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What are geometric intersection graphs?

☛ vertices = geometric objects

☛ edges = non-empty intersection between objects

Example: a rectangle intersection graph

intersection graph

geometric representation
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Popular geometric intersection graphs

❏ disks (➜ disk graphs), squares
❏ “fat” objects
❏ ellipses, rectangles (axis-aligned), arbitrary convex

objects
❏ line segments, curves, higher-dimensional objects

The recognition problem is typically NP-hard!!

Some Applications:

➱ Wireless networks (frequency assignment problems)
➱ Map labeling
➱ Resource allocation (e.g. admission control in line

networks)
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Application: Wireless networks
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Application: Map labeling

(illustration taken from a paper by van Kreveld, Strijk, Wolff)
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Application: Call admission control
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Network (line topology)
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Disk graphs

. . . are the intersection graphs of disks in the plane:
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Subclasses of disk graphs

✿ Unit disk graphs: all disks have diameter 1

✿ Coin graphs: touching graphs of disks whose interiors
are disjoint

Coin graphs are exactly the planar graphs! [Koebe, 1936]
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Maximum Independent Set
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Maximum Independent Set (MIS)

Input: a set D of disks in the plane
Feasible solution: subset A ⊆ D of disjoint disks
Goal: maximize |A|

In the weighted case (MWIS), each disk is associated with
a positive weight.
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Approximation algorithms for MIS

An algorithm for MIS is a ρ-approximation algorithm if it

➢ runs in polynomial time and

➢ always outputs an independent set of size at least
OPT/ρ, where OPT is the size of the optimal
independent set.

A polynomial-time approximation scheme (PTAS) is a
family of (1 + ε)-approximation algorithms for every constant
ε > 0.

For MWIS, the definitions are analogous.
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Known results for MIS in disk graphs

Unit disk graphs:
NP-hard [Clark, Colbourn, Johnson 1990].
Greedy gives a 5-approximation, and even a
3-approximation if applied from top to bottom
[Marathe et al., 1995]
PTAS [Hunt III et al., 1994], based on the shifting
strategy [Baker, 1984; Hochbaum and Maass, 1985]

Arbitrary disk graphs:
PTAS [E, Jansen, and Seidel, 2001; Chan, 2001],
using shifting strategy on multiple layers

The PTASs generalize to squares, regular polygons, or,
more generally, arbitrary fat objects.

They also generalize to MWIS.
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Shifting strategy for unit disk graphs
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Remove disks hitting active lines (and shift active lines).

T. Erlebach – Approximation algorithms for geometric intersection graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.14/39



Brute-force solution to subproblems

Active lines partition the plane into squares that can be
considered independently:

➥ Compute max independent set I in each square by
brute-force enumeration. As |I| = O(k2), time nO(k2).
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PTAS for MIS in unit disk graphs

➊ For 0 ≤ r, s < k, get D(r, s) from D by deleting disks that

➙ hit a horizontal line equal to r modulo k or
➙ hit a vertical line equal to s modulo k.

➋ Compute the max independent set IS in each k × k
square S of D(r, s) by brute-force enumeration.

➌ The union of the sets IS gives a maximum independent
set in D(r, s).

➍ Output the largest independent set obtained in this way.

Running-time: nO(k2) for n disks. (Can be made nO(k).)

Approximation: Solution is at least
(

1 − 2
k

)

OPT.
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Arbitrary disk graphs

➊ Classify the disks into layers according to their sizes.

➋ Use the shifting strategy on all layers simultaneously.

➌ After removing all disks that hit active lines, use
dynamic programming to compute a maximum
independent set.

Classification into layers:
➢ Assume that the largest disk has diameter 1.
➢ Layer `: disks with diameter d, 1

(k+1)` ≥ d > 1
(k+1)`+1 .

➢ Lines on layer ` are 1
(k+1)` apart, every k-th line is active.
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Partition into layers

➨

➨
➨

Layer 0:

Layer 1:

Layer 2:
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Layer 0:

➨

Layer 1:

➨

Layer 2:

➨
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Dynamic programming idea

For square S on level `, compute for every independent set I
of larger disks intersecting S, a maximum independent set
of smaller disks inside S that can be added to I. Time nO(k2).

Works for weighted case, for higher dimensions, and for
arbitrary disk-like or fat objects:

All we need is: The number of disjoint large objects that
can intersect a box S of side length k is bounded by a
function of k.
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Recent related results

[Nieberg, Hurink, Kern, 2004] PTAS for maximum
weight independent set in unit disk graphs without given
representation.

[Marx, 2005] Maximum independent set in unit disk
graphs is W[1]-hard. (➠ No FPT algorithm and no
EPTAS unless FPT=W[1].)

