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The Internet

f # Size of the Internet (as of 2003): T
s ~ [—10M routers
s ~ 170M hosts
s ~ 650M users
# |n recent years, significant interest in mapping the
Internet.

# Different kinds of Internet graphs:

» Router-level graph (routers and hosts)
traceroute experiments

s AS-level graph (autonomous systems)
traceroute, BGP tables, reqgistries

s WWW graph (web pages and hyperlinks)

o crawling o
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Autonomous Systems (ASS)

o N

#® AS: subnetwork under separate administrative control.

# Examples:
s ASS8: Rice University
s AS378: ILAN
s AS701: UUNET
s AS768: JANET
s AS20965: GEANT

® An AS can consist of tens to thousands of routers and
hosts.

# roughly 15,000 ASs in 2003, 23,000 ASs in 2006.
# Routing between ASs: BGP (border gateway protocol)

o |
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Traceroute: Leicester — Haifa

traceroute: pcl4.mcs.le.ac.uk — www.haifa.ac.ll

1 gate (143.210.72.1)

2 143.210.6.2 (143.210.6.2)

3 uol3-gw-7-1.emman.net (194.82.121.177)

4 uoll-gw-g3.emman.net (212.219.212.85)

5 uon6-gw-7-1.emman.net (194.82.121.25)

6 nottingham-bar.ja.net (146.97.40.21)

7 pol2-0.lond-scr.ja.net (146.97.35.13)

8 po6-0.lond-scr3.ja.net (146.97.33.30)

9 pol-0.gn2-gwl.ja.net (146.97.35.98)

10 janet.rtl.lon.uk.geant2.net (62.40.124.197)
11 s0-4-0-0.rtl.par.fr.geant2.net (62.40.112.105)
12 so-7-3-0.rtl.gen.ch.geant2.net (62.40.112.29)
13 s0-2-0-0.rtl.mil.it.geant2.net (62.40.112.34)
14 so-1-2-0.rtl.tik.ill.geant2.net (62.40.112.121)
15 iucc-gw.rtl.tik.il.geant2.net (62.40.124.126)
16 haifa-gp0O-cel-g.ilan.net.il (128.139.234.2)

17*** J
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Internet Mapping Projects
- -

A map of the Internet can be obtained by combining the
local views from a number of locations (vantage points):

# Path data from traceroute experiments
# Path data from BGP routing tables

Examples:

# Bill Cheswick’s Internet Mapping Project (traceroute,
router-level)

# Oregon Route Views (based on BGP data, AS-level)

# DIMES (Yuval Shavitt): router-level and AS-level, based
on volunteer community

® and others

o |
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Outline
| -

# AS Relationships and the Valley-Free Path Model

# Inferring AS Relationships

# Cuts and Disjoint Paths in the Valley-Free Path
Model

# Network Discovery and Verification

o |
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AS Relationships and the
Valley-Free Path Model
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Undirected AS-Graph

o -

#® An undirected AS-graph IS a simple, undirected graph wit
s avertex for every AS
s an edge joining two vertices if the corresponding
ASs have at least one physical connection.

# Example:

o |
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AS Relationships
-

# Customer-Provider: directed edge

' PROVIDER|

f

| CUSTOMER|

Customer pays provider for Internet access.

o |
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AS Relationships
B -

# Customer-Provider: directed edge

' PROVIDER|

f

| CUSTOMER|

Customer pays provider for Internet access.

#® Peer-to-Peer: bidirected edge

PEER ~a—a-! PECR

Peers exchange traffic of their subnetworks and their
customers.

o |
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AS-Graph
B -

® An AS-graph IS a graph G = (V, E) in which any two
vertices u,v € V can

s be non-adjacent,
» have a directed edge (u,v) or (v, u),
s or have a bidirected edge {u, v}.

