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The Internet

Size of the Internet (as of 2003):
∼ 7–10M routers
∼ 170M hosts
∼ 650M users

In recent years, significant interest in mapping the
Internet.

Different kinds of Internet graphs:
Router-level graph (routers and hosts)
traceroute experiments
AS-level graph (autonomous systems)
traceroute, BGP tables, registries
WWW graph (web pages and hyperlinks)
crawling
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Autonomous Systems (ASs)

AS: subnetwork under separate administrative control.

Examples:
AS8: Rice University
AS378: ILAN
AS701: UUNET
AS768: JANET
AS20965: GEANT

An AS can consist of tens to thousands of routers and
hosts.

roughly 15,000 ASs in 2003, 23,000 ASs in 2006.

Routing between ASs: BGP (border gateway protocol)
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AS786:
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AS20965: GEANT
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Traceroute: Leicester – Haifa
traceroute: pc14.mcs.le.ac.uk → www.haifa.ac.il
1 gate (143.210.72.1)
2 143.210.6.2 (143.210.6.2)
3 uol3-gw-7-1.emman.net (194.82.121.177)
4 uol1-gw-g3.emman.net (212.219.212.85)
5 uon6-gw-7-1.emman.net (194.82.121.25)
6 nottingham-bar.ja.net (146.97.40.21)
7 po12-0.lond-scr.ja.net (146.97.35.13)
8 po6-0.lond-scr3.ja.net (146.97.33.30)
9 po1-0.gn2-gw1.ja.net (146.97.35.98)
10 janet.rt1.lon.uk.geant2.net (62.40.124.197)
11 so-4-0-0.rt1.par.fr.geant2.net (62.40.112.105)
12 so-7-3-0.rt1.gen.ch.geant2.net (62.40.112.29)
13 so-2-0-0.rt1.mil.it.geant2.net (62.40.112.34)
14 so-1-2-0.rt1.tik.il.geant2.net (62.40.112.121)
15 iucc-gw.rt1.tik.il.geant2.net (62.40.124.126)
16 haifa-gp0-cel-g.ilan.net.il (128.139.234.2)
17 * * *
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Internet Mapping Projects

A map of the Internet can be obtained by combining the
local views from a number of locations (vantage points):

Path data from traceroute experiments

Path data from BGP routing tables

Examples:

Bill Cheswick’s Internet Mapping Project (traceroute,
router-level)

Oregon Route Views (based on BGP data, AS-level)

DIMES (Yuval Shavitt): router-level and AS-level, based
on volunteer community

and others
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Outline

AS Relationships and the Valley-Free Path Model

Inferring AS Relationships

Cuts and Disjoint Paths in the Valley-Free Path
Model

Network Discovery and Verification
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AS Relationships and the

Valley-Free Path Model
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Undirected AS-Graph

An undirected AS-graph is a simple, undirected graph with
a vertex for every AS
an edge joining two vertices if the corresponding
ASs have at least one physical connection.

Example:
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AS Relationships

Customer-Provider: directed edge

CUSTOMER

PROVIDER

Customer pays provider for Internet access.

Peer-to-Peer: bidirected edge

PEER PEER

Peers exchange traffic of their subnetworks and their
customers.
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AS-Graph

An AS-graph is a graph G = (V, E) in which any two
vertices u, v ∈ V can

be non-adjacent,
have a directed edge (u, v) or (v, u),
or have a bidirected edge {u, v}.

Example:

Model by Subramanian et al., 2002.
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Routing Policies

Customers do not route traffic from one provider to
another:
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Routing Policies

Peers do not forward to other peers:

Peers do not forward from peers to providers (and vice
versa):

T. Erlebach – Algorithmic Problems Related to Internet Graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.13/55



Valley-Free Paths

A path π from s to t in an AS-graph is valid in the
valley-free path model, if it consists of

a sequence of ≥ 0 forward edges,
followed by 0 or 1 bidirected edges,
followed by a sequence of ≥ 0 reverse edges.

Example:
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Valley-Free Paths

A path π from s to t in an AS-graph is valid in the
valley-free path model, if it consists of
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Inferring AS Relationships
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Motivation

AS relationships are important for analyzing BGP
routing, but difficult to obtain.

Idea: Use information about BGP paths to infer AS
relationships.

Initiated by [Gao, 2001].

Formalization as Type-of-Relationship (ToR) problem by
Subramanian et al., 2002.
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ToR-Problem

Given:

undirected graph G, set P of paths in G.

Solution:

classification of edges of G into customer-
provider and peer-to-peer relationships.

