every time, i.e.,

q ¼ 1:0; the algorithm works well in a cyclic environment

of two complementary states.

Fig. 8 The FCMF values of EI-MUMDA, RIGA, MPBIL and

MPBIL2r over 50 runs on DDUF1 (left column), DDUF2 (middle
column), and DDUF3 (right column) in three types of environments:

cyclic environment (top row), cyclic environment with noise (middle
row), and random environment (bottom row)
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4.3.4.2 Effect of the noise rate pn Second, we analyze

how the noise rate pn affects the performance of EI-

MUMDA in dynamic environments. The parameters Npop

and s were set to 100 and 1,000 respectively in the fol-

lowing experiments. Figure 11 shows FCMFðEI�MUMDAÞ
in the dynamic environments with different pn and q.

Table 4 gives the comparison results between EI-MUMDA

and RUMDA.

From Fig. 11, it can be observed that the performance of

EI-MUMDA becomes better while the noise rate goes

down. This reveals that noise is harmful for the algorithm.

This is because noise makes the environment unable to

return its previous base state exactly and hence no memory

element can match a new environment exactly. In the XOR

DOP generator (Yang 2005a; Yang and Yao 2008), for a

cyclic with noise environment, before the problem moves

Table 2 The Wilcoxon rank sum test results of comparing EI-MUMDA with MPBIL, MPBIL2r, and RIGA on DDUFs in different environ-

ments, where ‘‘ ? ’’ means significantly better, ‘‘ - ’’ means significantly worse, and ‘‘*’’ means statistically equivalent

q

DDUF1 DDUF2 DDUF3

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Cyclic environment

EI-MUMDA versus MPBIL * * ? ? ? ? ? ? ? ? ? ?

EI-MUMDA versus MPBIL2r * * ? ? ? ? ? ? ? ? ? ?

EI-MUMDA versus RIGA ? ? ? ? ? ? ? ? ? ? ? ?

Cyclic environment with noise

EI-MUMDA versus MPBIL * * ? ? ? ? ? ? ? ? ? ?

EI-MUMDA versus MPBIL2r ? * ? ? ? ? ? ? ? ? ? ?

EI-MUMDA versus RIGA ? ? ? ? ? ? ? ? ? ? ? ?

Random environment

EI-MUMDA versus MPBIL - - ? - ? ? ? ? ? ? ? -

EI-MUMDA versus MPBIL2r - - ? - ? ? ? ? ? ? ? -

EI-MUMDA versus RIGA ? ? ? ? ? ? ? ? ? ? ? ?

Fig. 9 The average best fitness of EI-MUMDA, EI-MBOA, RUMDA and RBOA in the first 50 environments over 50 runs on DDUF2 in cyclic

environment (left column), cyclic environment with noise (middle column), and random environment (right column)
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to a next environment, noise is added to an initial XORing

mask that represents the base state of the new environment.

This weakens the cyclic characteristic of the dynamic

environment and hence is not good for the EI-MMS.

Therefore, the larger the noise rate, the less likely that a

memory element matches a new environment.

Observing the plots in Fig. 11 regarding q ¼ 0:1; 0.5, and

1.0, EI-MUMDA performs better when the environmental

change severity increases. The main reason is that the

environmental change severity can offset the harmful effect

caused by noise. Suppose the kth memory element is rele-

vant to the new environment and its evaluation value should

be the highest one. When q is large enough or pn is relatively

small, the fluctuation of the evaluation of the elements

caused by the noise is slight in relative to the severity of

environmental changes. Such slight fluctuation cannot affect

the environment identification result much. This is demon-

strated in Fig. 12a, where the current evaluation values

(dashed line) of the elements are around the values accord-

ing to the initial XORing mask (solid line). When q1 is large

enough in relative to pn; the evaluation value of the proper

element is still significantly higher than others and a correct

environment identification can still be made.

However, when the environmental change severity is not

large enough, the harmful influence caused by noise may

not be effectively offset. In this condition, a larger envi-

ronmental change severity makes the algorithm perform

even worse. This is shown in Fig. 11 where the perfor-

mance decreases when q changes from 0.1 to 0.2. This can

be explained by Fig. 12b, when q2 is not large enough, the

proper element is confused with other elements due to the

evaluation fluctuation. If the memory element can not be

selected correctly, a larger environmental change severity

means a larger gap between the optimum and the sampled

population.

