
A Sequence Based Genetic Algorithm with Local Search for
the Travelling Salesman Problem

Shakeel Arshad, Shengxiang Yang, and Changhe Li

Department of Computer Science
University of Leicester
Leicester LE1 7RH, UK

{ saa29, s.yang, ch160 }@mcs.le.ac.uk

Abstract

The standard Genetic Algorithm often
suffers from slow convergence for solv-
ing combinatorial optimization problems.
In this study, we present a sequence
based genetic algorithm (SBGA) for the
symmetric travelling salesman problem
(TSP). In our proposed method, a set
of sequences are extracted from the best
individuals, which are used to guide the
search of SBGA. Additionally, some pro-
cedures are applied to maintain the di-
versity by breaking the selected sequences
into sub tours if the best individual of
the population does not improve. SBGA
is compared with the inver-over opera-
tor, a state-of-the-art algorithm for the
TSP, on a set of benchmark TSPs. Ex-
perimental results show that the conver-
gence speed of SBGA is very promising
and much faster than that of the inver-
over algorithm and that SBGA achieves a
similar solution quality on all test TSPs.

1 Introduction

The travelling salesman problem (TSP) is a clas-
sic combinatorial optimization problem, which
has been extensively studied by numerous re-
searchers. For a TSP, a salesman needs to visit
each of a set of cities exactly once, completing a
tour by arriving at a city that is also the start
and travelling the minimum distance. More for-
mally, given N cities, the TSP requires to search
for a permutation, using a cost matrix C = [cij],
where cij denotes the cost (assumed to be known
by the salesmen) of travelling from city i to city
j, which minimizes the path length defined as:

f(π, C) =
N

∑

i=0

cπ(i),π(i+1)modN

where π(i) denotes the city at the i-th location
in the tour.

TSPs can be classified into different classes
according to the properties of the cost matrix.
A TSP is called symmetric if we have cij =
cji, ∀i, j; otherwise, it is referred to as asymmet-
ric. If the cities of a TSP lie in a metric space,
i.e., satisfying the triangle inequality, the TSP is
referred to as a metric TSP. Assuming that a city
i in a tour is marked by its position (xi, yi) in the
plane, and the cost matrix C contains the Eu-
clidean distance between the i-th and j-th city,
defined as follows:

cij =
√

(xi − xj)2 + (yi − yj)2

Then, the TSP is both symmetric and metric.
The search space of a TSP is giant, contain-

ing N! permutations, and the TSP was identified
by Garey et. al. [2] to be NP-hard. There are
many exact and approximation algorithms de-
veloped for solving TSPs. Since the TSP has
a variety of application areas, such as, vehi-
cle routing, robot control, crystallography, com-
puter wiring, and scheduling, etc and is a typ-
ical combinatorial optimization problem, it has
attracted the interest of the genetic algorithm
(GA) community [1].

In this paper, we propose a sequence based
genetic algorithm (SBGA) for solving the TSP.
SBGA uses a reverse approach of fragment as-
sembly in DNA sequencing. In DNA sequencing,
all possible base pairs of genome are putting to-
gether in pieces that match and the sequence
becomes bigger and bigger [11, 12]. In the pro-
posed reverse approach, first a set of best indi-
viduals are selected from the population. The
individuals are broken into equal size sub tours
that have the same number of cities. The sub
tour with the shortest length is selected, further
optimized by a 2-opt improver [10], and then
stored in a sequence set. This set of sequences
are further used to guide the crossover, muta-
tion and local search operators. A random se-
quence is selected from the set of sequences for
crossover, mutation and local search in every it-
eration. Similar work has been done by Ray in

[9], where the individual is broken into parts and
then reconnected in a random way.

The proposed SBGA is compared with the
inver-over algorithm [3], a state-of-the-art algo-
rithm for TSPs, on a set of benchmark TSPs.
Experimental results show that is superior to the
inver-over algorithm in terms of the convergence
speed and achieves a similar solution quality as
the inver-over algorithm.

The rest of the paper is outlined are as fol-
lows. The next section describes the detail
framework of (SBGA). Section 3 presents the
complete experimental setup and study. Finally,
section 4 concludes this paper with discussions
on future work.

