Approximation algorithms for geometric intersection graphs

Thomas Erlebach

Based on joint work with: Christoph Ambühl, Klaus Jansen, Erik Jan van Leeuwen, Matúš Mihaľák, Marc Nunkesser, Eike Seidel

Outline

Introduction

Independent sets in disk graphs

- A PTAS for unit disks
- A PTAS for arbitrary disks

Dominating sets

- Unweighted dominating sets in unit disk graphs
- Why the PTAS techniques don't seem to work for the weighted case or arbitrary disks
- A constant-factor approximation algorithm for weighted dominating sets in unit disk graphs
- Further results on dominating sets
- Some open problems

What are geometric intersection graphs?

- vertices = geometric objects
- edges = non-empty intersection between objects

Example: a rectangle intersection graph

geometric representation

Popular geometric intersection graphs

☐ disks (→ disk graphs), squares

- □ "fat" objects
- ellipses, rectangles (axis-aligned), arbitrary convex objects
- □ line segments, curves, higher-dimensional objects

The recognition problem is typically *NP*-hard!!

Some Applications:

- ⇒ Wireless networks (frequency assignment problems)
- ⇒ Map labeling
- ⇒ Resource allocation (e.g. admission control in line networks)

Application: Wireless networks

Application: Map labeling

(illustration taken from a paper by van Kreveld, Strijk, Wolff)

Application: Call admission control

T. Erlebach – Approximation algorithms for geometric intersection graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May '06 – p.7/39

... are the intersection graphs of disks in the plane:

Subclasses of disk graphs

Unit disk graphs: all disks have diameter 1

Coin graphs: touching graphs of disks whose interiors are disjoint

Coin graphs are exactly the planar graphs! [Koebe, 1936]

Maximum Independent Set

Maximum Independent Set (MIS)

Input: a set \mathcal{D} of disks in the plane **Feasible solution:** subset $A \subseteq \mathcal{D}$ of disjoint disks **Goal:** maximize |A|

In the weighted case (MWIS), each disk is associated with a positive weight.

Approximation algorithms for MIS

An algorithm for MIS is a ρ -approximation algorithm if it

- > runs in **polynomial time** and
- always outputs an independent set of size at least OPT/ρ, where OPT is the size of the optimal independent set.

A polynomial-time approximation scheme (PTAS) is a family of $(1 + \varepsilon)$ -approximation algorithms for every constant $\varepsilon > 0$.

For MWIS, the definitions are analogous.

Known results for MIS in disk graphs

Unit disk graphs:

- *NP*-hard [Clark, Colbourn, Johnson 1990].
- Greedy gives a 5-approximation, and even a 3-approximation if applied from top to bottom [Marathe et al., 1995]
- PTAS [Hunt III et al., 1994], based on the shifting strategy [Baker, 1984; Hochbaum and Maass, 1985]

Arbitrary disk graphs:

- PTAS [E, Jansen, and Seidel, 2001; Chan, 2001], using shifting strategy on multiple layers
- The PTASs generalize to squares, regular polygons, or, more generally, arbitrary fat objects.
- They also generalize to MWIS.

Shifting strategy for unit disk graphs

Remove disks hitting active lines (and shift active lines).

Brute-force solution to subproblems

Active lines partition the plane into squares that can be considered independently:

→ Compute max independent set *I* in each square by brute-force enumeration. As $|I| = O(k^2)$, time $n^{O(k^2)}$.

PTAS for MIS in unit disk graphs

- For $0 \leq r, s < k$, get $\mathcal{D}(r, s)$ from \mathcal{D} by deleting disks that
 - \rightarrow hit a horizontal line equal to $r \mod k$ or
 - \rightarrow hit a vertical line equal to s modulo k.
- **2** Compute the max independent set I_S in each $k \times k$ square S of $\mathcal{D}(r, s)$ by brute-force enumeration.
- The union of the sets I_S gives a maximum independent set in $\mathcal{D}(r, s)$.
- Output the largest independent set obtained in this way.

Running-time: $n^{O(k^2)}$ for *n* disks. (Can be made $n^{O(k)}$.)

Approximation: Solution is at least $(1 - \frac{2}{k})$ OPT.