Objective:

maximize the number of paths in P that are made valid.

Special case: check if all paths in P can be valid.
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Example
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Example

All paths are valid!
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Example 2
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Example 2

Only one of the two paths can be valid!
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Results

There is a linear-time algorithm for deciding whether all
paths can be made valid (➠ 2SAT).

If not all paths can be made valid, the ToR-problem is
NP-hard and APX-hard even if all paths have length 2.

In general, the ToR-problem cannot be approximated
within 1

n1−ε
for n paths, unless NP = ZPP .

If the path lengths are bounded by a constant, the
ToR-problem can be approximated within a constant
factor (trivial algorithm: random orientation).

If the path length is at most 2, 3, or 4, we obtain
approximation ratio 0.94, 0.84, or 0.36 (using MAX2SAT
[Goemans, Williamson 1994; Lewin, Livnat, Zwick
2002]).
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Sketch of Algorithm

Don’t use peer-to-peer edges at all!
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Sketch of Algorithm

Initially, classify each edge arbitrarily.
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Sketch of Algorithm

Build a 2SAT formula representing a solution that
makes all paths valid.

x1 x3
x4

x5

x2

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x4 ∨ x3) ∧ (x5 ∨ x4)
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Sketch of Algorithm

Use MAX2SAT algorithm to obtain
good truth assignment for the variables.

x1 x3
x4

x5

x2

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x4 ∨ x3) ∧ (x5 ∨ x4)

x1 = F, x2 = F, x3 = T, x4 = F, x5 = F
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Sketch of Algorithm

Flip directions of true variables.

x1 x4

x5

x2

x3

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x4 ∨ x3) ∧ (x5 ∨ x4)

x1 = F, x2 = F, x3 = T, x4 = F, x5 = F
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Comments on Relationship Inference

Maximizing the number of valid paths is not really the
right objective function. We need to find a formulation of
the ToR problem that yields more realistic
classifications:

Avoid customer-provider cycles.
Include peer-to-peer edges.
Include sibling edes.

Other direction: Use active probing methods to obtain
better classifications.
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Cuts and Disjoint Paths

in the Valley-Free Path Model
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Robustness Considerations

Robustness of connectivity between s and t:
Minimum size of a cut separating s and t.
Maximum number of disjoint paths between s and t.

Efficiently computable using network flow techniques in
standard undirected or directed graphs.

But: should take into account routing policies!
➠ valley-free path model

⇒ Problems Min Valid s-t-Cut and Max Disjoint Valid
s-t-Paths (vertex version and edge version).
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Min Valid s-t-Vertex-Cut

Given:

Directed graph G = (V, E) and two non-adjacent
vertices s, t ∈ V

Feasible solution:

A valid s-t-vertex-cut C
(C ⊆ V \ {s, t} s.t. @ valid s-t-path in G \ C)

Objective:

Minimize |C|.

Smallest number of ASs that must fail in order to disconnect
s and t with respect to valley-free paths.
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Max Vertex-Disjoint Valid s-t-Paths

Given:

Directed graph G = (V, E) and two non-adjacent
vertices s, t ∈ V

Feasible solution:

Set P of vertex-disjoint valid s-t-paths in G

Objective:

Maximize |P|.

Largest number of disjoint valley-free paths connecting ASs
s and t.
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Example

s t

max number of vertex-disjoint s-t-paths:

min valid s-t-vertex-cut:
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Example

s t

max number of vertex-disjoint s-t-paths: 1

min valid s-t-vertex-cut:
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Example

ts

max number of vertex-disjoint s-t-paths: 1

min valid s-t-vertex-cut: 2
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Hardness Results

Theorem. Min Valid s-t-Vertex-Cut is APX-hard.

Proof. By reduction from 3-WAY EDGE CUT.

Theorem. Max Vertex-Disjoint Valid s-t-Paths is NP-hard
and cannot be approximated with ratio 2 − ε for any ε > 0
unless P = NP .

Proof. By reduction from 2DIRPATH.
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Main Result

Theorem. There is an efficient algorithm that computes a
valid s-t-vertex-cut of size c and a set of d vertex-disjoint
valid s-t-paths such that c ≤ 2 · d.

Corollary. There is a 2-approximation algorithm for Min
Valid s-t-Vertex-Cut and a 2-approximation algorithm for
Max Vertex-Disjoint Valid s-t-Paths.
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Two-Layer Model

s tG
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Two-Layer Model

s t

G

reverse(G)
H
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Paths in G and H

s tG s t

G

reverse(G)
H

valid path in G ≡ directed path in H
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Cut-Algorithm

➀ Compute minimum s-t-vertex-cut CH in H.