2 Sequence Based Genetic
Algorithm (SBGA) for the TSP

In this section, the proposed SBGA for solv-
ing TSP is described in details with several
new operators, like the Sequence Based Local
Search (SBLS), Sequence Based Order Crossover
(SBOX), and Sequence Based Inversion Mu-
tation (SBIM). The structure of the proposed
SBGA is shown in Algorithm 1.

Algorithm 1 Sequence Based GA (SBGA)

1: Initialize Pop of the size popsize

2: for each individual indi ∈ Pop do
3: indi := 2Opt(indi, K)
4: end for
5: repeat
6: GenerateSequence(Numseq)
7: mating pool := TournamentSelect(Pop)
8: //Crossover
9: for j = 0 to popsize do

10: Select two parents ia, ib from the
mating pool.

11: if (rand() < pc) then
12: Create childa and childb by

SBOX(ia, ib)
13: Apply SBLS(childa, childb)
14: Add childa and childb to Poptmp

15: end if
16: end for
17: //Mutation
18: for each individual indi ∈ Poptmp do
19: if (rand() < pm) then
20: SBIM(indi, inversions)
21: end if
22: end for
23: Pop := SelectNewPop(Pop + Poptmp)
24: until Termination condition = true

The first step of SBGA is to initialize the
population. A simple 2-Opt improver is applied
to each individual indii for K iterations to give
a nice start to SBGA. The next step is the gen-
eration of number of sequences Numseq from a
set of best individuals that are selected from the
population. Then, a mating pool is generated
using tournament selection with tournament size
of 7. The details of each operation are given in
the following subsections, respectively.

2.1 Sequence Generation

After initializing the population, we apply the
2-opt improver [10] for K iterations to give a
good start to SBGA. Then, next step is to gen-
erate sequences. For the sequence generation, a
certain percentage of the best individuals from
the population are selected and stored into a se-
quence set. From these best individuals, the first
individual is selected. The individual is broken
into equal parts with the same number of nodes.
The next step is to find the shortest sub tour
among the candidate sub tours. SBGA starts
from the initial node and goes into the end like
(i = 0) and goes to (i < n − nodesseq). Here
nodesseq represents the total number of nodes
of the sequence. For the individual, ABCDE-

Algorithm 2 GenerateSequence(Numseq)

1: Select best individuals from Pop and store
it in Bestindi[].

2: for i = 0 to Numseq do
3: Split Bestindi[i] into n sub parts with the

same number of nodes
4: Calculate the length of each sub path
5: Further optimize the sup path by 2 − opt

improver which has minimum length
6: Store the sub path into the set of

SeqNumseq

7: end for

FGHIJKLMNOP in this case total number of
nodes of the sequence i-e. nodesseq is 4. The
candidate sequences for the shortest path in this
individual are ABCD, BCDE. . . and MNOP .
In this breaking procedure, one node comes in
and one goes out. So almost every node par-
ticipates. Let suppose the shortest sequence is
BCDE, which is identified i-e, length of the of
the nodes is calculated and then further opti-
mized to e.g: CDBE. Then this sequence is
preserved in a set of sequnces SeqNumseq. The
same procedure for the rest top individuals, if
the percentage % is 100 then the total number
of sequences would be equal to population size.

2.2 Sequence Based Order Crossover
(SBOX)

The Order Crossover (OX) [4, 5] is a sexual re-
production operator. It is the variant of “two
point crossover”. It is a classical “blind” heuris-
tic, which does not depend on the local city to
city distance information, but only on the global
“whole genome” fitness to achieve progress. It is
observed to be one of the best in terms of quality
and speed, and simple to implement.

