Algorithmic Problems Related to Internet Graphs

Thomas Erlebach

Based on joint work with: Zuzana Beerliova, Pino Di Battista, Felix Eberhard, Alexander Hall, Michael Hoffmann, Matúš Mihaľák, Alessandro Panconesi, Maurizio Patrignani, Maurizio Pizzonia, L. Shankar Ram, Thomas Schank, Danica Vukadinović

The Internet

- Size of the Internet (as of 2003):
 - \blacktriangleright ~ 7–10M routers

 - \blacktriangleright ~ 650M users
- In recent years, significant interest in mapping the Internet.
- Different kinds of Internet graphs:
 - Router-level graph (routers and hosts) traceroute experiments
 - AS-level graph (autonomous systems) traceroute, BGP tables, registries
 - WWW graph (web pages and hyperlinks) crawling

Autonomous Systems (ASs)

- AS: subnetwork under separate administrative control.
- Examples:
 - AS8: Rice University
 - AS378: ILAN
 - AS701: UUNET
 - AS768: JANET
 - AS20965: GEANT
- An AS can consist of tens to thousands of routers and hosts.
- roughly 15,000 ASs in 2003, 23,000 ASs in 2006.
- Routing between ASs: BGP (border gateway protocol)

AS786: The JANET Backbone

AS20965: GEANT

Traceroute: Leicester – Haifa

traceroute: pc14.mcs.le.ac.uk \rightarrow www.haifa.ac.il 1 gate (143.210.72.1) 2 143.210.6.2 (143.210.6.2) 3 uol3-gw-7-1.emman.net (194.82.121.177) 4 uol1-gw-g3.emman.net (212.219.212.85) 5 uon6-gw-7-1.emman.net (194.82.121.25) 6 nottingham-bar.ja.net (146.97.40.21) 7 po12-0.lond-scr.ja.net (146.97.35.13) 8 po6-0.lond-scr3.ja.net (146.97.33.30) 9 po1-0.gn2-gw1.ja.net (146.97.35.98) 10 janet.rt1.lon.uk.geant2.net (62.40.124.197) 11 so-4-0-0.rt1.par.fr.geant2.net (62.40.112.105) 12 so-7-3-0.rt1.gen.ch.geant2.net (62.40.112.29) 13 so-2-0-0.rt1.mil.it.geant2.net (62.40.112.34) 14 so-1-2-0.rt1.tik.il.geant2.net (62.40.112.121) 15 iucc-gw.rt1.tik.il.geant2.net (62.40.124.126) 16 haifa-gp0-cel-g.ilan.net.il (128.139.234.2) 17 * * *

Internet Mapping Projects

A map of the Internet can be obtained by combining the local views from a number of locations (vantage points):

- Path data from traceroute experiments
- Path data from BGP routing tables

Examples:

- Bill Cheswick's Internet Mapping Project (traceroute, router-level)
- Oregon Route Views (based on BGP data, AS-level)
- DIMES (Yuval Shavitt): router-level and AS-level, based on volunteer community

and others

Outline

- AS Relationships and the Valley-Free Path Model
- Inferring AS Relationships
- Cuts and Disjoint Paths in the Valley-Free Path Model
- Network Discovery and Verification

AS Relationships and the Valley-Free Path Model

Undirected AS-Graph

An undirected AS-graph is a simple, undirected graph with

- a vertex for every AS
- an edge joining two vertices if the corresponding ASs have at least one physical connection.

AS Relationships

Customer-Provider: directed edge

Customer pays provider for Internet access.

AS Relationships

Customer-Provider: directed edge

Customer pays provider for Internet access.

Peer-to-Peer: bidirected edge

Peers exchange traffic of their subnetworks and their customers.

AS-Graph

- An AS-graph is a graph G = (V, E) in which any two vertices $u, v \in V$ can
 - be non-adjacent,
 - have a directed edge (u, v) or (v, u),
 - or have a bidirected edge $\{u, v\}$.

