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Abstract

We consider the problem of discovering properties (such as the diameter) of an
unknown network G = (V, E) with a minimum number of queries. Initially,
only the vertex set V of the network is known. Information about the edges
and non-edges of the network can be obtained by querying nodes of the net-
work. A query at a node q ∈ V returns the union of all shortest paths from
q to all other nodes in V . We study the problem as an online problem – an
algorithm does not initially know the edge set of the network, and has to de-
cide where to make the next query based on the information that was gathered
by previous queries. We study how many queries are needed to discover the
diameter, a minimal dominating set, a maximal independent set, the minimum
degree, and the maximum degree of the network. We also study the problem
of deciding with a minimum number of queries whether the network is 2-edge
or 2-vertex connected. We use the usual competitive analysis to evaluate the
quality of online algorithms, i.e., we compare online algorithms with optimum
offline algorithms. For all properties except maximal independent set, 2-vertex
connectivity and minimum/maximum degree, we present and analyze online
algorithms. Furthermore we show, for all the aforementioned properties, that
“many” queries are needed in the worst case. As our query model delivers more
information about the network than the measurement heuristics that are cur-
rently used in practice, these negative results suggest that a similar behavior
can be expected in realistic settings, or in more realistic models derived from
the all-shortest-paths query model.
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1. The Problem and the Model

Dynamic large-scale networks arise in our everyday life naturally, and it is
no surprise that they are the subject of current research interest. Both the
natural sciences and the humanities have their own stance on that topic. A
basic prerequisite is the network itself, and thus, before any study can even
begin, the actual representation (a map) of a network has to be obtained. This
can be a very difficult task, as the network is typically dynamic, large, and the
access to it may be limited. For example, a map of the Internet is difficult to
obtain, as the network consists of many autonomous nodes, who organize the
physical connections locally, and thus the network lacks any central authority
or access point.

There are several attempts to obtain an (approximate) map of the Inter-
net. A common approach, on the level of Autonomous Systems (ASs), is to
inspect routing tables and paths stored in each router (passive measurement) or
directly ask the network with a traffic-sending probe (active measurement). All
these methods are commonly called traceroute-like measurements (traceroute is
a command/tool on UNIX-based systems that is used to trace the route of pack-
ets in IP networks such as the Internet). For example, the Oregon Route-Views
(RV) project [1] is based on the analysis of the Border Gateway Protocol (BGP)
routing tables on the level of ASs. Essentially, for each BGP router its list of
paths (to all other AS nodes in the network) is retrieved. More recently, and
due to good publicity very successfully, the Distributed Internet Measurements
and Simulations (DIMES) project [2] has started collecting data with the help
of a volunteer community. Users can download a client which collects paths in
the Internet by executing successive traceroute commands. A central server can
direct each client individually by specifying which routes to investigate. Data
obtained by these or similar projects has been used in heuristics to obtain (ap-
proximate) maps of the Internet, basically by simply overlaying possible paths
found by the respective project, see e.g. [3, 4, 2, 1].

As performing such measurements at a node is usually very costly (in terms
of time, energy consumption or money), the question of minimizing the number
of such measurements arises naturally. This problem was formalized as a com-
binatorial optimization problem and studied in [5]. The map of a network (and
the network itself) is modeled as a connected, undirected graph G = (V, E). The
nodes V represent the communication entities (such as ASs in the Internet) and
the edges represent physical or logical communication links. A measurement
at a node v ∈ V of the network is called a query at v, or simply a query v.
Each query q gives some information about the network. The network discov-
ery problem asks for the minimum number of queries that discover the whole
network. In [5] the layered-graph query model (LG for short) is defined: a query
q returns the union of all shortest paths from q to every other node. In this
paper we refer to the LG query model as the all-shortest-paths query model.
Network discovery is an online problem, where the edges and non-edges (a pair
of vertices {u, v} is a non-edge, if it is not an edge) are initially not known and
an algorithm queries vertices of V one by one, until all edges and non-edges are
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Figure 1: A graph G (left) and the result of a query at node v1 as a layered graph (right)

discovered.
Having a map of a network G at our disposal, various aspects of G can be

studied. For example, the routing aspects of G are influenced by the diameter,
average degree, or connectivity of G. Other graph properties that are studied in
the networking community include, for example, a maximal/maximum indepen-
dent set, minimal/minimum dominating set, shell index, the decision whether
the graph is bipartite, power-law, etc. All these properties can be computed
from the map of G. We use standard graph-theoretic terminology and notation,
as it is described for example in [6]. The diameter of a graph G = (V, E) is
denoted by diamG. An independent set I ⊆ V is maximal if there is no inde-
pendent set J with I ⊂ J . It is maximum if there is no independent set J with
|I| < |J |. Minimal and minimum dominating sets are defined analogously. For
the definition of the shell index (also known as the core index) in our context,
see for example [7], and for the definition of graphs with power-law node-degree
distribution, see for example [8].

If only a single parameter of a network is desired to be known, obtaining
the whole map of the network may be too costly. In this work we address
the problem of computing (an approximation of) network properties (such as
the diameter of G) in an online way: given an unknown network (only the
nodes are known in the beginning), discover a property (or an approximation
of a property) of the network (graph) with a minimum number of queries. The
properties that we address in this paper are the diameter of the graph, a minimal
dominating set, a maximal independent set, minimum degree, maximum degree,
edge connectivity and vertex connectivity. We assume the all-shortest-paths
query model, i.e., a query q returns the union of all shortest paths from q to
every other node. The result of the query q can be viewed as a layered graph:
all the vertices at distance i from q form a layer Li(q), and the query returns
all information between any two layers, i.e., if u and v are from different layers,
then the query returns whether {u, v} is an edge or a non-edge. We depict
the result of a query graphically as in Figure 1. For simplicity we sometimes
write Li instead of Li(q), if it is clear from the context which node is queried.
We denote by Eq and Eq the set of edges and non-edges, respectively, that are
discovered by query q. In the all-shortest-paths query model, Eq is the set of
edges whose endpoints have different distance from q, and Eq is the set of non-
edges whose endpoints have different distance from q. By EQ and EQ we denote
the set of edges and non-edges, respectively, that are discovered by queries Q,
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i.e., EQ =
⋃

q∈Q Eq and EQ =
⋃

q∈Q Eq. The graph Gq and graph GQ is the
graph on V with the edge set Eq and EQ, respectively. Finally, we denote by
comp(G, Q) the set of all graphs G′ with vertex set V containing all the edges in
EQ and all non-edges in EQ. In other words, comp(G, Q) is the set of all graphs
with vertex set V for which the queries in Q yield the same results as for G.

It is easy to observe that querying all vertices of G discovers all the edges and
non-edges of G and thus any (computable) property of the graph can be derived
from this information. We are interested in algorithms that deliver minimum-
sized query sets that reveal the necessary information about the sought network
property. An online algorithm for the (approximate) discovery of a network
property is called c-competitive, if the algorithm delivers, for any input graph G,
a query set Q of size at most c·Opt, where Opt is the optimum number of queries
that discover the (approximation of the) property. By an approximate discovery
of a property we understand a computation of a value A that is “close” to the
actual value O of the property. We require A ≥ O, if we want to approach O from
above (we call the property a minimization property), or A ≤ O, if we want to
approach O from below (we call the property a maximization property). We will
treat the diameter as a minimization property. We call an online algorithm a ρ-
approximation algorithm for the problem of discovering a minimization property
if for any input graph G it discovers a ρ-approximation of the property, i.e., if
for the numerical value A returned by the algorithm, and the actual value O
of the property, we have O ≤ A ≤ ρ · O. For example, a ρ-approximation, c-
competitive algorithm for the diameter discovery problem is an algorithm that
discovers a graph GQ for which the diameter diamGQ

is at most ρ · diamG, and
queries at most c times more queries than an optimal offline ρ-approximation
algorithm.