Besides, it can be seen from Table 4 that the advantage

of EI-MUMDA over RUMDA decreases while the envi-

ronmental noise rate rises. This reveals the fact that

Table 3 The average difference of the FCMF values between EI-

MUMDA and RUMDA over 50 runs in three types of environments

with different s and q

q

0.1 0.2 0.5 1.0

Cyclic environment

s ¼ 200 30.55 30.29 28.88 29.94

s ¼ 500 23.26 22.53 22.86 22.98

s ¼ 1;000 12.96 12.37 13.15 13.17

s ¼ 2;000 16.15 5.67 6.21 6.27

Cyclic environment with noise

s ¼ 200 23.00 20.44 20.95 21.65

s ¼ 500 20.61 17.99 20.86 22.07

s ¼ 1;000 11.28 8.92 12.33 12.83

s ¼ 2;000 5.21 3.71 5.99 6.09

Random environment

s ¼ 200 4.26 -0.06 -1.85 29.76

s ¼ 500 12.73 2.59 -5.78 23.01

s ¼ 1;000 9.67 2.86 -8.94 13.19

s ¼ 2;000 4.73 1.66 -7.07 6.27

(a) Cyclic environment

(b) Cyclic environment with noise

(c) Random environment

Fig. 10 The FCMF value of EI-MUMDA over 50 runs in three types

of environments with different s and q
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EI-MUMDA is more sensitive to the environmental noise

than RUMDA. Nevertheless, EI-MUMDA still outper-

forms RUMDA in all situations. That is, the EI-MMS still

effectively enhances EI-MUMDA to react to environmen-

tal changes.

4.3.4.3 Effect of the population size This set of experi-

ments was performed to analyze the sensitivity of the effect

of the population size to the performance of EI-MUMDA.

The environmental dynamics parameters were set as fol-

lows: s ¼ 1;000 and pn ¼ 0:01:

Figure 13 shows that in most situations EI-MUMDA

performs worse when its population size increases. This is

because a larger population size means more fitness eval-

uations in each generation. Therefore, within the same

number of fitness evaluations, a smaller population will

evolve more generations and the probability model will be

Fig. 11 The FCMF value of EI-MUMDA over 50 runs in cyclic

environments with noise with different pn and q

Table 4 The average difference of FCMF values between EI-MUM-

DA and RUMDA over 50 runs in cyclic environments with noise with

different pn and q

q

0.1 0.2 0.5 1.0

pn ¼ 0:01 11.25 8.71 12.32 12.80

pn ¼ 0:02 10.59 7.77 11.92 12.19

pn ¼ 0:05 8.64 5.70 9.21 9.43

pn ¼ 0:1 5.65 2.34 3.83 3.89

Memory elememts

Memory elememts

(a)

(b)

1

2 2

M(k+1)M(k)M(k-1)

Evaluation value according 
to the initial XORing mask.

Current
evaluation value.

M(k-1) M(k) M(k+1)

1

The most suitable 
element.

Fig. 12 Illustration of how q and pn affect the environment

identification: a q1 is relatively large enough to offset the noise, b
q2 is not relatively large enough to offset the noise

Fig. 13 The FCMF value of EI-MUMDA over 50 runs in three types

of environments with different Npop and q
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refined more times. This enables the EI-MMS to draw a

better memory element from the corresponding environ-

ment and react to environmental changes better.

Table 5 shows the comparison between EI-MUMDA

and RUMDA. It can be seen that, in most situations, the

advantage of EI-MUMDA over RUMDA becomes more

significant while the population size rises. This means that

the heuristic effect of EI-MMS is important for the algo-

rithm to react to the changing environment. When the

computational burden for evolving the population is heavy,

the EI-MMS is more effective than the restart method to

help the algorithm track the changing optimum.

4.3.4.4 Effect of the memory size Finally, we investigate

how the memory size affects the performance of EI-

MEDA. The following experiments were carried out to test

the performance of EI-MUMDA with different memory

sizes m 2 f5; 10; 20; 40g: Some other parameters were set

as follows: s ¼ 1;000; q ¼ 0:1; pn ¼ 0:01; and Npop ¼ 100:

Figure 14 shows the performance of EI-MUMDA with

different memory sizes in different environments on the

three DDUFs. It can be seen that in cyclic environments,

when the memory size m� 20; the performance of EI-

MUMDA improves as the value of m increases. However,

when m [ 20 (i.e., m ¼ 40), the performance of EI-

MUMDA does not change significantly. This is because in

this experiment, there are 20 (i.e., 2=q) intermediate binary

templates in the bitwise XOR DOP generator, which means

the environment re-cycles after it changes 20 times.

Therefore, the algorithm needs at most 20 memory ele-

ments to store the probability models obtained in each

environment. The redundant memory elements when m ¼
40 cannot significantly enhance the performance any more.

For the cyclic with noise environment, if pn is large or

the environmental change severity is small, the memory

elements may be close to each other. As a result, the

environment identification method cannot work properly.