Model by Subramanian et al., 2002.

Routing Policies

Customers do not route traffic from one provider to another:

Routing Policies

Peers do not forward to other peers:

Peers do not forward from peers to providers (and vice versa):

• A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of

- a sequence of ≥ 0 forward edges,
- followed by 0 or 1 bidirected edges,
- followed by a sequence of ≥ 0 reverse edges.
- Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- **•** Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- **•** Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- Example:

- A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of
 - a sequence of ≥ 0 forward edges,
 - followed by 0 or 1 bidirected edges,
 - followed by a sequence of ≥ 0 reverse edges.
- Example:

• A path π from s to t in an AS-graph is valid in the valley-free path model, if it consists of

- a sequence of ≥ 0 forward edges,
- followed by 0 or 1 bidirected edges,
- followed by a sequence of ≥ 0 reverse edges.
- **•** Example:

Inferring AS Relationships

Motivation

- AS relationships are important for analyzing BGP routing, but difficult to obtain.
- Idea: Use information about BGP paths to infer AS relationships.
- Initiated by [Gao, 2001].
- Formalization as Type-of-Relationship (ToR) problem by Subramanian et al., 2002.

ToR-Problem

Given:

• undirected graph G, set P of paths in G.

Solution:

classification of edges of G into customerprovider and peer-to-peer relationships.

Objective:

maximize the number of paths in P that are made valid.

Special case: check if <u>all</u> paths in P can be valid.

Only one of the two paths can be valid!

Results

- There is a linear-time algorithm for deciding whether <u>all</u> paths can be made valid (*** 2SAT).
- If not all paths can be made valid, the ToR-problem is NP-hard and APX-hard even if all paths have length 2.
- In general, the ToR-problem cannot be approximated within $\frac{1}{n^{1-\epsilon}}$ for *n* paths, unless NP = ZPP.
- If the path lengths are bounded by a constant, the ToR-problem can be approximated within a constant factor (trivial algorithm: random orientation).
- If the path length is at most 2, 3, or 4, we obtain approximation ratio 0.94, 0.84, or 0.36 (using MAX2SAT [Goemans, Williamson 1994; Lewin, Livnat, Zwick 2002]).

Sketch of Algorithm

Don't use peer-to-peer edges at all!

Sketch of Algorithm

Initially, classify each edge arbitrarily.

Sketch of Algorithm

Build a 2SAT formula representing a solution that makes all paths valid.

Sketch of Algorithm

Use MAX2SAT algorithm to obtain good truth assignment for the variables.

$$x_1 = F, x_2 = F, x_3 = T, x_4 = F, x_5 = F$$

Sketch of Algorithm

Flip directions of true variables.

$$x_1 = F, x_2 = F, x_3 = T, x_4 = F, x_5 = F$$

Comments on Relationship Inference

- Maximizing the number of valid paths is not really the right objective function. We need to find a formulation of the ToR problem that yields more realistic classifications:
 - Avoid customer-provider cycles.
 - Include peer-to-peer edges.
 - Include sibling edes.
- Other direction: Use active probing methods to obtain better classifications.

Cuts and Disjoint Paths in the Valley-Free Path Model

Robustness Considerations

- Solution Robustness of connectivity between s and t:
 - Minimum size of a cut separating s and t.
 - Maximum number of disjoint paths between s and t.
- Efficiently computable using network flow techniques in standard undirected or directed graphs.
- But: should take into account routing policies!
 walley-free path model
- $\Rightarrow \text{ Problems Min Valid } s-t-\text{Cut and Max Disjoint Valid} \\ s-t-\text{Paths (vertex version and edge version).}$

Min Valid *s*-*t*-Vertex-Cut

Given:

Directed graph G = (V, E) and two non-adjacent vertices $s, t \in V$

Feasible solution:

A valid *s*-*t*-vertex-cut *C*(*C* ⊆ *V* \ {*s*, *t*} s.t. \nexists valid *s*-*t*-path in *G* \ *C*)

Objective:

• Minimize |C|.