Related Work.. Deciding exactly (and deterministically) a graph-theoretic prop-
erty of a given graph where the measure of quality is the number of accessed
entries in the adjacency matrix of the graph is a well understood area. Rivest
and Vuillemin [9] show that any deterministic procedure for deciding any non-
trivial monotone n-vertex graph property must examine Ω(n2) entries in the
adjacency matrix representing the graph (a property is called monotone if the
following implication holds: if G = (V, E) has the property then every graph
G = (V, E′), where E ⊆ E′, also has the property; and a property is called non-
trivial if the set of n-vertex graphs satisfying it is neither empty nor the set of
all n-vertex graphs). Each such examination of an entry can be seen as a query
(the result of such a query would tell whether there is an edge between the two
nodes specified by the query). Our approach introduces a general concept where
other types of queries can be considered. We study the case where the query at
a vertex returns all shortest paths from that vertex. This is, however, not the
only possible query model to study, and we expect that other interesting query
models will be studied following this concept. Moreover, in contrast to the pre-
vious work, we study the problem as an online problem, and thus evaluate the
quality of algorithms using the competitive ratio.

An active and related field of research is the well-established area of property
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testing, in which a graph property is asked to be probabilistically examined with
possibly few edge-queries on the edges of the graph. The aim of such property-
testing algorithms is to spend time that is sub-linear or even independent of the
size of the graph. In property testing, a graph possessing an examined property
P shall be declared by the algorithm to have property P with probability at
least 3/4, and a graph that is “far” from having property P should be declared
by the algorithm not to have property P with probability at least 3/4. A
survey on property testing can be found for example in [10]. Our work differs
from property testing in the type of query we make, and in that we consider
deterministic strategies.

The all-shortest-paths query model was introduced by Beerliová et al. for
studying the mapping process of large-scale networks [5]. They studied the
problem of discovering all edges and all non-edges of an unknown network with
as few queries as possible. They presented, among other results, a randomized
O(
√

n log n)-competitive algorithm, and lower bounds 3 and 4/3 on the compet-
itive ratio of any deterministic and randomized algorithm, respectively. A query
set that discovers the edges and non-edges of the network is also called a resolv-
ing set and the minimum-size resolving set is called a basis of the underlying
graph, and the size of the basis is the dimension of the graph. A graph-theoretic
and algorithmic overview of this topic can be found in [11] and [12], respectively.

Among the graph properties that we study in this article, it is the diameter
of a graph that gained the most attention. Albeit not considering queries (to
oracles) as the main computational element, and thus having quite unrelated
character to our work, we refer to [13] for a survey of the topic for further
references.

Our Contribution.. We consider several graph properties in the property discov-
ery setting with the all-shortest-paths query model. We first study the discovery
of the diameter of an unknown graph G. We present and use a new technique
of querying an “interface” between two parts of a graph G. Using k “interfaces”
leads to a (1 + 1

k+1 )-approximation algorithm for the discovery of the diameter
of G. The “interface” is in our case a layer of vertices that are at the same
distance from an initial query q0. Considering the competitive ratio as well, and
setting k = 1, we can present a (3

2 + 2p
ℓ )-approximation, (1 + n

2p+1 )-competitive

algorithm, where ℓ is the maximum distance from q0 (which is at least half of
the diameter of G), and p is a parameter, p < ℓ/4. We present a lower bound√

n−1/2 for the competitive ratio of any algorithm computing a minimal domi-
nating set. We also present an algorithm that queries at most O(

√
d · n) vertices,

where d is the size of a minimum dominating set of G. For the problem of finding
a maximal independent set we show a lower bound

√
n on the competitive ratio

of any algorithm. We further study the discovery of the 2-edge and 2-vertex
connectivity of G, and show a lower bound ⌈n/2⌉ on the competitive ratio of
any algorithm for discovering a bridge or an articulation vertex of G. We also
present an ⌈n/2⌉-competitive algorithm that discovers whether G is 2-edge con-
nected. For the problem of discovering the maximum and the minimum degree
of G, we present lower bounds n/2 and n/2, respectively, for the competitive
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Competitive Ratio

Property Upper Bound Lower Bound

Diameter n-1 n-1

(1 + 1
k+1 )-approx. of

diamG ∈ ω(1)
k layers (worst case Ω(n)) –

(3
2 + 2p

ℓ )-approx. of
diamG ∈ ω(1)

1 + n
2p+1 –

Minimal Dom. Set O(
√

d · n)
√

n− 1/2

Maximal Ind. Set –
√

n

2-edge connectivity ⌈n
2 ⌉ ⌈n

2 ⌉
2-vertex connectivity – ⌈n

2 ⌉
Minimum degree – n

2

Maximum degree – n
2

Table 1: Summary of results

ratios of any algorithm.
We note that our lower-bound proofs for competitive ratios all share the

property that for the constructed graphs an optimum offline algorithm needs
only one query to discover the sought property. Therefore, by showing that any
deterministic online algorithm needs to make at least k queries (i.e., has query
complexity k for the constructed instance), we also obtain a lower bound of k
on the competitive ratio.

Table 1 summarizes the results of this article.

2. Discovering the Properties

In the following we use a common approach to the (approximate) discovery
of a graph property of a given graph G: select a query set Q such that the
resulting graph GQ has the same (or approximately similar) graph property.

2.1. Discovering the Diameter

Following the general approach, we want to find a (possibly) small query
set Q, such that the resulting graph GQ = (V, EQ) has a diameter that is a good
approximation of the diameter of G. We first prove that while a single query is
sufficient to approximate the diameter within a factor of 2, any algorithm with
approximation ratio better than 2 has competitive ratio Ω(n), where n is the
number of vertices of G. The lower bound holds on graphs of diameter at most 2.
Then, with graphs of larger diameter in mind, we show how approximation ratios
better than 2 can be achieved by querying all vertices in one or several of the
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layers determined by an initial query, although this approach does not directly
yield any non-trivial bound on the competitive ratio. Finally, by allowing the
algorithm to choose the layer to query by selecting a layer having fewest vertices
within a certain range of layers, we obtain a trade-off between approximation
ratio and competitive ratio for families of graphs whose diameter is not very
small.

It has been previously observed (see e.g. [14, 15]) that a single query q ∈ V
yields a 2-approximation of the diameter of G. To see this, let q be a vertex
of G. Let v be a vertex with the maximum distance from q. Let ℓ denote this
distance, i.e., d(q, v) = ℓ. Clearly, diamG ≥ ℓ. Also, for any two nodes u, v ∈ V ,
d(u, v) ≤ d(u, q) + d(q, v) ≤ 2ℓ. Thus, the diameter of Gq is at most 2ℓ, and
therefore it is at most twice the diameter of G.

