Approximation algorithms for geometric intersection graphs

Thomas Erlebach

Based on joint work with:

Christoph Ambühl, Klaus Jansen, Erik Jan van Leeuwen, Matúš Mihaľák, Marc Nunkesser, Eike Seidel

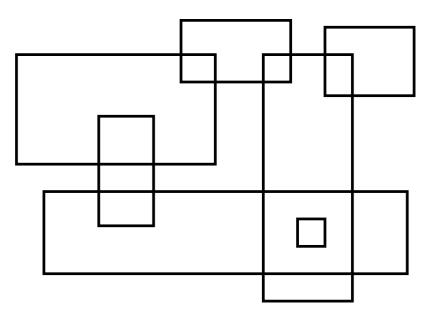
Outline

- Introduction
- Independent sets in disk graphs
- Vertex coloring disk graphs
- Independent sets in rectangle intersection graphs
- Dominating sets in unit disk graphs
- Some open problems

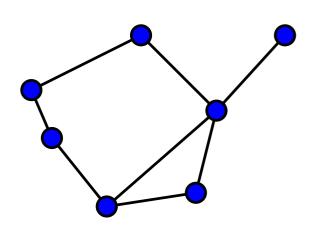
What are geometric intersection graphs?

- vertices = geometric objects
- edges = non-empty intersection between objects

Example: a rectangle intersection graph



geometric representation



intersection graph

Popular geometric intersection graphs

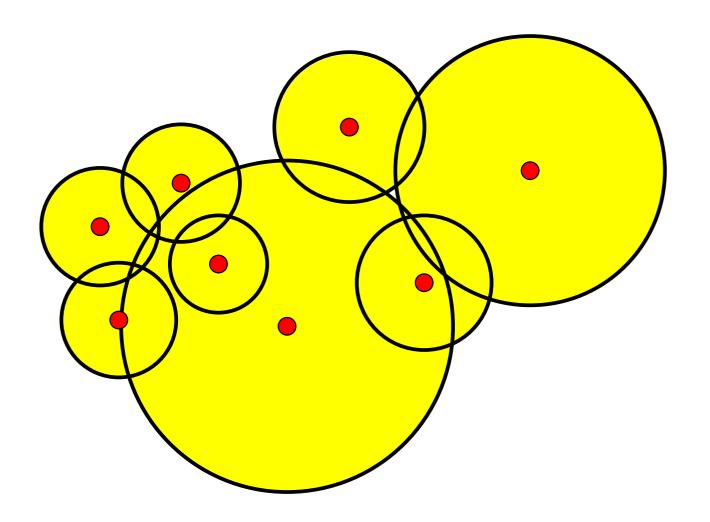
- ☐ disks (→ disk graphs), squares
- "fat" objects
- ellipses, rectangles (axis-aligned), arbitrary convex objects
- ☐ line segments, curves, higher-dimensional objects

The recognition problem is typically NP-hard!!

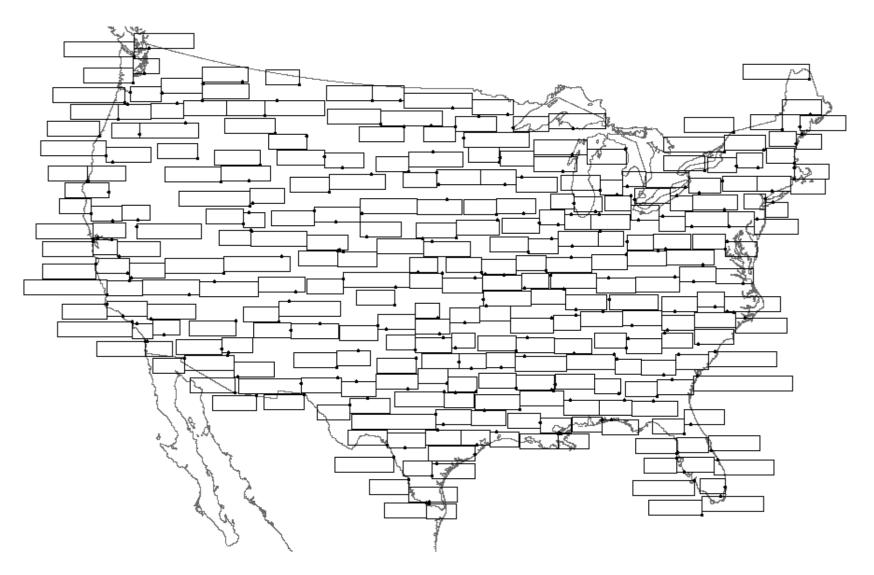
Some Applications:

- ⇒ Wireless networks (frequency assignment problems)
- ⇒ Map labeling
- ⇒ Resource allocation (e.g. admission control in line networks)