# Example: - -

-

#® Model by Subramanian et al., 2002.

o |
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Routing Policies

o N

# Customers do not route traffic from one provider to
another:
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Routing Policies

-

# Peers do not forward to other peers:

- > -

#® Peers do not forward from peers to providers (and vice

versa).
._%(

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

# Example:

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

SIN

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

A

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

S

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

AP

o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

SEIN
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
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A
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T. Erlebach — Algorithmic Problems Related to Internet Graphs — Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms — May '06 — p.14/55

# Example:



Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.
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o |
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Valley-Free Paths
-

# A path 7 from s to t In an AS-graph is valid in the
valley-free path model, if it consists of

s a sequence of > 0 forward edges,
» followed by O or 1 bidirected edges,
» followed by a sequence of > 0 reverse edges.

# Example:

INVALID

o |
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Inferring AS Relationships
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Motivation

o N

# AS relationships are important for analyzing BGP
routing, but difficult to obtain.

# l|dea: Use information about BGP paths to infer AS
relationships.

Initiated by [Gao, 2001].

# Formalization as Type-of-Relationship (ToR) problem by
Subramanian et al., 2002.

°

o |
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ToR-Problem
-

Given:
# undirected graph G, set P of paths in G.
Solution:

# classification of edges of G into customer-
provider and peer-to-peer relationships.

Objective:
# maximize the number of paths in P that are made valid.

Special case: check if all paths in P can be valid.

o |
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Example
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Example

All paths are valid!
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Example 2
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Example 2
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Example 2
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Example 2

Only one of the two paths can be valid!

o |
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.

Results

-

There Is a linear-time algorithm for deciding whether all
paths can be made valid (LI 2SAT).

If not all paths can be made valid, the ToR-problem is
NP-hard and APX-hard even If all paths have length 2.

In general, the ToR-problem cannot be approximated
within L for n paths, unless NP = ZPP.

If the path lengths are bounded by a constant, the
ToR-problem can be approximated within a constant
factor (trivial algorithm: random orientation).

If the path length is at most 2, 3, or 4, we obtain
approximation ratio 0.94, 0.84, or 0.36 (using MAX2SAT
[Goemans, Williamson 1994; Lewin, Livnat, Zwick

2002]). »
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Sketch of Algorithm
-

# Don’t use peer-to-peer edges at all!

AN



Sketch of Algorithm
-

# Initially, classify each edge arbitrarily.

SRS



Sketch of Algorithm
-

# Build a 2SAT formula representing a solution that
makes all paths valid.

e S/

X4 T3

L

(5131 V .CCQ) N\ (xg V 5133) AN (234 V 5173) N\ ($5 V 513_4)
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Sketch of Algorithm
-

#® Use MAX2SAT algorithm to obtain
good truth assignment for the variables.

e /AN

X4 X3

X

(5131 V 5132) A\ (:CQ V $3) A\ (1134 V 5133) A\ (5135 V $_4)

X1 :F,I‘Q :F,ZE3:T,ZI§4:F,ZE5 =F

o |
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Sketch of Algorithm
-

# Flip directions of true variables.

e Y/ NN

L4 x5

X

(51:‘1 V 5132) A\ (:CQ V $3) A\ (1134 V 5133) A\ (5135 V $_4)

X1 :F,CEQ :F,£E3:T,I4:F,£IZ5 =F



Comments on Relationship Inference

o N

# Maximizing the number of valid paths is not really the
right objective function. We need to find a formulation of
the ToR problem that yields more realistic
classifications:

s Avoid customer-provider cycles.
s Include peer-to-peer edges.
s Include sibling edes.

# Other direction: Use active probing methods to obtain
better classifications.

o |

T. Erlebach — Algorithmic Problems Related to Internet Graphs — Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms — May '06 — p.22/55



Cuts and Disjoint Paths
In the Valley-Free Path Model
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Robustness Considerations

-

#® Robustness of connectivity between s and ¢:
s Minimum size of a cut separating s and ¢.
s Maximum number of disjoint paths between s and t.

o Efficiently computable using network flow technigues in
standard undirected or directed graphs.