Our modified OX operator, SBOX, works
as follows. First, a random sequence Seqsel is
selected from the set of sequences. Two individ-
uals are selected from the mating pool, which
is created through the tournament selection as
mentioned above. If the crossover condition
is satisfied, then nodes of the sequence are
removed from the nodes of both the individuals.
Now the available number of nodes for crossover
is (nodesind − nodesseq). The pseudocode of
SBOX is given as follows: The above algorithm

Algorithm 3 SBOX(ia, ib)

1: Randomly select Seqsel;
2: Remove the nodes of Seqsel from the

nodesind of individual ia, ib;
3: Perform crossover on the remaining nodesind

of ia and ib do SBOX(ia, ib);
4: Select the random location and re-insert the

sequence Seqsel;
5: Evaluate(childa, childb);

is implemented on the following example. Let
ia and ib represent the parents (P1 , P2)
and childa, childb represent the children (C1,
C2). The crossover performs like this. Let the
sequence Seqsel be (CDBE) and individuals are:

P1 = ABCDEFGHIJKLMNOP
P2 = PONMLKJIHGFEDCBA
After removing (CDBE)
P1temp = AFG | H I J K | LMNOP
P2temp = PON | M L K J | IHGFA
After crossover
C1temp = GFAHIJKPONML
C2temp = NOPMLKJAFGHI
After inserting (CDBE) in a random location
C1 = GFAHIJKCDBEPONML
C2 = NOPMLKJACDBEFGHI

2.3 Sequence Based Inversion Mutation
(SBIM)

After recombination, each offspring undergoes
mutation with a small probability pm. For

TSPs, the Simple Inversion Mutation (SIM) op-
erator is one of the best performers [5]. In our
approach, we perform SBIM on the selected in-
dividual to some allocated number of times, and
preserve those inversions which have positive ef-
fect on the performance gain. This increases
the convergence speed although involving an ex-
tra overhead on the mutation operator. The
number of iterations of SBIM is dependent on
whether the best fitness changes. If the best fit-
ness changes after each generation, then SBIM
will not execute. So, the number of executions
will lie in the range 0 < i < nodesseq. The
algorithm of SBIM is shown as follows: The

Algorithm 4 SBIM(im, inversions)

1: itemp = im;
2: Randomly select Seqsel;
3: Reverse select Seqsel;
4: Remove the nodes of Seqsel from the

nodesind of individual itemp;
5: for i = 0 to inversions do
6: Randomly selects two points p1 and

p2 then do inversion on the remaining
nodesind;

7: for j = p1 to p2 do
8: Perform inversion on the remaining

nodesind of itemp;
9: if f(i′temp) < f(itemp) then

10: itemp = i′temp;
11: end if
12: end for
13: end for
14: Select a random location and re-insert the

sequence Seqsel;
15: Evaluate(itemp);
16: im = itemp;

overall procedure of SBIM is similar to that of
SBOX. The difference lies in that SBIM inverts
the sequence before inserting it in the individ-
ual. Here, if the passing parameter inversions is
equal to 0, the SBIM will not execute; otherwise,
SBIM will be executed for inversions iterations
by selecting two random points in the remaining
nodes of the individual, perform the inversion.
Then the fitness of the individual is calculated
f(i′temp). If it is less then previous f(itemp) that
inversion is made permanent; otherwise, the in-
version is rejected. Here, the execution of SBIM
is variable. Furthermore, the inverted Seqsel is
inserted into a random location. Our approach
guarantees possibly fruitful individual as the se-
quence to be inserted is optimized. Here, im
denotes the P , itemp denotes the C for the be-

Table 1: Comparison results of Inver-Over, SBGA+IO, and SBGA

Instance Results IO SBGA+IO SBGA

Best 429.53 439.184 429.48
EIL51 Err 0.0083 0.0309 0.0082
(426) AVG 430.66 439.84 437.80