For example, from Fig. 14, it can be seen that when the

environment is cyclic with noise, the memory size seems

not a sensitive parameter to affect the performance of EI-

MUMDA. In a similar way, a randomly changing envi-

ronment may also weaken the positive effect of memory.

Therefore, it can be seen from Fig. 14 that when the

Table 5 The average difference of FCMF values between EI-MUM-

DA and RUMDA over 50 runs in three types of environments with

different Npop and q

q

0.1 0.2 0.5 1.0

Cyclic environment

Npop ¼ 20 5.15 4.57 6.34 6.42

Npop ¼ 50 7.21 5.86 7.80 7.93

Npop ¼ 100 13.08 12.52 12.91 13.14

Npop ¼ 200 22.17 21.89 21.50 21.58

Cyclic environment with noise

Npop ¼ 20 4.79 3.01 5.77 6.10

Npop ¼ 50 6.07 3.73 7.40 7.64

Npop ¼ 100 11.40 8.69 12.28 12.84

Npop ¼ 200 19.90 17.96 18.99 20.83

Random environment

Npop ¼ 20 4.67 2.32 - 3.53 6.39

Npop ¼ 50 5.77 1.89 - 7.87 7.98

Npop ¼ 100 9.63 2.89 - 8.94 13.16

Npop ¼ 200 12.99 3.18 - 6.17 21.56

(a)

(b)

(c)

Fig. 14 The FCMF value of EI-MUMDA with different memory sizes

over 50 runs in different environments on a DDUF1, b DDUF2, and c
DDUF3
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environment changes randomly, the memory size does not

affect the performance of EI-MUMDA significantly.

In summary, several conclusions can be drawn from the

above experiments on the sensitivity analysis of parame-

ters: (1) a slowly changing environment is good for

EI-MEDA to track the moving optimum; (2) noise is a

negative factor for EI-MEDA and the severity of the

environmental changes can offset this factor to some

degree. If noise can be effectively offset, a severely

changing environment is good for the environment identi-

fication; otherwise, a large environmental change severity

may make the situation worse. (3) A large population needs

more computational effort to evolve and this degrades the

performance of EI-MEDA. Nevertheless, the EI-MMS

helps an EDA track dynamic optimum more effectively

than the restart method. (4) If the environment is easy to

identify and the memory size is smaller than 2=q; a large

memory size is positive to enhance the performance of

EI-MEDA; otherwise, the memory size may not affect the

performance of EI-MEDA significantly.

5 Conclusions

In this paper, an environment identification based memory

management scheme (EI-MMS) is proposed to enhance

the performance of binary-coded estimation of distribution

algorithms (EDAs) for dynamic optimization problems

(DOPs). In EDAs with the EI-MMS (i.e., EI-MEDA),

probability models are taken as memory elements due to

their ability to characterize each environment. When the

environment changes, the probability model generated in

the previous generation is stored. Then, a suitable element

in the memory is used to generate the initial population

that may be near the possible optimum in the new envi-

ronment. In order to retrieve a suitable memory element

which matches a new environment, an environment

identification method which combines the sample aver-

aging and best individual schemes is proposed in the EI-

MMS. Since the diversity of conventional EDAs will loss

gradually during the learning and sampling processes of

the probability models, an effective diversity compensa-

tion method which combines the loss correction and

boundary correction schemes is also introduced into EI-

MEDA to further enhance its performance in dynamic

environments.

In order to test the validity of the EI-MMS, several

groups of experiments have been carried out based on three

dynamic decomposable unitation-based functions (DDUFs)

in three types of environments. The experimental results

show that the EI-MMS is valid to improve the performance

of EDAs for DOPs and that EI-MEDA is suitable for any

binary EDAs to track moving optimum, especially in the

environments with cyclic characteristics (i.e., cyclic envi-

ronments and cyclic environments with noise). In the

experiments, EI-MEDA is also applied to the univariate

marginal distribution algorithm (UMDA) and the results

show its advantage over other three peer algorithms, i.e.,

the memory enhanced population-based incremental

learning algorithm (MPBIL) (Yang 2005a), MPBIL with

two populations and restart scheme (MPBIL2r) (Yang and

Yao 2008), and random immigrants GA (RIGA) (Gre-

fenstette and Fitzpatrick 1992), on most cases. In order to

understand the proposed method more deeply, the sensi-

tivity analysis on how the key parameters (such as the

environmental change speed and severity, the noise rate in

cyclic environments, the population size, and the memory

size) affect the performance of EI-MEDA has also been

carried out in this paper.

Generally, the experimental results indicate that the

proposed EI-MMS is efficient in enhancing the perfor-

mance of EDAs for DOPs and the corresponding EI-ME-

DAs are good choices for DOPs.
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