The following example shows that in general, unless we discover the whole
network, we cannot hope for a better approximation ratio than 2. For any n ≥ 3,
consider two graphs: G1 = Kn, the complete graph, and G2 = Kn \ {u, v}, the
complete graph minus one edge {u, v}. The diameter of G1 is 1, and the diameter
of G2 is 2. For any query q, except u or v, the result looks the same, a star
graph centered at q. Thus, we know that the diameter is at most 2, but cannot
obtain a better approximation until all the vertices (but one) are queried. As
any deterministic algorithm can be forced to query V \{u, v} first, this example
shows that any deterministic algorithm needs n − 1 queries to distinguish G1

from G2. Hence, there is no deterministic (2 − ǫ)-approximation algorithm
with less than n − 1 queries. Note also that an optimal offline algorithm can
discover the exact diameter of G2 with just one query (a query at u or v yields
a complete bipartite graph with u and v on one side and the remaining vertices
on the other side, showing that the diameter of the graph must be two). This
implies that any deterministic (2− ǫ)-approximation algorithm has competitive
ratio at least n− 1.

If the diameter of the graph is larger than two (e.g. a growing function
of n, such as log n), the following strategy guarantees a better approximation
ratio. We first make an arbitrary query q ∈ V . This splits the vertices of
V into layers Li, i = 1, 2, . . . , ℓ, where Li contains the vertices at distance i
from q. As a next step we query all vertices at layer Lk (we will show that
k ≈ 3

4ℓ is a good choice). See Figure 2 for an illustration of the upcoming
discussion. From the information that we gain after querying all vertices in Lk

we want to improve the upper bound or the lower bound for the diameter, and
thus the approximation ratio of our algorithm. Thus, the algorithm computes
the diameter of G′ := G{q}∪Lk

(the discovered part of G), and reports it as
the approximate solution. In the following we discuss the quality of such an
approximation. Let u and v be two vertices whose distance is the diameter of
G′.

If a shortest path between u and v in G goes via vertices of the queried layer
Lk, the actual distance (in G) between u and v will be discovered in G′ (and
the approximation ratio will be 1). Thus, we concentrate on the cases where
the shortest path between u and v does not go via Lk. Thus we are left with
two cases, first, u and v are both from layers between q and Lk, and second,
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Figure 2: The initial query q splits the vertices of G into ℓ layers L1, L2, . . . , Lℓ. The distance
d(u, v) between any two nodes u, v ∈ V is at most d(u, q) + d(q, v) ≤ 2ℓ, but can be shorter if
edges within the same layer are present.

u and v are both from layers between Lk and Lℓ. Knowing information about
distances from every vertex w ∈ Lk (we have queried the whole layer Lk) allows
us to further improve the bound on the distance between u and v with respect
to ℓ (remember that ℓ is the lower bound of the diameter of G).

Case 1. If u and v lie both within layers L1, . . . , Lk−1, then clearly dG′(u, v) ≤
2(k − 1). This type of nodes guarantees an approximation ratio of 2(k − 1)/ℓ
(as the diameter of G is at least ℓ).

Case 2. If both u and v lie within layers Lk+1, . . . , Lℓ, and every shortest
path in G between u and v goes via vertices of layers Lk+1, . . . , Lℓ, we will use
the layer Lk in a similar way as q was used in the previous case. Trivially,

dG(u, v) ≤ dG(u, q′)+dG(q′, v) = dG′(u, q′)+dG′(q′, v), for any q′ ∈ Lk ∪{q}.
(1)

As every shortest path between u and v lies “below” Lk, we will also improve
the lower bound on the distance between u and v. Let P be a shortest path in
G between u and v. Let s ∈ V be a vertex on P that is closest to Lk and let q′

be a vertex in Lk that is closest to s. We obtain

dG(q′, u) ≤ dG(q′, s) + dG(s, u) ≤ (ℓ− k) + dG(s, u),

and similarly

dG(q′, v) ≤ dG(q′, s) + dG(s, v) ≤ (ℓ− k) + dG(s, v).

Thus,

dG(q′, u) + dG(q′, v) ≤ 2(ℓ− k) + dG(s, u) + dG(s, v) = 2(ℓ− k) + dG(u, v).

As dG(q′, u) = dG′(q′, u) and dG(q′, v) = dG′(q′, v), we obtain

dG′(q′, u) + dG′(q′, v)− 2(ℓ− k) ≤ dG(u, v), (2)

and the approximation ratio (for the diameter dG(u, v)) obtained for this type
of vertices is at most (putting together Inequality (1), Inequality (2), and the
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trivial bound ℓ ≤ dG(u, v))

dG′(q′, u) + dG′(q′, v)

max{ℓ, dG′(q′, u) + dG′(q′, v)− 2(ℓ− k)} . (3)

We now distinguish two subcases based on the value of the denominator
in (3). First, assume ℓ ≥ dG′(q′, u) + dG′(q′, v) − 2(ℓ − k), i.e., ℓ + 2(ℓ −
k) ≥ dG′(q′, u) + dG′(q′, v). Then clearly, the approximation ratio is at most
ℓ+2(ℓ−k)

ℓ = 3ℓ−2k
ℓ . Second, if ℓ ≤ dG′(q′, u)+dG′(q′, v)−2(ℓ−k), then the upper

bound on the approximation ratio is of the form x
x−2(ℓ−k) , which is maximized

(under the condition that ℓ ≤ x− 2(ℓ− k)) for x = ℓ + 2(ℓ− k). Putting in the
value of x into our bound, we get that the approximation ratio is at most 3ℓ−2k

ℓ
as well.

Taking all cases into account, the approximation ratio of the algorithm is

max{1, 2(k−1)
ℓ , 3ℓ−2k

ℓ }. To minimize the approximation ratio, we need to set

2(k− 1) = 3ℓ− 2k, i.e., k = 3ℓ+2
4 , which leads to diamGQ

/diamG ≤ 3
2 − 1

ℓ . This
proves Theorem 1.

We have assumed, for simplicity of presentation, that every fractional com-
putation results in an integral number (such as the query level k = 3ℓ+2

4 ).
To make the computations precise, one has to round the numbers, which can
“shift” the queried layer by half, i.e., |[k] − k| ≤ 0.5 (by [k] we denote the
rounding of k to the nearest integer). This results in a small additive error of
order 1

ℓ in the approximation ratio of the diameter. Observe that this error
approaches zero, as ℓ (and the diameter) grows with n. For instance, we obtain

that diamGQ
/diamG ≤ 2([k]−1)

ℓ =
2([ 3ℓ+2

4 ]−1)

ℓ ≤ 2( 3ℓ+2

4
+0.5−1)

ℓ = 3
2 . Therefore

diamGQ
≤ 3

2diamG (compare with the original bound diamGQ
≤ (3

2− 1
ℓ )diamG).

Theorem 1. Let G be any graph. A query set Q = {q} results in a graph
GQ = (V, EQ) such that diamGQ

≤ 2 · diamG. Let ℓ be the maximum distance
from q to a vertex of G. Setting Q = {q} ∪ Lαℓ(q), α < 1, the approximation
ratio ρ of the algorithm that computes diamGQ

as the approximation of diamG

is max{2α− 2
ℓ , 3− 2α}. For α = 3

4 + 1
2ℓ , we get approximation ratio 3

2 − 1
ℓ (and

approximation ratio 3
2 if rounding effects are taken into account).