Err 0.0109 0.0325 0.0277
Best 552.22 579.194 562.97

EIL76 Err 0.0264 0.0766 0.0464
(538) AVG 552.37 571.56 570.7

Err 0.0267 0.0624 0.0608
Best 654.26 675.2 650.89

EIL101 Err 0.0402 0.0741 0.0348
(629) AVG 656.78 685.7 666.6

Err 0.0442 0.0902 0.0598
Best 21285.4 22193 21282

KROA100 Err 0.0002 0.0428 0.00
(21282) AVG 22392.10 2239 2.10 22382

Err 0.0522 0.0522 0.0492
Best 20820 21647.3 21008

KROC100 Err 0.0034 0.0433 0.0125
(20749) AVG 20888.10 21942.10 21903.6

Err 0.0067 0.0575 0.0560
Best 21517 22180 21317

KROD100 Err 0.0105 0.0416 0.0011
(21294) AVG 21523.00 22504.30 22674.6

Err 0.0108 0.0568 0.0648
Best 14432.6 14491.8 14782

LIN105 Err 0.0037 0.0078 0.0280
(14397) AVG 14510.90 15531.20 15118.0

Err 0.0092 0.0801 0.0514
Best 31253 32613.3 31782

CHN144 Err 0.0299 0.0747 0.0473
(30347) AVG 31542.90 33268.20 32513.6

Err 0.0394 0.0963 0.0714

low demonstration of the mutation procedure.
P = ABCDEFGHIJKLMNOP
After removing (ECDB)
Ptemp = AFG | HIJKLMN | OP
After inversion
Ctemp = AFG | MNLKJIH |OP
C = AFGMNLKJIHBDCEOP

2.4 Sequence Based Local Search
(SBLS)

Local search algorithm is effective heuristics
technique for lots of Combinatorial Optimiza-
tion Problems[6]. In our approach SBGA in-
formation is gathered from various good indi-
viduals and exploited to guide the overall per-
formance of GA towards promising area of the
search space. The algorithm are as follow: In

algorithm IncLength is calculated for the inser-
tion of sequence in proper location, where the
decrease in fitness is low in case of TSP. The
LS which is applied in this simply takes the ith
individual and the sequence which is going to
be inserted Seqsel. In the above algorithm the
distance between the first and last node of the
sequence is calculated from the distance matrix
relevent to the adjacent nodes of the individual
where the sequence will be inserted. The LS pro-
cedure utilized in this approach is quite simple
like crossover and mutation operator explained
above. Similarly, the nodes of the sequence is re-
moved from the individual and 2-opt is applied
to the rest of nodes if there is gain in fitness
from those swaps. Finally, the best location is
searched and Seqsel is inserted in that location.
This approach totally depends on the generation

Algorithm 5 SBLS(indii, Seqsel)

1: Create sub tour X ′ by removing the nodes
of Seqsel from individual X

2: Perform 2-Opt improver on X ′

3: Check the best position of X ′ which gives
the minimum length increase after inserting
Seqsel, according to the following equation:

IncLength = (MinN−M
j=0 dist[seq[0]][X ′

j]

+dist[seq[M − 1]][X ′

j+1]

−dist[X ′

j][X
′

j+1])

where N is the total number of cities of the
test problem and M is the number of cities
of Seqsel

4: Insert the sequence Seqsel into X ′ at
best position

5: X=X ′

6: Evaluate(X)

of new sequences when the fitness of the indi-
viduals changes, which causes the generation of
a new set of sequences for coming generations of
SBGA.

2.5 Maintaining Diversity

Maintaining the diversity of the population
throughout the run is a major approach to avoid
the premature convergence [7]. This section de-
scribes some techniques used in SBGA to pre-
vent the premature convergence to local optima.
These considerations work on avoiding the loss
of genetic diversity of the whole population, and
in principle, will not damage the convergence
process. Initially, we set some parameters like
MaxLS, i.e, how many times the local search
will run. We keep the value in the range of [0,
20], the another parameter associated with LS
is MaxStepSize of LS. We keep the value in the
range of [5, 50]. It means that if the best fitness
does not change within MaxStepSize LS oper-
ations, SBGA will explore more search space.
If the best fitness changes, SBGA resets all the
parameters to the initial state, i.e., all the pa-
rameter resets to a pre-assigned state of SBGA.

We have associated the length of the se-
quence with total iteration executed of MaxLS.
The sequence length is reduced based on the fol-
lowing criteria. If (MaxLSrunning ≤ (MaxLS×
75%)), then the length of the sequence will be
75% of its original length. That is, if MaxLS is
assigned to 100 and MaxLSrunning is 75 and the
Sequence length is (12 node in case CHN144.tsp)

it becomes 9. Similarly, for 50% 6 and 25% 3. If
the total assigned iteration becomes equal to 0
the length of the sequence becomes two, which is
an edge (i,j) and the LS searches for the short-
est edge and re-insert in a proper location. The
probability of crossover pc and mutation pm are
also changing when the best fitness does not in-
crease.