Smallest number of ASs that must fail in order to disconnect s and t with respect to valley-free paths.

Max Vertex-Disjoint Valid *s*-*t*-**Paths**

Given:

Directed graph G = (V, E) and two non-adjacent vertices $s, t \in V$

Feasible solution:

Set \mathcal{P} of vertex-disjoint valid *s*-*t*-paths in *G*

Objective:

• Maximize $|\mathcal{P}|$.

Largest number of disjoint valley-free paths connecting ASs s and t.

Example

- \bullet max number of vertex-disjoint *s*-*t*-paths:
- \bullet min valid *s*-*t*-vertex-cut:

Example

- max number of vertex-disjoint s-t-paths: 1
- min valid s-t-vertex-cut:

Example

- \bullet max number of vertex-disjoint *s*-*t*-paths: 1
- min valid s-t-vertex-cut: 2

Hardness Results

Theorem. Min Valid *s*-*t*-Vertex-Cut is APX-hard.

Proof. By reduction from 3-WAY EDGE CUT.

Theorem. Max Vertex-Disjoint Valid *s*-*t*-Paths is *NP*-hard and cannot be approximated with ratio $2 - \varepsilon$ for any $\varepsilon > 0$ unless P = NP.

Proof. By reduction from 2DIRPATH.

Main Result

Theorem. There is an efficient algorithm that computes a valid *s*-*t*-vertex-cut of size *c* and a set of *d* vertex-disjoint valid *s*-*t*-paths such that $c \leq 2 \cdot d$.

Corollary. There is a 2-approximation algorithm for Min Valid s-t-Vertex-Cut and a 2-approximation algorithm for Max Vertex-Disjoint Valid s-t-Paths.

Two-Layer Model

Two-Layer Model

Paths in G and H

valid path in $G \equiv$ directed path in H

Cut-Algorithm

- ① Compute minimum *s*-*t*-vertex-cut C_H in H.
- ② Output the set $C_G = \{v \in V(G) | ≥ 1 \text{ copy of } v \text{ is in } C_H\}$ as valid *s*-*t*-cut.

Analysis:

- $|C_G| \le |C_H|$, C_G is valid *s*-*t*-vertex-cut
- $|C_H| \le 2$ · size of min valid *s*-*t*-vertex-cut in *G*
- \blacktriangleright 2-approximation algorithm

Path-Algorithm

- ① Compute max disjoint *s*-*t*-paths \mathcal{P}_H in *H*.
- ② Interpret \mathcal{P}_H as set \mathcal{P}_G of valid *s*-*t*-paths in *G*.
- ③ Recombine parts of paths in \mathcal{P}_G to get at least $\frac{1}{2}|\mathcal{P}_G|$ disjoint valid *s*-*t*-paths in *G*.

Observations:

- **•** Forward parts of paths in \mathcal{P}_G are disjoint.
- **•** Backward parts of paths in \mathcal{P}_G are disjoint.
- Forward part of one path may intersect backward parts of other paths.

Summary of Results

For arbitrary directed graphs, valley-free path model:

	Min <i>s</i> - <i>t</i> -Cut	Max Disjoint <i>s</i> - <i>t</i> -Paths
vertex	APX-hard	no $(2 - \varepsilon)$ -apx unless $P = NP$
version	2-approx	2-approx
edge	polynomial	no $(2 - \varepsilon)$ -apx unless $P = NP$
version		2-approx

(plus some additional results for DAGs)

Remark. Interesting cut and disjoint paths problems arise also from paths with other restrictions (e.g. length-bounded paths).

Network Discovery

and Verification

General Setting

- Discover information about an unknown network using queries.
- Verify information about a network using queries.

Here, "network" means connected, undirected graph.