Arbitrary disk graphs

- Classify the disks into layers according to their sizes.
- **2** Use the shifting strategy on all layers simultaneously.
- After removing all disks that hit active lines, use dynamic programming to compute a maximum independent set.

Classification into layers:

- > Assume that the largest disk has diameter 1.
- > Layer ℓ : disks with diameter d, $\frac{1}{(k+1)^{\ell}} \ge d > \frac{1}{(k+1)^{\ell+1}}$.
- > Lines on layer ℓ are $\frac{1}{(k+1)^{\ell}}$ apart, every k-th line is active.

Partition into layers

T. Erlebach – Approximation algorithms for geometric intersection graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May '06 – p.19/39

Dynamic programming idea

For square *S* on level ℓ , compute for every independent set *I* of larger disks intersecting *S*, a maximum independent set of smaller disks inside *S* that can be added to *I*. Time $n^{O(k^2)}$.

Works for weighted case, for higher dimensions, and for arbitrary disk-like or fat objects:

All we need is: The number of disjoint large objects that can intersect a box S of side length k is bounded by a function of k.

Recent related results

- [Nieberg, Hurink, Kern, 2004] PTAS for maximum weight independent set in unit disk graphs without given representation.
- [Marx, 2005] Maximum independent set in unit disk graphs is W[1]-hard. (INP No FPT algorithm and no EPTAS unless FPT=W[1].)
- [van Leeuwen, 2005] Asymptotic FPTAS for maximum independent set (and various other problems) in unit disk graphs of bounded density.

Minimum Dominating Set

Minimum Dominating Set (MDS)

Input: a set \mathcal{D} of disks in the plane **Feasible solution:** subset $A \subseteq \mathcal{D}$ that dominates all disks **Goal:** minimize |A|

In the weighted case (MWDS), each disk is associated with a positive weight.

Known results for MDS

- In arbitrary graphs, ratio $\Theta(\log n)$ is best possible (unless P = NP). [Feige '96; Arora and Sudan '97]
- For MDS in unit disk graphs, a PTAS can be obtained using the shifting strategy [Hunt III et al., 1994]:
 - Any maximal independent set is a dominating set.
 - Therefore, the smallest dominating set in a square can be found in polynomial time by enumeration.
 - Special treatment of disks on square boundaries.

Questions:

- What about MWDS in unit disk graphs? (backbone formation in wireless ad-hoc networks, [Wang&Li '05])
- What about MDS (and MWDS) in arbitrary disk graphs (or intersection graphs of fat objects)?

MWDS can be arbitrarily large ...

... for unit disks in an area of constant size:

small weight

large weight

Brute-force enumeration does no longer work.

MDS can use arbitrarily many ...

... larger disks intersecting a square:

Dynamic programming table size is no longer polynomial.

MWDS in unit disk graphs

Theorem. [Ambühl, E, Mihal'ák, Nunkesser, 2006] There is a constant-factor approximation algorithm for MWDS in unit disk graphs.

Ideas:

- Partition the plane into squares and solve the problem for each square separately.
- In each square, reduce the problem to the problem of covering points with weighted disks.
- Use enumeration techniques (guess properties of OPT) and dynamic programming to solve the latter problem.

The constant factor is currently 72.

The subproblem for each square

- Find a dominating set for the square:
 - Let \mathcal{D}_S denote the set of disks with center in a 1×1 square S.
 - Let $N(\mathcal{D}_S)$ denote the disks in \mathcal{D}_S and their neighbors.
 - Task: Find a minimum weight set of disks in $N(\mathcal{D}_S)$ that dominates all disks in \mathcal{D}_S .
- Reduces to covering points in a square with weighted disks:
 - Let P be a set of points in a $\frac{1}{2} \times \frac{1}{2}$ square S.
 - Let \mathcal{D} be a set of weighted unit disks covering P.
 - Task: Find a minimum weight set of disks in \mathcal{D} that covers all points in P.

Covering points by weighted disks

Covering points by weighted disks

Remark. O(1)-approximation algorithms are known for unweighted disk cover [Brönninmann and Goodrich, 1995].