# But: should take into account routing policies!
[1 valley-free path model

= Problems Min Valid s-t-Cut and Max Disjoint Valid
s-t-Paths (vertex version and edge version).

o |

T. Erlebach — Algorithmic Problems Related to Internet Graphs — Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms — May '06 — p.24/55



Min Valid s-t-Vertex-Cut
-

Given:

# Directed graph G = (V, F) and two non-adjacent
vertices s,t € V

Feasible solution:

# A valid s-t-vertex-cut C
(C CV\{s,t}s.t Avalid s-t-pathin G\ O)

Objective:
o Minimize |C].

Smallest number of ASs that must fail in order to disconnect
s and t with respect to valley-free paths.

o |
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Max Vertex-Disjoint Valid s-t-Paths
- -

Given:

# Directed graph G = (V, F) and two non-adjacent
vertices s,t € V

Feasible solution:

o Set P of vertex-disjoint valid s-t-paths in G
Objective:

o Maximize |P|.

Largest number of disjoint valley-free paths connecting ASs
s and t.

o |
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# max number of vertex-disjoint s-t-paths:
# min valid s-t-vertex-cut:

o |
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# max number of vertex-disjoint s-t-paths: 1
# min valid s-t-vertex-cut:

o |
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# max number of vertex-disjoint s-t-paths: 1
# min valid s-t-vertex-cut: 2

o |
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Hardness Results

o N

Theorem. Min Valid s-t-Vertex-Cut is APX-hard.
Proof. By reduction from 3-way Ebce CuT.

Theorem. Max Vertex-Disjoint Valid s-t-Paths is NP-hard
and cannot be approximated with ratio 2 — ¢ forany ¢ > 0
unless P = NP.

Proof. By reduction from 2DIrRPATH.

o |
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Main Result
L -

Theorem. There is an efficient algorithm that computes a

valid s-t-vertex-cut of size ¢ and a set of d vertex-disjoint
valid s-t-paths such that ¢ < 2 - d.

Corollary. There is a 2-approximation algorithm for Min
Valid s-t-Vertex-Cut and a 2-approximation algorithm for
Max Vertex-Disjoint Valid s-t-Paths.

o |
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Two-Layer Model
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Two-Layer Model

reverse(G)
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Paths In G and H

reverse(G)

valid path in G = directed path in H

L |
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Cut-Algorithm

f [ Compute minimum s-t-vertex-cut Cy In H. T

[0 Outputthe setCy; = {v e V(G)| >1copyofvisinCy}
as valid s-t-cut.

Analysis:

® |Cq| < |CH]|, Cq is valid s-t-vertex-cut

® |Cy| < 2- size of min valid s-t-vertex-cut in G

[1 2-approximation algorithm

o |
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Path-Algorithm
f [ Compute max disjoint s-t-paths Py In H. T

[ Interpret Py as set P of valid s-t-paths in G.
[0 Recombine parts of paths in P to get at least 5|P¢|
disjoint valid s-t-paths in G.
Observations:
# Forward parts of paths in P are disjoint.
# Backward parts of paths in Ps are disjoint.

# Forward part of one path may intersect backward parts
of other paths.

o |
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Recombination
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Recombination
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Summary of Results

-

For arbitrary directed graphs, valley-free path model:

Min s-¢t-Cut Max Disjoint s-¢t-Paths
vertex || APX-hard | no (2 —¢)-apx unless P = NP
version | 2-approx 2-approx
edge polynomial | no (2 — ¢)-apx unless P = NP
version 2-approx

(plus some additional results for DAGS)

Remark. Interesting cut and disjoint paths problems arise
also from paths with other restrictions (e.g. length-bounded

paths).
-
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Network Discovery

and Verification
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General Setting
- -

# Discover information about an unknown network using
queries.

# Verify information about a network using queries.

#® Here, “network” means connected, undirected graph.