It is natural to ask whether querying more layers leads to a better approxi-
mation of the diameter. This is indeed the case. For example, if we query two
layers Lk and Ls, k < s, we obtain the following bounds on the approximation
ratio. The query q, layer Lk and layer Ls divide the nodes naturally into three
parts P1, P2 and P3 (where P1 consists of nodes with distance less than k from
q, part P2 consists of nodes with distance from q between k and s, and part
P3 consists of nodes with distance from q greater than s). For nodes u and v
that lie in different parts or in the queried layers, the upper bound on their
distance is the actual distance and hence they are not critical for the approxi-

mation ratio. If the nodes u and v are from P1, we get a bound 2(k−1)
ℓ , if they

are from P3 we get a bound ℓ+2(ℓ−s)
ℓ = 3ℓ−2s

ℓ , and if they are from P2 we get

a bound ℓ+2(s−k−1)
ℓ on the approximation ratio. The first two bounds can be
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obtained analogously as in the situation where only one layer was queried. The
bound for vertices within P2 is derived similarly as the bound for vertices in P3.
Observe that if the shortest path between u and v lies completely within P2,
then there is a query q′ from Lk which is at distance at most (s− k − 1) from
the path. Thus, similarly as in the case where we queried a single layer Lk,
dG′(q′, u) + dG′(q′, v)− 2(s− k− 1) ≤ dG(u, v) ≤ dG′(q′, u) + dG′(q′, v). Setting
k = 4

6ℓ + 1
3 , s = 5

6ℓ + 2
3 , the graph GQ has diameter diamGQ

≤ (4
3 − 4

3ℓ )diamG.
For the rounding, we set k = 4

6ℓ + 1
2 and s = 5

6ℓ + 1
2 . Then the graph GQ

has diameter diamGQ
≤ 4

3diamG (rounding k and s, we obtain, for example,
ℓ+2([s]−[k]−1)

ℓ =
ℓ+2([ 5

6
ℓ+ 1

2
]−[ 4

6
ℓ+ 1

2
]−1)

ℓ ≤ ℓ+2( 5
6
ℓ+ 1

2
+0.5−( 4

6
ℓ+ 1

2
−0.5)−1)

ℓ = 4
3 ).

We can generalize the approach to s layers. The previous discussion of case
1 shows that querying a layer k ≤ ℓ/2 does not bring any improvement in the
analysis of the approximation of the diameter. Hence, all the s queried layers
shall lie within layers Lj , j > ℓ/2. To obtain the best approximation ratio,
the queried layers Lk1

, Lk2
, . . . , Lks

have to be chosen evenly from the layers
Lℓ/2, . . . , Lℓ, so that the queried layers and the layers Lℓ/2 and Lℓ are uniformly
spaced. It is then an easy adaptation of previous considerations to show that
such a choice of s queries leads to a (1 + 1

s+1 )-approximation.

Theorem 2. Let ℓ be the maximum distance from an initial query q to a vertex
of G. Let Q = {q}∪Lk1

∪Lk2
∪ . . . Lks

, s ≥ 1, ki < ki+1, i = 1, . . . , s−1, where
ki = ℓ/2 + i · ℓ

2(s+1) + 0.5. Then the query set Q leads to a graph GQ for which

the diameter diamGQ
is a (1 + 1

s+1 )-approximation of the diameter of G.

Proof. The queried layers Lk1
, Lk2

, . . . , Lks
split the unqueried vertices into

disjoint parts: vertices between q and Lk1
, vertices between Lki

and Lki+1
for

1 ≤ i ≤ s − 1, and vertices below Lks
. As GQ is a subgraph of G, we have

diamGQ
≥ diamG. Let u and v be the vertices that form the diameter of GQ.

Clearly, if u or v is from Q, then diamGQ
= diamG. Similarly, if u and v are from

different parts, then dGQ
(u, v) = dG(u, v), and thus again, diamGQ

= diamG.
Thus, the interesting cases are when u and v are from the same part. Similarly

to the case with two layers, we obtain that diamGQ
/diamG is at most 2(k1−1)

ℓ

if u and v are from the first part; is at most ℓ+2(ki+1−ki−1)
ℓ if u and v are

between layer Lki
and layer Lki+1

, i = 1, . . . , s − 1; is at most 3ℓ−2ks

ℓ if u and
v are below layer Lks

. Straightforward calculations show that, taking rounding
effects into account, the approximation ratio diamGQ

/diamG is in all cases at
most (1 + 1

s+1 ). �

So far we have been mainly concerned with the quality of the approximation,
but we did not consider the number of queries we make. In particular, a problem
of the 3/2-approximation algorithm from Theorem 1 is that the right choice of
layer Lk where we make the queries may result in many queries (say, n − ℓ in
the worst case, if the layer Lk contains almost all vertices of G). If we want to
maintain a bounded competitive ratio, we have to be careful about the choice
of Lk, which leads to a bi-criteria optimization problem.
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Bi-criteria Optimization.. To keep some control over the number of queries, a
natural idea is to allow some freedom in the choice of the layer Lk. Thus, we
do not set k = [34ℓ + 0.5], but parametrize the choice of k and allow k to be
in the range {[ 34ℓ + 0.5] − p, . . . , [ 34ℓ + 0.5] + p}, where p is a parameter. The
algorithm now picks the layer Lk with the minimum number of vertices among
all layers Li, i ∈ {[ 34ℓ + 0.5] − p, . . . , [ 34ℓ + 0.5] + p}. Thus, the size of Lk is
at most n/(2p + 1), which is also the upper bound on the competitive ratio
of the algorithm. Relaxing p allows us to keep the number of queries small,
but can harm the approximation quality, while setting p very small improves
the approximation but leaves no control over the number of queries. Clearly, a
meaningful choice of p is in the range {0, 1, 2, . . . , ⌊ 14ℓ− 0.5⌋}.

Repeating the case analysis leading to Theorem 1, the upper bounds on the
approximation ratio for the different cases are 1, 2(k − 1)/ℓ, and 3ℓ−2k

ℓ . As
3ℓ − 2k ≤ 3ℓ − 2([34ℓ + 0.5] − p) ≤ 3ℓ − 2(3

4ℓ − p) = 3
2ℓ + 2p and 2(k − 1) ≤

2([34ℓ+0.5]+p−1)≤ 2(3
4ℓ+1+p−1) = 3

2ℓ+2p we obtain that the approximation

ratio is upper bounded by 3
2 + 2p

ℓ . The parameter p can be used to tweak the

approximation ratio and the competitive ratio of the algorithm, which are 3
2 + 2p

ℓ
and 1 + n

2p+1 , respectively.

Theorem 3. Let G be any graph and q a query that results in ℓ layers. Then
there is an algorithm, parametrized by p ∈ {0, 1, 2, . . . , ⌊ 14ℓ−0.5⌋}, which delivers

a (3/2+ 2p
ℓ )-approximation of the diameter of G and is 1+n/(2p+1)-competitive.

2.2. Discovering a Minimal Dominating Set

In this section we consider the problem of discovering a minimal dominating
set in G. We provide an algorithm that discovers a minimal dominating set
of G with O(

√
d · n) queries, where d is the size of a minimum dominating set

of G. The algorithm, which we simply call Alg, works as follows. It starts
from an empty set D and grows it by adding vertices step by step so that D
will eventually be a (minimal) dominating set. At each step, Alg queries two
vertices x and y (an x-vertex and a y-vertex, respectively). The first vertex x
is chosen arbitrarily among the vertices that are not yet dominated by D. The
algorithm queries x and then vertex y is chosen among the set of neighbors of
x such that y maximizes the set of newly dominated nodes by y (i.e., the subset
of neighbors N(y) of y that are at distance 2 from x and that are not neighbors
of any vertex belonging to our partial solution D). Both x and y are put into
D. It can happen that the query x has only one layer, and hence y does not
dominate any new vertex, and thus D is not minimal (y can be removed from
D). Similarly, if y dominates all neighbors of x and some vertices from L2(x),
x is obsolete, and D is not minimal. Thus, at the end, we modify D to make it
minimal. The procedure is described in Algorithm 1.