➁ Output the set CG = {v ∈ V (G) | ≥ 1 copy of v is in CH}
as valid s-t-cut.

Analysis:

|CG| ≤ |CH |, CG is valid s-t-vertex-cut

|CH | ≤ 2· size of min valid s-t-vertex-cut in G

➥ 2-approximation algorithm
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Path-Algorithm

➀ Compute max disjoint s-t-paths PH in H.

➁ Interpret PH as set PG of valid s-t-paths in G.

➂ Recombine parts of paths in PG to get at least 1

2
|PG|

disjoint valid s-t-paths in G.

Observations:

Forward parts of paths in PG are disjoint.

Backward parts of paths in PG are disjoint.

Forward part of one path may intersect backward parts
of other paths.
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Recombination

s t
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Summary of Results

For arbitrary directed graphs, valley-free path model:

Min s-t-Cut Max Disjoint s-t-Paths

vertex APX-hard no (2 − ε)-apx unless P = NP

version 2-approx 2-approx
edge polynomial no (2 − ε)-apx unless P = NP

version 2-approx

(plus some additional results for DAGs)

Remark. Interesting cut and disjoint paths problems arise
also from paths with other restrictions (e.g. length-bounded
paths).
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Network Discovery

and Verification
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General Setting

Discover information about an unknown network using
queries.

Verify information about a network using queries.

Here, “network” means connected, undirected graph.

Motivation: Internet mapping; discovering the link
structure of peer-to-peer networks.
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Two Problems

Network Discovery:
Task: Identify all edges and non-edges of the network
using a small number of queries.

On-line problem (incomplete information), competitive
analysis

Network Verification:
Task: Check whether an existing network “map” is
correct, using a small number of queries.

Off-line problem (full information), approximation
algorithms
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Query Models
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Layered-Graph (LG) Query Model

Connected graph G = (V, E) with |V | = n (in the on-line
case, only V is known in advance)

Query at node v ∈ V yields the subgraph containing all
shortest paths from v to all other nodes of G.

Problem LG-ALL-DISCOVERY (LG-ALL-VERIFICATON):
Minimize the number of queries required to discover
(verify) all edges and non-edges of G.

Observation. Query at v discovers all edges and
non-edges between vertices with different distance from v.
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Layered-Graph Query Example

Three queries are sufficient!
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Layered-Graph Query Example

1

1 2

2

3

4

4

Three queries are sufficient!
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Layered-Graph Query Example

2

2 2
2

21

1

Three queries are sufficient!
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Distance (D) Query Model

Connected graph G = (V, E) with |V | = n (in the on-line
case, only V is known in advance)

Query at node v ∈ V yields the distances between v
and all other nodes of G.

Problem D-ALL-DISCOVERY (D-ALL-VERIFICATON):
Minimize the number of queries required to discover
(verify) all edges and non-edges of G.
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Distance Query Example
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Distance Query Example

Query 1:
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Distance Query Example

Query 1:

1

21

0
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Distance Query Example

Query 1:

?

?

?

1
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0
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Distance Query Example

Query 1:

?

?

?

Query 2:

1

21

0
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Distance Query Example

Query 1:

?

?

?

Query 2:

0

1

1

2

1

21

0
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Distance Query Example

Query 1:

?

?

?

Query 2:

?
?

?

0

1

1

2

1

21

0
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Distance Query Example

Query 1:

?

?

?

Query 2:

?
?

?

0

1

1

2

1

21

0

Blue edge is discovered by combination of queries!
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Distance Query Example

Query 1:

?

?

?

Query 2:

?
?

?

0

1

1

2

1

21

0

Two queries are sufficient!
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Results for LG Query Model

LG-ALL-DISCOVERY:
No deterministic algorithm can be better than
3-competitive.
There is a randomized algorithm that is
O(

√
n log n)-competitive.

LG-ALL-VERIFICATION:
Optimal number of queries is equivalent to metric
dimension of the graph.
NP-hard to approximate within o(log n)

O(log n)-approximation using greedy set cover
algorithm [Khuller et al., 1996]
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Distance Query Model
A query at v discovers the distances to all other nodes.

For the LG model, the edges and non-edges discovered
by a set of queries were simply the union of those
discovered by the individual queries. This is not true for
edges in the distance query model!

Query 1:

?

?

?

Query 2:

?
?

?