Motivation: Internet mapping; discovering the link structure of peer-to-peer networks.

Two Problems

Network Discovery:

- **Task:** Identify all edges and non-edges of the network using a small number of queries.
- On-line problem (incomplete information), competitive analysis

Network Verification:

- **Task:** Check whether an existing network "map" is correct, using a small number of queries.
- Off-line problem (full information), approximation algorithms

Query Models

Layered-Graph (LG) Query Model

- Connected graph G = (V, E) with |V| = n (in the on-line case, only V is known in advance)
- Query at node $v \in V$ yields the subgraph containing all shortest paths from v to all other nodes of G.
- Problem LG-ALL-DISCOVERY (LG-ALL-VERIFICATON): Minimize the number of queries required to discover (verify) all edges and non-edges of G.

Layered-Graph (LG) Query Model

- Connected graph G = (V, E) with |V| = n (in the on-line case, only V is known in advance)
- Query at node $v \in V$ yields the subgraph containing all shortest paths from v to all other nodes of G.
- Problem LG-ALL-DISCOVERY (LG-ALL-VERIFICATON): Minimize the number of queries required to discover (verify) all edges and non-edges of G.

Observation. Query at v discovers all edges and non-edges between vertices with different distance from v.

Three queries are sufficient!

Distance (D) Query Model

- Connected graph G = (V, E) with |V| = n (in the on-line case, only V is known in advance)
- Query at node $v \in V$ yields the distances between v and all other nodes of G.
- Problem D-ALL-DISCOVERY (D-ALL-VERIFICATON): Minimize the number of queries required to discover (verify) all edges and non-edges of G.

Blue edge is discovered by combination of queries!

Results for LG Query Model

JG-ALL-DISCOVERY:

- No deterministic algorithm can be better than 3-competitive.
- There is a randomized algorithm that is $O(\sqrt{n \log n})$ -competitive.

JG-ALL-VERIFICATION:

- Optimal number of queries is equivalent to metric dimension of the graph.
- *NP*-hard to approximate within $o(\log n)$
- O(log n)-approximation using greedy set cover algorithm [Khuller et al., 1996]

Distance Query Model

- A query at v discovers the distances to all other nodes.
- For the LG model, the edges and non-edges discovered by a set of queries were simply the union of those discovered by the individual queries. This is not true for edges in the distance query model!

Discovering Non-edges in the D Model

Lemma. A set Q of queries discovers a non-edge $\{u, v\}$ if and only if there is $q \in Q$ with $|d(q, u) - d(q, v)| \ge 2$.

Discovering Edges in the D Model

Definition. A query q is a **partial witness** for edge $\{u, v\}$ if $d(q, u) \neq d(q, v)$ (say, d(q, u) = i and d(q, v) = i + 1) and u is the only neighbor of v at distance i from q.

Lemma. A set *Q* of queries discovers all edges and non-edges of *G* if and only if it discovers all non-edges and contains a partial witness for each edge.

Optimal number of queries: 2

Deterministic algorithm: First query in rightmost branch.

A smaller tree of the same kind remains. Nodes in each level indistinguishable to the algorithm.

Competitive Lower Bound

Theorem. No deterministic algorithm can have competitive ratio better than $\Theta(\sqrt{n})$ for D-ALL-DISCOVERY in graphs with *n* nodes.

Competitive Lower Bound

Theorem. No randomized algorithm can have competitive ratio better than $\Theta(\log n)$ for D-ALL-DISCOVERY in graphs with *n* nodes.

View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.

- View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.
- Every non-edge can either be discovered by many (more than T) queries or by few (at most T) queries.

- View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.
- Every non-edge can either be discovered by many (more than T) queries or by few (at most T) queries.
- Similarly, every edge has either many partial witnesses or few.

- View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.
- Every non-edge can either be discovered by many (more than T) queries or by few (at most T) queries.
- Similarly, every edge has either many partial witnesses or few.
- Use random queries to discover all non-edges that can be discovered by many queries, and to get a partial witness for every edge that has many partial witnesses.