Theorem 4. The set D returned by Alg is a minimal dominating set in G.
Moreover, in order to discover D, the algorithm makes O(

√
d · n) queries, where

d denotes the size of a minimum dominating set in G.
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Algorithm 1 The algorithm for discovering a minimal dominating set in G

Input: The vertex set of a graph G = (V, E).
Output: A minimal dominating set D ⊆ V of G.
1: D ← ∅ // dominating set
2: X ← ∅
3: Y ← ∅
4: U ← V // set of undominated nodes
5: while U 6= ∅ do

6: Query any node x ∈ U
7: X ← X ∪ {x}
8: Let y ∈ L1(x) be a node that maximizes |N(y) ∩ U ∩ L2(x)|
9: Query y

10: Y ← Y ∪ {y}
11: D ← D ∪ {x, y}
12: U ← U \

(

{x} ∪ L1(x) ∪ {y} ∪ L1(y)
)

13: end while

14: Make D minimal
15: return D

Proof. It is clear that the returned set D is a minimal dominating set. It
remains to show the bound on the number of queries. Let {z1, . . . , zd} ⊆ V
be a minimum dominating set in G. We partition the set V into subsets Ci,
i = 1, . . . , d: The set Ci ⊆ V contains zi and all the neighbors of zi that are not
in {z1, . . . , zd} and that are not in any of the previous sets Cj , j < i.

Let X and Y denote the x-vertices and y-vertices, respectively, produced by
the algorithm. Every x-vertex belongs to a single set Ci. Let Xi, i = 1, . . . , d,
denote the vertices of X that belong to Ci. We consider the vertices of Xi in
the reverse order in which they have been queried by the algorithm. Let ki

denote the size of Xi and let xi
1, . . . , x

i
ki

denote the reverse order of x-vertices in

Xi. For each vertex xi
j we denote by yi

j the corresponding y-vertex (which was

chosen in the same step as xi
j). Now observe that (i) there are ℓ undominated

vertices in Xi before querying xi
ℓ (the vertices xi

1, . . . , x
i
ℓ) and thus there are

at least ℓ undominated vertices in Ci (i.e., at least the vertices xi
1, . . . , x

i
ℓ); and

(ii) at least ℓ undominated vertices are dominated during the iteration of the
while loop in which xi

ℓ and yi
ℓ are queried (as zi, a neighbor of xi

ℓ, has at least
ℓ undominated neighbors in Ci at that time, and yi

ℓ is chosen to maximize the
number of newly dominated vertices).

Consequently, we have that all vertices of the graph are dominated when
∑d

i=1

∑ki

ℓ=1 ℓ = n, i.e., when
∑d

i=1 ki(ki + 1) = 2n. The algorithm queries at

most |X |+ |Y | = 2|X | = 2
∑d

i=1 ki vertices. We are thus interested in how large

the sum
∑d

i=1 ki can be. We consider the following maximization problem:
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max

d
∑

i=1

ki

s.t.

d
∑

i=1

ki(ki + 1) = 2n

ki ≥ 0 ∀i = 1, . . . , d.

An optimal solution of this maximization problem is k1, . . . , kd =

√
8n
d

+1−1

2 ≤
√

2n
d . This implies that |X | = ∑d

i=1 ki ≤ d
√

2n
d =

√
2dn. �

Now we construct an example in which it is possible to compute a minimal
dominating set of size d ≥ √n − 1/2 after querying one specific vertex, but
any algorithm needs at least d queries before being able to compute a minimal
dominating set.

For any given d, let n = (d−1)(d+2)+2 and consider a family of graphs on
n vertices defined as follows. The family contains graph G with the following
structure (see Figure 3 for an illustration). The vertices in V are partitioned
into three sets L0 = {q}, L1 = {q∗, x1, . . . , xd−1} ∪ {v1, . . . , vd−1} and L2 =
Y1 ∪ · · · ∪ Yd−1, where all the sets Y1, . . . , Yd−1 have cardinality d. All vertices
but those in L2 are connected to q. Moreover, for all i = 1, . . . , d− 1, vertex xi

is also connected to the vertex vi and all vertices in Yi. It is easy to see that
both {q, x1, . . . , xd−1} and {q∗, x1, . . . , xd−1} are minimum dominating sets of G.
Consider a query at vertex q. The family of graphs that we consider is then
exactly comp(G, {q}) (recall that comp(G, Q) is the set of all graphs on vertex
set V (G) for which the query set Q delivers the same information as for graph
G). The idea of the lower bound is to show that no algorithm can discover a
minimal dominating set of G with less than d queries. More precisely, we will
show that any algorithm can be forced to query in such a way that with less
than d queries Q, for any set D ⊆ V that is a minimal dominating set in GQ,
there is a graph in comp(G, Q) ⊆ comp(G, {q}) for which D is not a minimal
dominating set.

.... .... ....

x1 x2 xd−1v1 v2 vd−1 q∗

q

Y1 Y2 Yd−1

Figure 3: The lower bound construction for a minimal dominating set

First we prove it is enough to query q∗ to find a minimal dominating set of
G. Indeed, after querying q∗, we discover all edges of G except the ones linking
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xi with the vertex vi. The layers of q∗ are {q∗}, {q}, L1 \ {q∗}, L2 (ordered
according to the distance from q∗). The query q∗ also discovers that q∗ is
connected to q only, and that, considering only the edges between the layers,
vertices of Yi are adjacent with xi only. It is now an easy observation that from
the information of query q∗ the algorithm can infer that {q, x1 . . . , xd−1} is a
minimal dominating set in G.

Now let Alg be any deterministic algorithm and let us assume that it has
queried any set Q ⊆ V \ {q∗} with |Q| < d and such that Q contains q (notice
that we can always ensure that q is the first vertex queried by the algorithm). We
will show that the algorithm cannot guarantee the minimality of any dominating
set of GQ for all graphs in comp(G, Q); moreover, it can be proved that the set
of vertices that are indistinguishable to the algorithm and that contains q∗ has
size at least d − |Q| + 1. Finally, we prove that there are at least d − |Q| + 1
indistinguishable vertices in every Yi. As a consequence, we can claim that
Alg needs at least d queries for discovering a minimal dominating set of G, as
we can force the algorithm to make the next query not equal to q∗. Expressing

d in terms of n, we obtain a lower bound of d =
√

n + 1
4 − 1

2 ≥
√

n− 1/2.

Let D be any minimal dominating set the algorithm can compute in GQ,
and, without loss of generality, let us assume that the algorithm has not queried

any vertex in {q∗} ∪ ⋃(d−1)−(|Q|−1)
i=1 ({xi, vi} ∪ Yi). Thus, there is at least one

index i (e.g., i = 1) for which there is no query in {xi, vi} ∪ Yi. Observe that if
D does not contain {x1, . . . , xd−1}, then there is a set Yj , j ∈ {1, . . . , d−1} that
is not dominated by the corresponding vertex xj . Thus, all vertices of Yj should
be in D in order to be dominated in G. However, there can be at most |Q| − 1
queries within Yj , and thus there are at least d − |Q| + 1 vertices in Yj that
are indistinguishable to the algorithm. Among these indistinguishable vertices
(Yj \Q) the algorithm does not know about possible edges, and thus it cannot
claim D is a minimal dominating set as if there is such an edge e (defining graph
G′), D is no longer minimal for G′ (removing one of the endpoints of e from D
results in a smaller dominating set), while it is minimal for G.