For selecting new population from Pop and
Poptmp, we use the social disasters technique
(SDT) called Packing, That is, among all the in-
dividuals that have the same fitness value, only
one remains unchanged and the other individu-
als are fully randomized [7]. We keep the iden-
tical percentage of individuals 50 ≃ 90%.

3 Experimental Study

In this section we present the experimental re-
sults of the proposed algorithm (SBGA). The
proposed approach has been implemented in
C++. All test cases (except CHN144) were cho-
sen from TSPLIB [8]. The number of cities
in these cases varies from 51 to 144. The pa-
rameters setting for the algorithm had the fol-
lowing values. The population sizes for the
first four instances were set to 50, and 20 for
the remaining. The crossover probability ini-
tially set to pc = 0.25 and mutation probability
pm = 0.0025. The parameters which have been
chosen is arbitrary , as in (SBGA) the initial set
of parameters are increasing for mutation and
crossover by a small value to maximum value
less then 1 when the fitness does not change , if
fitness changes values again resets to the initial
one. For local search LS, the MaxLS = 20 and
the stepsize initialy set to 5 and the upper maxi-
mum limit for stepsize set to MaxStepSize = 20
for each and every TSP instances. In Table 1, we
present the results of IO, SBGA+IO and SBGA
over 20 independent runs. In this table, the re-
sults of “best” rows show the best tour found
and “AVG” rows display the average result (fit-
ness) of 20 runs. The “Err” rows give relative
deviation to the global optima (fitness) list in
the table after the instance name.

The experimental results are compared with
IO operator [3]. From Table 1, It can be seen
that the SBGA achieves better solutions than
IO on 5 test instances, while slightly worse on
the other instances. However, from the results
of table 2 and figure 1, we can see that SBGA
outperforms IO in convergence speed.

We have also studied the combined approach
of SBGA and IO by shifting control from SBGA
to IO under a certain condition. It is also con-

firmed that SBGA can compete to the maximum
level of optimality and most of the runs SBGA
keep the control within itself. The plot of tour
length vs number of generations is illustrated
in Figure.1 has been shown that the (SBGA)
has almost the same characteristics on different
TSP benchmarks test problems. The combined
effect of the (SBGA+IO) shown same level of
optimization with both the operators applied to-
gether one after another, which shows that if
SBGA applied at the initial level of optimiza-
tion process which do fast convergence and then
control given to IO can thus enhance the perfor-
mance and solution quality, simply at early stage
of evolution, the SBGA can drive the population
to local optimum more rapidly and then IO fur-
ther be applied so number of generation could be
reduced as the IO has the ability to increase the
population diversity, avoiding common diversity
loss in common crossover operators.

Table 2: Comparison of the acceleration ratio of
IO and SBGA

Instance Fitness SBGA IO AR

EIL51 501 153 512 3.35
EIL76 627 450 1110 2.50
EIL101 745 600 1801 3.00
KROA100 30225 448 1277 2.85
KROC100 30310 298 1241 4.16
KROD100 26870 595 1521 2.55
LIN105 19818 456 1386 3.03
CHN144 49953 174 1687 9.7

Table 2 shows the acceleration ratio which is
the ratio of the number of generations needed to
gain the specified fitness of two algorithms. The
second column shows the fitness of best individ-
ual before convergence of population. The third
and fourth column show the number of genera-
tion needed of SBGA and IO operator to obtain
the fitness shown in the first column. The accel-
eration ratios is from 2.5 to 9.7 times faster than
IO in the early stage of evolutionary process on
all test instances.

Further improvement of solution requires
greater computational efforts in terms of the
number of generation. The best results SBGA
got for Chn144 is 31086.4 (Err = 0.0243648)
when the we increase the number of gen > 5000.
In Figure 1, this improvement is sensible for the
instances of TSPLIB [8] respectively, which is a
good indication of the convergence behaviour of
SBGA.

4 Conclusion

In this study, we presented a sequence-based
genetic algorithm with local search for solving
small and medium scale TSP instances. How-
ever, for larger scale instance more time is
needed and the speed is comparatively slow.
The behaviour of SBGA is exploitable by mak-
ing use of information extracted from the popu-
lation.

Some effective ideas are proposed for pre-
serving the population diversity, preventing pre-
mature convergence and enhancing the speed
of convergence at the initial stage of SBGA.
Our proposed mutation operator takes SBGA
to promising areas of the search space as well as
contributing in the fitness increase.