# Motivation: Internet mapping; discovering the link
structure of peer-to-peer networks.

o |

T. Erlebach — Algorithmic Problems Related to Internet Graphs — Sixth Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms — May '06 — p.37/55



Two Problems

o N

Network Discovery:

# Task: Identify all edges and non-edges of the network
using a small number of queries.

# On-line problem (incomplete information), competitive
analysis

Network Verification:

# Task: Check whether an existing network “map” is
correct, using a small number of queries.

o Off-line problem (full information), approximation
algorithms

o |
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Query Models
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Layered-Graph (LG) Query Model
B -

# Connected graph G = (V, FE) with |V | = n (in the on-line
case, only V is known in advance)

# Query at node v € V yields the subgraph containing all
shortest paths from v to all other nodes of G.

#® Problem LG-ALL-DiscoVERY (LG-ALL-VERIFICATON):
Minimize the number of queries required to discover
(verify) all edges and non-edges of G.

o |
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Layered-Graph (LG) Query Model
B -

# Connected graph G = (V, FE) with |V | = n (in the on-line
case, only V is known in advance)

# Query at node v € V yields the subgraph containing all
shortest paths from v to all other nodes of G.

#® Problem LG-ALL-DiscoVERY (LG-ALL-VERIFICATON):
Minimize the number of queries required to discover
(verify) all edges and non-edges of G.

Observation. Query at v discovers all edges and
non-edges between vertices with different distance from wv.

o |
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ayered-Graph Query Example
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|_ayered-Graph Query Example

1 2 4
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|_ayered-Graph Query Example
2
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ayered-Graph Query Example

)

Three queries are sufficient!
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Distance (D) Query Model
B -

# Connected graph G = (V, FE) with |V | = n (in the on-line
case, only V is known in advance)

# Query at node v € V yields the distances between v
and all other nodes of G.

#® Problem D-ALL-DiIscoVERY (D-ALL-VERIFICATON):
Minimize the number of queries required to discover
(verify) all edges and non-edges of G.

o |
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Distance Query Example

) O
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Distance Query Example
J O —‘
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Distance Query Example
J O —‘
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Distance Query Example
A -
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Distance Query Example

1

L Blue edge is discovered by combination of queries! J
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Distance Query Example
B A -

L Two gueries are sufficient! J
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Results for LG Query Model
B -

® LG-ALL-DISCOVERY:-
» No deterministic algorithm can be better than
3-competitive.
s There is a randomized algorithm that is
O(y/nlogn)-competitive.

® LG-ALL-VERIFICATION:

s Optimal number of queries is equivalent to metric
dimension of the graph.

» NP-hard to approximate within o(logn)

s O(logn)-approximation using greedy set cover
algorithm [Khuller et al., 1996]

o |
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Distance Query Model

f # A query at v discovers the distances to all other nodes. T

# For the LG model, the edges and non-edges discovered
by a set of queries were simply the union of those
discovered by the individual queries. This is not true for
edges in the distance query model!
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Discovering Non-edges in the D Model

o N

Lemma. A set ) of queries discovers a non-edge {u, v} If
and only if there is ¢ € Q with |d(q, v) — d(q,v)| > 2.

>i+1

000 8 6

o |
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Discovering Edges in the D Model

o N

Definition. A query q Is a partial witness for edge {u, v} if
d(q,u) # d(q,v) (say, d(q,u) =7 and d(q,v) =1+ 1) and u IS
the only neighbor of v at distance i from g.

0k

Lemma. A set ) of queries discovers all edges and
non-edges of & If and only If it discovers all non-edges and
Lcontains a partial witness for each edge. J

i+1
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Competitive Lower Bound
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Competitive Lower Bound

o N

Optimal number of queries: 2

o |
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Competitive Lower Bound

o N

Deterministic algorithm: First query in rightmost branch.

o |
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Competitive Lower Bound

A smaller tree of the same kind remains.

Nodes in each level indistinguishable to the algorithm.

o |
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Competitive Lower Bound

o N

Theorem. No deterministic algorithm can have

competitive ratio better than ©(4/n) for D-ALL-DISCOVERY
In graphs with n nodes.

o |
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Competitive Lower Bound

o N

Theorem. No randomized algorithm can have competitive
ratio better than ®(log n) for D-ALL-DISCOVERY in graphs
with n nodes.