In the case in which D contains {x1, . . . , xd−1}, observe first that D cannot
contain any vertex from Yi, i = 1, . . . , d− 1, otherwise D cannot be a minimal
dominating set. We now argue that there has to be at least one more vertex
x in D (not equal to a vertex in Yi, i = 1, . . . , d − 1), as {x1, . . . , xd−1} is not
a dominating set on its own. At the same time, the algorithm cannot claim
the minimality of D: Among the vertices {x1, x2, . . . , xd−1} there is certainly
at least one vertex xi not in Q. Thus, the algorithm does not know whether
{q∗, xi} is an edge or not (defining graph G′), and hence cannot know whether
x is necessary to dominate all vertices of G (in G′ vertex xi is not needed, in G
it is).

Theorem 5. There are graphs for which any algorithm needs to query at least√
n − 1/2 vertices before it discovers a minimal dominating set, while an opti-

mum offline algorithm needs only one query. Thus no algorithm can achieve a
better competitive ratio than

√
n− 1/2 for the problem of discovering a minimal

dominating set.
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q2

Figure 4: Construction of a graph G for which any algorithm needs
√

n queries to discover a
maximal independent set

2.3. Discovering a Maximal Independent Set

In this section we consider the problem of discovering a maximal independent
set in G. We construct an example where an optimal offline algorithm Opt needs
one query, and any online algorithm can be forced to make at least

√
n queries

before it discovers any maximal independent set.
For every n we consider a family of graphs on n vertices. The family contains

graph G which has the following structure (see Figure 4 for an illustration). G
has a central node c that is connected to every node in V , and forms a maximal
independent set on its own. Thus, Opt can make a query at this node and
discover that {c} is a maximal independent set. We add other edges to G to
make it impossible for any algorithm to find a maximal independent set with less
than

√
n queries. First, we split the vertices of V into three groups: L0 = {q1},

L1, and L2. Vertex q1 is in L0,
√

n vertices are in L2, and the rest of the
vertices is in L1. The central vertex c is in L1. Vertex q1 is connected to every
vertex in L1, and all vertices in L1 are also connected to every vertex in L2,
and c is connected to every vertex in L1 (hence, c is indeed connected to every
vertex). There is no edge within vertices in L2. Note that a query at q1 splits
the vertices into two layers L1 and L2. The edge construction within L1 is a
recursive construction: there is a vertex q2 that, when queried, splits L1 into two
layers: L1,1 and L1,2, where L1,2 has

√
n− 1 nodes, c is in L1,1, q2 is connected

to every node in L1,1, and L1,1 is connected to every node in L1,2. There is
no edge in L1,2. We proceed recursively with the nodes within L1,1. We split
L1,1 into three parts {q3}, L1,1,1, and L1,1,2, with the obvious choice of size and
edge-set. This recursive splitting can be repeated at least

√
n times. Consider a

query at vertex q1. Then comp(G, {q1}) is the family of graphs that we consider.
Let Alg be an algorithm aiming to discover a maximal independent set. We

make the algorithm query q1 as the first vertex. Thus, the algorithm discovers
edges and non-edges between q1, L1 and L2. Observe first that X1 := {q1}∪L2

is a maximal independent set in G and there is no other one containing a vertex
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from X1. If the algorithm wants to discover X1 as an independent set (to
distinguish from graphs in comp(G, Q) that contain an edge within L2), it needs
to query all but one nodes in L2, which amounts to

√
n−1 queries in addition to

the initial query at q1 (no query in L1 can discover any information on non-edges
within L2). Observe that any such query does not discover any information
about edges and non-edges within L1. If Alg does not query only in L2 (and thus
cannot discover X1 with less than

√
n queries), we make the algorithm query

q2 as the first node in L1 (remember that all nodes in L1 are indistinguishable
to Alg). This reveals new layers within L1: the vertex q2, the layer L1,1, and
the layer L1,2. Again, X2 := {q2} ∪ L1,2 is the only maximal independent set
containing a vertex from X2, and any algorithm needs |L1,2| − 1 =

√
n − 2

queries to discover X2. If Alg queries also in L1,1, we make the first query made
by the algorithm in L1,1 be q3, etc. This recursive argument shows that no
deterministic algorithm can guarantee to find a maximal independent set of the
constructed graph with less than

√
n queries.

Theorem 6. For arbitrarily large n, there is a graph for which any algorithm
needs to query at least

√
n vertices before it discovers a maximal independent

set, while an optimum offline algorithm needs only one query. Thus there is no
o(
√

n)-competitive algorithm for the problem of discovering a maximal indepen-
dent set.

2.4. Discovering a Bridge or an Articulation Node of G

In this section we discuss two related properties of G. We want to discover
whether the graph G has an articulation node or a bridge. An articulation node
of G is a vertex v such that the induced graph on V \ {v} is not connected.
A bridge is an edge e for which the graph G \ e is not connected. We show
that if the graph contains an articulation node, no algorithm is better than
⌈n/2⌉-competitive, and if the graph contains a bridge, similarly, no algorithm
can achieve a competitive ratio better than ⌈n/2⌉. We also present an ⌈n/2⌉-
competitive algorithm for the bridge discovery problem.

We begin with the bridge discovery problem. We consider a family of graphs
which contains the graph G from Figure 5. G has an even number of vertices,
and consists of one node q0 connected to all remaining n−1 vertices v1, . . . , vn−1.
Each pair of vertices v2i−1 and v2i, i = 1, . . . , (n − 2)/2, forms an edge. The
graph contains exactly one bridge – the edge {q0, vn−1}. Any algorithm can be
forced to make the first query at q0. The considered family of graphs is then
comp(G, {q0}). After query q0, all the remaining vertices lie within the same
layer L1, and look indistinguishable to the algorithm. We can force the next
query to be at v1. This query keeps the vertices v3, v4, . . . , vn−1 indistinguishable
to the algorithm, and does not give any information on the bridge {q0, vn−1}.
Hence, the next time the algorithm queries a vertex in this group of vertices,
we can force it to query v3. Continuing in this way, the adversary can force any
algorithm to query at least the vertices v1, v3, v5, . . . , vn−3, which then together
discover the bridge {q0, vn−1}. If fewer queries are made, there is still a graph
in comp(G, Q) that contains no bridge. Observe that an optimum algorithm can

16



q0

v1 v2 vn−1

Figure 5: Bridge discovery

query vn−1 to discover the bridge in G. This shows the lower bound of n/2
on the competitive ratio when n is even. For odd number of vertices, we can
modify the graph G from Figure 5 and add to the graph another bridge – an
edge {q0, vn} (thus having in total n + 1 vertices – an odd number). The same
arguments show that the algorithm needs to, after querying q0, v1, v3, . . . , vn−3,
additionally query a vertex in {vn−1, vn−2}, thus needing in total at least 1 +
n/2 = 1 + ⌊(n + 1)/2⌋ = ⌈(n + 1)/2⌉ vertices.