The crossover operator exhibits a behaviour
of displacement mutation but here extracted sub
tour is optimized one. Our concept is totally de-
pendent on the formation of set of sequences how
that area should be further improved. Another
on that algorithm tune the crossover and mu-
tation probability is directly. So, other kind of
approaches may be useful. Obviously, we com-
pared our SBGA with Inver Over, one does not
intend that it can compete with as running time
is still a big question, but it do fast conversion
at the initial stages of GA.

References

[1] E. Ozcan, and M. Erenturk. A brief review of
memetic algorithms for solving Euclidean 2D
travelling salesrep problem, Proc. of the 13th
Turkish Symposium on Artificial Intelligence
and Neural Networks, pp. 99-108, 2004.

[2] M. R. Garey, R. L. Graham, and D. S. John-
son. Some NP-complete geometric problems,
in Porc. of the 8th Annual ACM Symposium
on Theory of Computing, pp. 10-22. 1976.

[3] G. Tao and Z. Michalewicz. Inver-over oper-
ator for the TSP, In Parallel Problem Solving
from Nature–PPSN V, pp. 803-812, 1998.

[4] L. Davis. Applying adaptive algorithms to
epistatic domains, Proc. of the 1985 Int.
Joint Conference on Artificial Intelligence,
vol. 1, pp. 161-163, 1985.

[5] J. A. Larranaga, C. M. H. Kuijpers,
R. H. Murga, I. Inza, and S. Dizdarevic.
Genetic algorithms for the travelling sales-
man problem: A review of representations
and operators, Artificial Intelligence Review,
vol. 13, pp. 129-170, 1999.

 0

 50000

 100000

 150000

 200000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

CHN144

InverOver
SBGA+InverOver

SBGA

 400

 600

 800

 1000

 1200

 1400

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

EIL51

InverOver
SBGA+InverOver

SBGA

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

EIL76

InverOver
SBGA+InverOver

SBGA

 500

 1000

 1500

 2000

 2500

 3000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

EIL101

InverOver
SBGA+InverOver

SBGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

KROC100

InverOver
SBGA+InverOver

SBGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

KROA100

InverOver
SBGA+InverOver

SBGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

KROD100

InverOver
SBGA+InverOver

SBGA

 0

 20000

 40000

 60000

 80000

 100000

0 1250 2500 3750 5000

A
ve

ra
ge

 F
it

ne
ss

Generations

LIN105

InverOver
SBGA+InverOver

SBGA

Figure 1: Experimental results of IO, SBGA+IO, and SBGA

[6] P. Merz and B.Freisleben. Memetic algo-
rithms for the travelling salesman problem,
Complex Systems, vol. 13, pp. 297-345, 1997.

[7] M. Rocha and J. Neves. Preventing prema-
ture convergence to local optima in genetic
algorithms via random offspring generation,
In Proc. of the 12th Int. Conf. on Indus-
trial and Engineering Applications of Arti-
ficial Intelligence and Expert Systems: Mul-
tiple Approaches to Intelligent Systems, pp.
127-136, 1999.

[8] G. Reinelt. TSPLIB95, University Heidel-
berg (http://www.iwr.uniheidelberg.de/
groups/comopt/software/TSPLIB95), 1995.

[9] S. S. Ray, S. Bandyopadhyay, and S. K. Pal.
New operators of genetic algorithms for
the travelling salesman problem. In Proc of
the 2004 Int. Conf. on Pattern Recognition
(ICPR), vol. 2, pp. 497-500, 2004.

[10] S. Lin and B. Kernighan. An effective
heuristic algorithm for the travelling sales-
man problem, Operations Research, vol. 21,
pp. 498-516, 1973.

[11] P. A. Pevzner, H. Tang, and M. S. Water-
man. An Eulerian path approach to DNA
fragment assembly, Proc. of Natl Acad Sci
USA, vol. 98, pp. 9748-9753, 1998.

[12] R. J. Parsons, S. Forrest, and C. Burk. Ge-
netic algorithms, operators, and DNA frag-
ment assembly, Machine Learning. vol. 21,
pp. 11-33, 1995.