- View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.
- Every non-edge can either be discovered by many (more than T) queries or by few (at most T) queries.
- Similarly, every edge has either many partial witnesses or few.
- Use random queries to discover all non-edges that can be discovered by many queries, and to get a partial witness for every edge that has many partial witnesses.
- For each remaining undiscovered non-edge [edge], query all vertices that discover it [all partial witnesses].

- View problem as a hitting set problem: For edge e, hit the set of its partial witnesses, and for non-edge ē, hit the set of queries that discover it.
- Every non-edge can either be discovered by many (more than T) queries or by few (at most T) queries.
- Similarly, every edge has either many partial witnesses or few.
- Use random queries to discover all non-edges that can be discovered by many queries, and to get a partial witness for every edge that has many partial witnesses.
- For each remaining undiscovered non-edge [edge], query all vertices that discover it [all partial witnesses].
- With $T = \sqrt{n \ln n}$ we get competitive ratio $O(\sqrt{n \log n})$.

Algorithm

- **Phase 1:** Choose $3\sqrt{n \ln n}$ vertices uniformly at random and query them.
- Phase 2: While there is an undiscovered (non-)edge between some vertices u and v, do:
 - query u and v
 - if $\{u, v\}$ is non-edge, query all vertices that discover $\{u, v\}$.
 - if $\{u, v\}$ is an edge and $d(u), d(v) \le \sqrt{n/\ln n}$, query all neighbors of u and v and then all vertices that are partial witnesses for $\{u, v\}$.
 - otherwise, proceed with another undiscovered (non)-edge

Algorithm for D-ALL-DISCOVERY

Theorem. There is a randomized on-line algorithm for D-ALL-DISCOVERY that achieves competitive ratio $O(\sqrt{n \log n})$.

Proof Ideas:

- With probability at least $1 \frac{1}{n}$, Phase 1 discovers all non-edges that are discovered by many (i.e., more than $T = \sqrt{n \ln n}$) queries and contains partial witnesses for all edges that have many partial witnesses.
- In Phase 2, if the case that u or v has more than $\sqrt{n/\ln n}$ neighbors happens k times, OPT is at least $k\frac{\sqrt{n/\ln n}}{2n} = \frac{k}{2\sqrt{n\ln n}}$, so these iterations do not hurt the competitive ratio.

Results for D-ALL-VERIFICATION

- D-ALL-VERIFICATION is NP-hard.
 - Proof by reduction from vertex cover problem.
- There is an $O(\log n)$ -approximation algorithm for D-ALL-VERIFICATION.
 - Simply apply the greedy set cover approximation algorithm.
- The cycle C_n , n > 6, can be verified optimally with 2 queries.
- The hypercube H_d , $d \ge 3$, can be verified optimally with 2^{d-1} queries.
- There is a polynomial algorithm for D-ALL-VERIFICATION in trees.

Summary of Network Discovery Results

JG model:

- Discovery: randomized upper bound $O(\sqrt{n \log n})$, deterministic lower bound 3.
- Verification: $\Theta(\log n)$ -approximable.

D model:

- Discovery: randomized upper bound $O(\sqrt{n \log n})$, deterministic lower bound $\Omega(\sqrt{n})$, randomized lower bound $\Omega(\log n)$.
- Verification: *NP*-hard, $O(\log n)$ -approximation.

Open Problems

- Close the gaps between upper and lower bounds for competitive ratio of network discovery problems.
- Deterministic on-line algorithms for network discovery?
- Better approximation for D-ALL-VERIFICATION?
- Better results for special graph classes?
- Models where queries can be made only at a subset of the nodes of the graph (motivated by practical applications).
- Approximate discovery/verification: e.g., discover 95% of edges and 95% of non-edges.
- Discovering graph properties.

Thank you!