For the problem of discovering an articulation node we prove a lower bound
of n/2 by modifying the input graph G according to the vertices queried by the
algorithm (i.e., the graph constructed by the adversary depends on the queries
made by the algorithm). The graph G will be constructed from a star centered
at a node q by adding edges where “needed”. We will make sure that there is a
node q∗ 6= q such that q∗ is incident (in G) with q only. In this case, by querying
q∗ we can assert that q is an articulation node as we discover that q∗ has degree
1. Before explaining how the idea behind the proof of the lower bound works,
we provide some new definitions. First, given a set of queries Q, we define a
Q-block as a maximal set of vertices in V \ {q} that are connected in the graph
GQ \ {q}. Observe that initially, for Q = {q}, every vertex other than q forms
a Q-block. Clearly, if Q = V , we discover the whole graph, and thus G has an
articulation node if and only if there are at least two Q-blocks for Q = V . The
idea of the lower bound is to prevent any algorithm from detecting this quickly.
In every Q-block B of GQ we consider a special vertex – an anchor. An anchor
a of Q-block B is a vertex from B for which the query set Q does not reveal
whether a is connected to a vertex of any other Q-block in the original graph.
As long as there are at least two Q-blocks, by the presence of anchors it follows
that Q is not enough to distinguish G from another G′ ∈ comp(G, Q) that is
2-vertex connected (recall that comp(G, Q) is the set of all graphs G′ that give
the same query results as G for queries in Q). In other words, after querying
Q we do not yet know whether all Q-blocks are connected to one another, and
hence we cannot claim that G is (or is not) 2-vertex connected. Clearly, in order
to claim that G is 2-vertex connected, the algorithm has to prove that V \{q} is
a Q-block, i.e., all the graphs in comp(G, Q) are 2-vertex connected. Conversely,
in order to claim that G is not 2-vertex connected, the algorithm has to prove
that all the graphs in comp(G, Q) are not 2-vertex connected.

Now, let us consider any deterministic algorithm. As all vertices are indis-
tinguishable, we may assume that the algorithm starts by querying q0, so that
we have Q = {q0} initially. For each vertex x in V \ {q0}, we have that {x} is a
Q-block whose anchor vertex is x. As all vertices in V \ {q0} are indistinguish-
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able, we can assume that the algorithm queries some vertex q1 /∈ {q∗, q0} next.
Then we grow the Q-block B = {q1} by merging it with two other Q-blocks
B′ = {x′} and B′′ = {x′′}, with x′, x′′ 6= q∗. For this, we add the edges {q1, x

′}
and {x′, x′′} to G and let x′′ be the new anchor vertex of the enlarged Q-block
B = {q1, x

′, x′′}, where the set Q is now equal to {q0, q1}. Notice that there are
2-vertex connected graphs in comp(G, {q0, q1}), as we do not yet know whether
there are edges connecting two anchor vertices to each other. In our construc-
tion, we always grow the Q-block B while the Q-blocks disjoint from B remain
singletons.

At a generic step, let us assume that the algorithm has queried all the vertices
in some set Q and that comp(G, Q) contains at least one 2-vertex connected
graph and at least one graph with an articulation node. The algorithm can
either choose to query a vertex q′ in the Q-block B that we have grown so far or
not. In the first case, notice that the new information discovered is maximized
when q′ is the anchor vertex of the Q-block B, and thus we can assume that
the query vertex q′ is equal to the anchor vertex a of B. In this case we merge
B with two other Q-blocks B′ = {x′} and B′′ = {x′′}, where x′, x′′ 6= q∗ (it
is worth noticing that all vertices but q and those in B are indistinguishable
in GQ) by simply adding edges {a, x′} and {x′, x′′} to G and letting x′′ be
the anchor of the enlarged Q′-block B′ that contains the old Q-block B, where
Q′ = Q∪ {q′}. In the case where query q′ is made outside B, we merge the two
singleton Q-blocks {q′} and {x′} to B by adding edges {q′, x′}, and {x′, a} to
G, where a is the anchor vertex of B, and x′ is any vertex outside B that is not
equal to q′, q∗. In this case, a remains the anchor of the new Q′-block B′ that
contains the original Q-block B (where Q′ = Q ∪ {q′}).

Observe that after k generic steps, when k + 1 queries have been made
(including the initial query q0), block B has size at most 2k + 1 (it can be
smaller if the algorithm queries a vertex from B that is not an anchor). At
the end, depending on whether n is odd or even and whether the algorithm
queries only anchors or not, just before the algorithm discovers that there is
q∗ (a node of degree 1), there is, besides B, either only one singleton Q-block
– vertex q∗, or two singletons – vertex q∗ and another vertex, let us call it w.
In the latter case, we let w be connected to the anchor of B in G. In both
cases, a query at the anchor of B, or a query at q∗, or a query at w discovers
q∗. In both cases, the set B, before the final query, has size at least n − 3
and the algorithm makes at least ⌈n/2⌉ queries (the initial query q, at least
⌈(|B|− 1)/2⌉ = ⌈(n− 4)/2⌉ = ⌈n/2⌉− 2 queries in B before the final query, and
the final query).

Theorem 7. For the problem of discovering a bridge, and for the problem of
discovering an articulation node, there cannot be a deterministic algorithm with
competitive ratio better than ⌈n/2⌉.

We now present a simple algorithm for determining whether a graph G is
2-edge connected. The algorithm needs at most ⌈n

2 ⌉ queries. The algorithm
makes an arbitrary initial query q0. The resulting layered graph G{q0} is used
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Figure 6: Assigning vertex w′ to the query qi

by the algorithm to choose the next queries. We denote by qi the query that
is made by the algorithm in the i-th step, and by Qi all the queries (including
qi) made so far. Observe that if there is j such that there is only one edge e
between Lj and Lj+1, the edge e is a bridge of G. Observe also that if G has a
bridge e ∈ E, it has to appear as an edge in the result of the query q0. Thus,
when we choose query qi+1, we can concentrate on those edges of Gq0

that are
not part of any cycle of GQi

. While there are such edges (and thus candidates
for a bridge), the algorithm picks among all such edges the farthest endpoint
from q0 (breaking ties arbitrarily), and queries it. We claim that this algorithm
terminates, that the algorithm knows at the end whether the graph has a bridge
or not, and that it makes at most ⌊(n− 1)/2⌋ queries in addition to q0 (and is
thus ⌈n/2⌉-competitive).