Polynomial-time solvable subproblem

Given a set of points in a strip, and a set of weighted unit disks with centers outside the strip, compute a minimum weight set of disks covering the points.

Dynamic programming

Vertical sweepline, table entry for every pair of disks that could be on the lower and upper envelope:

Main cases: One hole or many holes

One-hole case:

Enlarged:

Many-holes case:

Enlarged:

Sketch of the one-hole case

Step 1: Guess the four "corner points" of the optimal solution (each of them is defined by two disks).

Sketch of the one-hole case

Step 2: Two regions that can only be covered with disks whose centers are to the left or right of the square.

Sketch of the one-hole case

Step 3: Remaining area can only be covered with disks whose centers are above or below the square.

Summary: MWDS in unit disk graphs

- For each square, reduce the weighted dominating set problem to a weighted disk cover problem.
- Distinguish one-hole case and many-holes case.
- In both cases, we have a 2-approximation algorithm for covering points in a square with weighted unit disks.
- This implies the constant-factor approximation algorithm for MWDS in unit disk graphs.
- The algorithm extends to the minimum weight connected dominating set problem in unit disk graphs.

Further results on MDS and MWDS

Theorem. [E, van Leeuwen 2006] For disk graphs with bounded ply, there is a $(3 + \varepsilon)$ -approximation algorithm for MWDS.

Theorem. [E, van Leeuwen 2006] For rectangle intersection graphs, MDS is APX-hard.

Theorem. [E, van Leeuwen 2006] For intersection graphs of "squares with bumps", MDS cannot be approximated within $o(\log n)$ unless P = NP.

Open Problems

Is there a PTAS for disk graphs with bounded ply?

- Is there a PTAS for disk graphs with bounded ply?
- What is the best possible approximation ratio for minimum dominating set in disk graphs:

- Is there a PTAS for disk graphs with bounded ply?
- What is the best possible approximation ratio for minimum dominating set in disk graphs:
 - Is there an O(1)-approximation algorithm or even a PTAS?

- Is there a PTAS for disk graphs with bounded ply?
- What is the best possible approximation ratio for minimum dominating set in disk graphs:
 - Is there an O(1)-approximation algorithm or even a PTAS?
 - Is the problem APX-hard?

- Is there a PTAS for disk graphs with bounded ply?
- What is the best possible approximation ratio for minimum dominating set in disk graphs:
 - Is there an O(1)-approximation algorithm or even a PTAS?
 - Is the problem APX-hard?

 What is the complexity of the maximum clique problem in disk graphs?
 (polynomial for unit disk graphs [Clark et al., 1990], NP-hard for ellipses [Ambühl, Wagner 2002])

What is the best possible approximation ratio for maximum independent set?

- What is the best possible approximation ratio for maximum independent set?
 - Known: For every c > 0, there is an approximation algorithm with ratio $1 + \frac{1}{c} \log n$. [Berman et al., 2001]

- What is the best possible approximation ratio for maximum independent set?
 - Known: For every c > 0, there is an approximation algorithm with ratio $1 + \frac{1}{c} \log n$. [Berman et al., 2001]
 - Known: If all rectangles have the same height, there is a PTAS. [Agarwal et al., 1998]

- What is the best possible approximation ratio for maximum independent set?
 - Known: For every c > 0, there is an approximation algorithm with ratio $1 + \frac{1}{c} \log n$. [Berman et al., 2001]
 - Known: If all rectangles have the same height, there is a PTAS. [Agarwal et al., 1998]
- Can we achieve approximation ratio $o(\log n)$ for MDS and MWDS?

- What is the best possible approximation ratio for maximum independent set?
 - Known: For every c > 0, there is an approximation algorithm with ratio $1 + \frac{1}{c} \log n$. [Berman et al., 2001]
 - Known: If all rectangles have the same height, there is a PTAS. [Agarwal et al., 1998]
- Can we achieve approximation ratio $o(\log n)$ for MDS and MWDS?
- Can rectangle intersection graphs be colored with O(ω) colors, where ω is the clique number?
 (best known upper bound: O(ω²) colors [Asplund and Grünbaum, 1960])

Thank you!

T. Erlebach – Approximation algorithms for geometric intersection graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May '06 – p.39/39