0

1

1

2

1

21

0

T. Erlebach – Algorithmic Problems Related to Internet Graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.45/55



Discovering Non-edges in the D Model

Lemma. A set Q of queries discovers a non-edge {u, v} if
and only if there is q ∈ Q with |d(q, u) − d(q, v)| ≥ 2.

i >i+1

u
v

q
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Discovering Edges in the D Model

Definition. A query q is a partial witness for edge {u, v} if
d(q, u) 6= d(q, v) (say, d(q, u) = i and d(q, v) = i + 1) and u is
the only neighbor of v at distance i from q.

i

i+1
i+2

u vq

Lemma. A set Q of queries discovers all edges and
non-edges of G if and only if it discovers all non-edges and
contains a partial witness for each edge.

T. Erlebach – Algorithmic Problems Related to Internet Graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.47/55



Competitive Lower Bound
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Competitive Lower Bound

Optimal number of queries: 2
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Competitive Lower Bound

Deterministic algorithm: First query in rightmost branch.
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Competitive Lower Bound

A smaller tree of the same kind remains.

Nodes in each level indistinguishable to the algorithm.
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Competitive Lower Bound

Theorem. No deterministic algorithm can have
competitive ratio better than Θ(

√

n) for D-ALL-DISCOVERY
in graphs with n nodes.
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Competitive Lower Bound

Theorem. No randomized algorithm can have competitive
ratio better than Θ(log n) for D-ALL-DISCOVERY in graphs
with n nodes.
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Ideas for an On-Line Algorithm

View problem as a hitting set problem: For edge e, hit
the set of its partial witnesses, and for non-edge ē, hit
the set of queries that discover it.

Every non-edge can either be discovered by many
(more than T ) queries or by few (at most T ) queries.

Similarly, every edge has either many partial witnesses
or few.

Use random queries to discover all non-edges that can
be discovered by many queries, and to get a partial
witness for every edge that has many partial witnesses.

For each remaining undiscovered non-edge [edge],
query all vertices that discover it [all partial witnesses].

With T =
√

n ln n we get competitive ratio O(
√

n log n ).
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Algorithm

Phase 1: Choose 3
√

n ln n vertices uniformly at random
and query them.

Phase 2: While there is an undiscovered (non-)edge
between some vertices u and v, do:

query u and v

if {u, v} is non-edge, query all vertices that discover
{u, v}.

if {u, v} is an edge and d(u), d(v) ≤
√

n/ ln n, query
all neighbors of u and v and then all vertices that are
partial witnesses for {u, v}.
otherwise, proceed with another undiscovered
(non)-edge
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Algorithm for D-ALL-DISCOVERY

Theorem. There is a randomized on-line algorithm for
D-ALL-DISCOVERY that achieves competitive ratio
O(

√
n log n).

Proof Ideas:

With probability at least 1 − 1

n , Phase 1 discovers all
non-edges that are discovered by many (i.e., more than
T =

√
n ln n) queries and contains partial witnesses for

all edges that have many partial witnesses.

In Phase 2, if the case that u or v has more than
√

n/ ln n neighbors happens k times, OPT is at least

k

√
n/ ln n
2n = k

2
√

n ln n
, so these iterations do not hurt the

competitive ratio.
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Results for D-ALL-VERIFICATION

D-ALL-VERIFICATION is NP-hard.
Proof by reduction from vertex cover problem.

There is an O(log n)-approximation algorithm for
D-ALL-VERIFICATION.

Simply apply the greedy set cover approximation
algorithm.

The cycle Cn, n > 6, can be verified optimally with 2
queries.

The hypercube Hd, d ≥ 3, can be verified optimally with
2d−1 queries.

There is a polynomial algorithm for
D-ALL-VERIFICATION in trees.
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Summary of Network Discovery Results

LG model:
Discovery: randomized upper bound O(

√
n log n),

deterministic lower bound 3.
Verification: Θ(log n)-approximable.

D model:
Discovery: randomized upper bound O(

√
n log n),

deterministic lower bound Ω(
√

n), randomized lower
bound Ω(log n).
Verification: NP-hard, O(log n)-approximation.
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Open Problems

Close the gaps between upper and lower bounds for
competitive ratio of network discovery problems.

Deterministic on-line algorithms for network discovery?

Better approximation for D-ALL-VERIFICATION?

Better results for special graph classes?

Models where queries can be made only at a subset of
the nodes of the graph (motivated by practical
applications).

Approximate discovery/verification: e.g., discover 95%
of edges and 95% of non-edges.

Discovering graph properties.

T. Erlebach – Algorithmic Problems Related to Internet Graphs – Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms – May ’06 – p.54/55



Thank you!
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