Let qi be the query of the algorithm in step i, and let ei = {ui, qi} be the
bridge of GQi−1

with qi the farthest endpoint from q0 among all bridges of
GQi−1

. Let ℓi denote the distance of qi from q0 (both in G and GQi−1
). Let

R(qi) be the set of vertices from layers Lj , j ≥ ℓi, that can be reached from qi

by a path that uses at most one vertex from each Lj , j ≥ ℓi (i.e., if we orient
the edges according to increasing distance from q0, the set R(qi) is the set of
all vertices for which there exists a directed path from qi). Thus, R(qi) forms a
component of GQi−1

\ {ei}, as there cannot be any edge with endpoints in the
same layer leaving R(qi) (otherwise ei would no longer be a bridge in GQi−1

).
Let us assume that ei is not a bridge in G. Then there exists a cycle C in G
that contains the edge ei. The cycle C has to contain a not yet discovered edge
ec = {w, w′} that is adjacent to a vertex w in R(qi), and to a vertex w′ /∈ R(qi).
The vertices w and w′ have to be from the same layer Lj , j ≥ ℓi (as the edge
{w, w′} was not discovered by q0). Clearly, qi discovers this edge {w, w′}, as the
distance from qi to w is j − ℓi (as w ∈ R(qi)), and the distance from qi to w′

is bigger than j − ℓi (as w′ /∈ R(qi)). As {w, w′} is a newly discovered edge, it
follows that w′ was not queried before. To show that at most ⌊(n−1)/2⌋ queries
are made by the algorithm after the query q0, we want to assign one unqueried
vertex to each queried vertex. In our case we assign w′ to qi (notice that w
could possibly be equal to qi, and thus cannot be assigned to qi). We now show
that w′ is not already assigned to a previously queried vertex qk, k < i, with
ℓk ≥ ℓi. Figure 6 depicts the situation. If this is the case, w′ is assigned to
query qk because w′ is an endpoint of an edge {w′, w′′} that was discovered by
query qk, and that is a part of a cycle that shows that qk is not an endpoint of
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a bridge in G. Thus, w′′ ∈ R(qk) and w′ /∈ R(qk). Clearly, the distance between
qk and w′ is j − ℓk + 1. The distance between qk and w has to be j − ℓk + 1
as well, as the edge {w, w′} is not discovered by qk. But this is not possible.
The shortest path from qk to w cannot go via a vertex from layer Ls, s < ℓk

(the distance would be bigger than j− ℓk +1). Thus, the shortest path between
qk and w goes only via vertices of layers Ls, s ≥ ℓk. But then ei cannot be a
bridge in GQi−1

: The shortest path from qk to w, the shortest path from w to
qi, and the path from qi to qk via q0 induce a cycle with ei, using edges known
after query qk. This is a contradiction, and thus w′ is not assigned to qk and
can be assigned to qi.

Thus, if ei is not a bridge, we will discover at least one new edge ec that
includes ei into a cycle of G, and one of the endpoints of ec can be assigned
to qi. If we do not discover any such edge, the edge ei is a bridge of G. The
assignment argument shows that after q0 we query at most ⌊(n−1)/2⌋ vertices.
The termination of the algorithm follows from the fact that we can query at most
n vertices, and from the fact that if G is 2-edge connected and GQi

contains a
bridge, then its endpoint further from q0 was not queried yet, and we still have
a vertex to query in step i + 1.

Theorem 8. There is an ⌈n/2⌉-competitive algorithm for the problem of dis-
covering a bridge of a graph.

2.5. Discovering the Minimum or Maximum Degree of G

We investigate how many queries are needed in order to discover the mini-
mum degree of G, and the maximum degree of G.

The lower bound construction for the bridge-discovery problem (Section 2.4)
presents a family of graphs containing graph G from Figure 5 where any de-
terministic algorithm needs at least n/2 queries to discover the only vertex of
degree one in G. This shows that any deterministic algorithm needs at least n/2
queries to discover the minimum degree of G, whereas an optimum algorithm
needs only one query. This yields a lower bound n/2 on the competitive ratio
of deterministic algorithms.

For the problem of discovering the maximum degree we similarly present
a lower bound n/2 on the competitive ratio of deterministic algorithms. Con-
sider a family of graphs containing the graph G with n = 2k vertices, which
is constructed from a complete graph Kn by deleting the k − 1 “even” edges
{v2i, v2i+1}, i = 1, . . . , k − 1, from the cycle v1, v2, v3, . . . , vn. An example of
such a graph for n = 8 is shown in Figure 7. The considered family of graphs is
comp(G, {v2}). Observe that v1 and vn have degree n−1, and thus the maximum
degree of G can be discovered by one query at v1 or vn. On the other hand,
any other vertex vi has only n− 2 neighbors, and they are indistinguishable by
the query at vi (i.e., the query cannot distinguish two graphs which differ in
an edge among two of the neighbors). Thus, every deterministic algorithm can
be forced to make its first k − 1 queries at endpoints of non-edges (and not at
v1 or vn). At this time it is still unknown to the algorithm whether the edge
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Figure 7: A graph for the lower bound of maximum-degree discovery. The dotted lines depict
the missing (deleted) edges in the graph

{v1, vn} is present in the graph. Therefore, the algorithm must make at least
one additional query before it can assert that the maximum degree is n− 1.

Theorem 9. For the problem of discovering the maximum degree, and for the
problem of discovering the minimum degree, there cannot be a deterministic
algorithm with competitive ratio better than n/2.

3. Conclusions

We have introduced the online problem of discovering graph properties with
all-shortest-paths queries, and considered in more detail the discovery of the
diameter, a minimal dominating set, a maximal independent set, the 2-edge
connectivity, the 2-vertex connectivity, the maximum degree, and the minimum
degree of an unknown graph. We have presented lower bounds for the prob-
lems, and also an O(

√
d · n)-competitive algorithm for the discovery of a minimal

dominating set, and an optimal ⌈n
2 ⌉-competitive algorithm for the bridge dis-

covery problem. We have also introduced a technique of querying an interface
of a graph GQ and employed it to design algorithms for approximate diameter
discovery. This technique may prove to be helpful in other discovery settings.
Furthermore we have shown an adversarial lower bound construction where the
graph depends on the queries made by the algorithm. This is the first such
construction in the discovery setting as introduced in [5].

This paper does not completely resolve the problems considered. For ex-
ample, for the problem of discovering a maximal independent set, finding an
algorithm with competitive ratio close to the presented lower bound is certainly
a challenging problem. Similarly, one could search for an ⌈n/2⌉-competitive al-
gorithm for the problem of discovering an articulation node. Another interesting
goal is to discover the maximum degree or the minimum degree only approx-
imately – then our lower bounds no longer hold. An immediate consideration
for future research are other graph-theoretic properties of communication net-
works, and studying the property-discovery setting with different query models.
We note that we have only considered deterministic algorithms. Certainly, us-
ing randomization might help, and studying the effect of randomization is an
inviting topic.
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Our work was motivated by the current intensive activities in the area of
mapping the Internet. The all-shortest-paths queries model the information
that is obtained from routing tables of BGP routers. Of course, our assumption
of getting all shortest paths is not reflected fully in reality – it certainly is a
simplification that helps to analyze the problem. In reality, we would assume to
get much less information. The lower bounds presented in this paper suggest,
however, that in any realistic situation we cannot hope for better results.

Acknowledgments

This work was partially supported by European Commission - Fet Open
project DELIS IST-001907 Dynamically Evolving Large Scale Information Sys-
tems, for which funding in Switzerland is provided by SBF grant 03.0378-1.

Part of this work was done during a period of study leave of the second
author granted by University of Leicester.

The authors would like to thank the anonymous referees for useful comments
and suggestions that helped to improve the presentation of this article.

References

[1] Route Views Project, University of Oregon, http://www.routeviews.org.

[2] DIMES, Mapping the internet, http://www.netdimes.org/.

[3] B. Cheswick, Internet mapping project,
http://www.cheswick.com/ches/map/.
URL http://research.lumeta.com/ches/map/

[4] R. Govindan, H. Tangmunarunkit, Heuristics for Internet map discovery, in:
Proceedings of the 19th Conference on Computer Communications (IEEE
INFOCOM), Tel Aviv, Israel, 2000, pp. 1371–1380.
URL citeseer.nj.nec.com/govindan00heuristics.html
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