[van Leeuwen, 2005] Asymptotic FPTAS for maximum
independent set (and various other problems) in unit
disk graphs of bounded density.
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Minimum Dominating Set
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Minimum Dominating Set (MDS)

Input: a set D of disks in the plane
Feasible solution: subset A ⊆ D that dominates all disks
Goal: minimize |A|

In the weighted case (MWDS), each disk is associated with
a positive weight.
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Known results for MDS

In arbitrary graphs, ratio Θ(log n) is best possible
(unless P = NP). [Feige ’96; Arora and Sudan ’97]

For MDS in unit disk graphs, a PTAS can be obtained
using the shifting strategy [Hunt III et al., 1994]:

Any maximal independent set is a dominating set.
Therefore, the smallest dominating set in a square
can be found in polynomial time by enumeration.
Special treatment of disks on square boundaries.

Questions:
What about MWDS in unit disk graphs? (backbone
formation in wireless ad-hoc networks, [Wang&Li ’05])
What about MDS (and MWDS) in arbitrary disk
graphs (or intersection graphs of fat objects)?
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MWDS can be arbitrarily large . . .

. . . for unit disks in an area of constant size:

small weight large weight

➠ Brute-force enumeration does no longer work.
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MDS can use arbitrarily many . . .

. . . larger disks intersecting a square:

➠ Dynamic programming table size is no longer polynomial.
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MWDS in unit disk graphs

Theorem. [Ambühl, E, Mihal’ák, Nunkesser, 2006]
There is a constant-factor approximation algorithm for
MWDS in unit disk graphs.

Ideas:

Partition the plane into squares and solve the problem
for each square separately.

In each square, reduce the problem to the problem of
covering points with weighted disks.

Use enumeration techniques (guess properties of OPT)
and dynamic programming to solve the latter problem.

The constant factor is currently 72.
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The subproblem for each square

Find a dominating set for the square:
Let DS denote the set of disks with center in a 1 × 1
square S.
Let N(DS) denote the disks in DS and their
neighbors.
Task: Find a minimum weight set of disks in N(DS)
that dominates all disks in DS.

Reduces to covering points in a square with weighted
disks:

Let P be a set of points in a 1
2 × 1

2 square S.

Let D be a set of weighted unit disks covering P .
Task: Find a minimum weight set of disks in D that
covers all points in P .
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Covering points by weighted disks

Remark. O(1)-approximation algorithms are known for
unweighted disk cover [Brönninmann and Goodrich, 1995].
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Polynomial-time solvable subproblem

Given a set of points in a strip, and a set of weighted
unit disks with centers outside the strip, compute a
minimum weight set of disks covering the points.
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Dynamic programming

Vertical sweepline, table entry for every pair of disks
that could be on the lower and upper envelope:

T. Erlebach – Approximation algorithms for geometric intersection graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.31/39



Main cases: One hole or many holes

One-hole case:

Enlarged:

Many-holes case:

Enlarged:
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Sketch of the one-hole case

Step 1: Guess the four “corner points” of the optimal
solution (each of them is defined by two disks).
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Sketch of the one-hole case

Step 2: Two regions that can only be covered with disks
whose centers are to the left or right of the square.
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Sketch of the one-hole case

Step 3: Remaining area can only be covered with disks
whose centers are above or below the square.
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Summary: MWDS in unit disk graphs

For each square, reduce the weighted dominating set
problem to a weighted disk cover problem.

Distinguish one-hole case and many-holes case.

In both cases, we have a 2-approximation algorithm for
covering points in a square with weighted unit disks.

This implies the constant-factor approximation
algorithm for MWDS in unit disk graphs.

The algorithm extends to the minimum weight
connected dominating set problem in unit disk graphs.
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Further results on MDS and MWDS

Theorem. [E, van Leeuwen 2006] For disk graphs with
bounded ply, there is a (3 + ε)-approximation algorithm for
MWDS.

Theorem. [E, van Leeuwen 2006] For rectangle
intersection graphs, MDS is APX-hard.

Theorem. [E, van Leeuwen 2006] For intersection graphs
of “squares with bumps”, MDS cannot be approximated
within o(log n) unless P = NP .
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Open Problems
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Disk graphs

Is there a PTAS for disk graphs with bounded ply?

What is the best possible approximation ratio for
minimum dominating set in disk graphs:

Is there an O(1)-approximation algorithm or even a
PTAS?
Is the problem APX-hard?

What is the complexity of the maximum clique problem
in disk graphs?
(polynomial for unit disk graphs [Clark et al., 1990],
NP-hard for ellipses [Ambühl, Wagner 2002])
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Rectangle intersection graphs

What is the best possible approximation ratio for
maximum independent set?

Known: For every c > 0, there is an approximation
algorithm with ratio 1 + 1

c
log n. [Berman et al., 2001]

Known: If all rectangles have the same height, there
is a PTAS. [Agarwal et al., 1998]

Can we achieve approximation ratio o(log n) for MDS
and MWDS?

Can rectangle intersection graphs be colored with O(ω)
colors, where ω is the clique number?
(best known upper bound: O(ω2) colors [Asplund and
Grünbaum, 1960])
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Thank you!
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