o |
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Ideas for an On-Line Algorithm

f # View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

o |
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Ideas for an On-Line Algorithm

f # View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

# Every non-edge can either be discovered by many
(more than T') queries or by few (at most T°) queries.

o |
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Ideas for an On-Line Algorithm

f # View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

# Every non-edge can either be discovered by many
(more than T') queries or by few (at most T°) queries.

# Similarly, every edge has either many partial witnesses
or few.

o |
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Ideas for an On-Line Algorithm

f # View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

# Every non-edge can either be discovered by many
(more than T') queries or by few (at most T°) queries.

# Similarly, every edge has either many partial witnesses
or few.

# Use random queries to discover all non-edges that can
be discovered by many queries, and to get a partial
witness for every edge that has many partial witnesses.

o |
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Ideas for an On-Line Algorithm

f # View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

# Every non-edge can either be discovered by many
(more than T') queries or by few (at most T°) queries.

# Similarly, every edge has either many partial witnesses
or few.

# Use random queries to discover all non-edges that can
be discovered by many queries, and to get a partial
witness for every edge that has many partial witnesses.

# For each remaining undiscovered non-edge [edge],
guery all vertices that discover it [all partial withesses].

o |
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L.’

Ideas for an On-Line Algorithm

View problem as a hitting set problem: For edge e, hit T
the set of its partial withesses, and for non-edge e, hit
the set of queries that discover it.

Every non-edge can either be discovered by many
(more than T') queries or by few (at most T°) queries.

Similarly, every edge has either many partial withesses
or few.

Use random queries to discover all non-edges that can
be discovered by many queries, and to get a partial
witness for every edge that has many partial witnesses.

For each remaining undiscovered non-edge [edge],
guery all vertices that discover it [all partial withesses].

With T' = v/nInn we get competitive ratio O(y/nlogn). J
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Algorithm
-

#® Phase 1: Choose 3v/nlnn vertices uniformly at random
and query them.

#® Phase 2: While there is an undiscovered (non-)edge
between some vertices « and v, do:
s query v and v
s If {u,v} Is non-edge, query all vertices that discover
{u,v}.

s If {u,v} Is an edge and d(u < y/n/Inn, query
all neighbors of v and v and then all vertices that are

partial withesses for {u, v}.

s otherwise, proceed with another undiscovered
(non)-edge

o |
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Algorithm for D-ALL-DISCOVERY
- -

Theorem. There Is a randomized on-line algorithm for
D-ALL-DISCOVERY that achieves competitive ratio

O(v/nlogn).
Proof Ideas:

# With probabillity at least 1 — % Phase 1 discovers all
non-edges that are discovered by many (i.e., more than
T = v/nlnn) queries and contains partial withesses for
all edges that have many partial withesses.

® In Phase 2, If the case that v or v has more than
v/n/Inn neighbors happens k times, OPT is at least

v/n/lnn L : ,
T NI so these iterations do not hurt the

L competitive ratio. J
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Results for D-ALL-VERIFICATION
-

f #® D-ALL-VERIFICATION Is NP-hard.
s Proof by reduction from vertex cover problem.

# There is an O(logn)-approximation algorithm for
D-ALL-VERIFICATION.

s Simply apply the greedy set cover approximation

algorithm.
# The cycle C,,, n > 6, can be verified optimally with 2
gueries.
# The hypercube H,, d > 3, can be verified optimally with
24=1 queries.

# There Is a polynomial algorithm for
D-ALL-VERIFICATION In trees.

o |
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Summary of Network Discovery Results

o N

® LG model:
s Discovery: randomized upper bound O(+/nlogn),
deterministic lower bound 3.

s Verification: ©(logn)-approximable.

® D model:

s Discovery: randomized upper bound O(y/nlogn),
deterministic lower bound Q(y/n), randomized lower

bound Q(logn).
s Verification: NP-hard, O(logn)-approximation.

o |
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Open Problems

-

°

Close the gaps between upper and lower bounds for
competitive ratio of network discovery problems.

Deterministic on-line algorithms for network discovery?
Better approximation for D-ALL-VERIFICATION?
Better results for special graph classes?

© o o o

Models where queries can be made only at a subset of
the nodes of the graph (motivated by practical
applications).

°

Approximate discovery/verification: e.g., discover 95%
of edges and 95% of non-edges.

# Discovering graph properties.

o |
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Thank you!
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