Application: Wireless networks

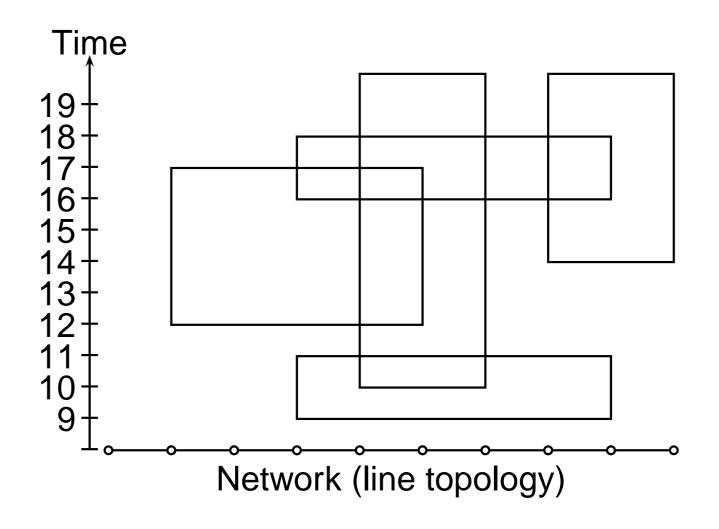


Application: Map labeling



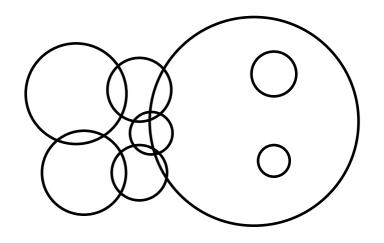
(illustration taken from a paper by van Kreveld, Strijk, Wolff)

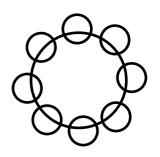
Application: Call admission control

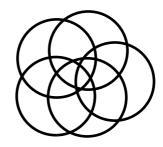


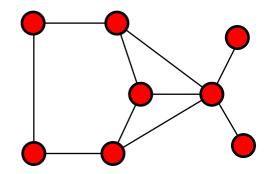
Disk graphs

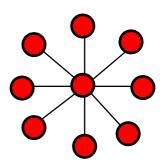
... are the intersection graphs of disks in the plane:

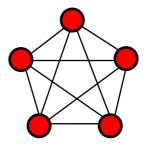








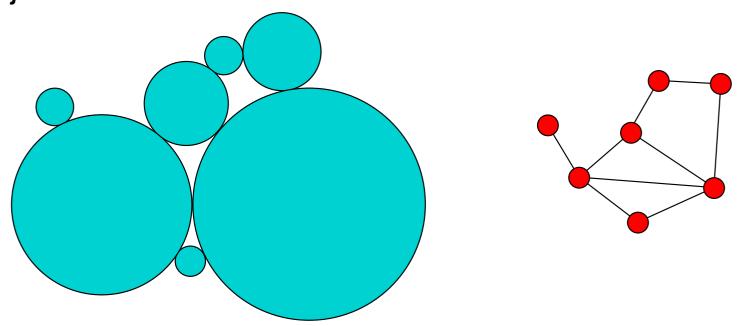




Subclasses of disk graphs

Unit disk graphs: all disks have diameter 1

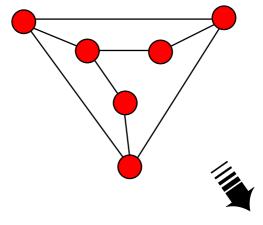
Coin graphs: touching graphs of disks whose interiors are disjoint



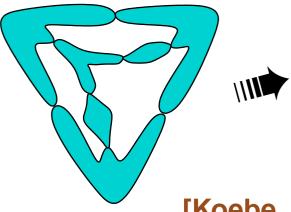
Coin graphs are planar, but surprisingly ...

... every planar graph is a coin graph

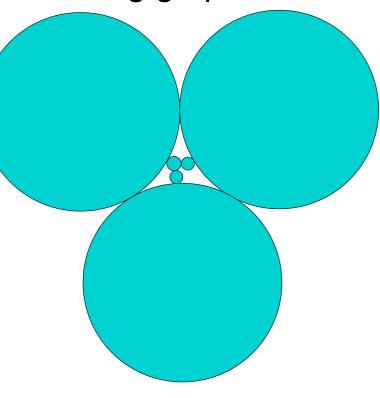
planar graph:



touching graph of "blobs":



touching graph of disks:



[Koebe, 1936]

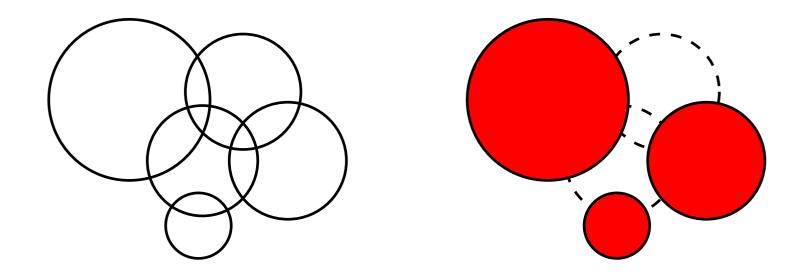
Maximum Independent Set

Maximum Independent Set (MIS)

Input: a set \mathcal{D} of disks in the plane

Feasible solution: subset $A \subseteq \mathcal{D}$ of disjoint disks

Goal: maximize |A|



In the weighted case (MWIS), each disk is associated with a positive weight.

Approximation algorithms for MIS

An algorithm for MIS is a ρ -approximation algorithm if it

- runs in polynomial time and
- > always outputs an independent set of size at least OPT/ρ , where OPT is the size of the optimal independent set.

A polynomial-time approximation scheme (PTAS) is a family of $(1 + \varepsilon)$ -approximation algorithms for every constant $\varepsilon > 0$.

For MWIS, the definitions are analogous.

MIS in unit disk graphs

The problem is \mathcal{NP} -hard [Clark, Colbourn, Johnson'90]. Let's try the **greedy algorithm**:

```
Algorithm GREEDY I=\emptyset; for all given disks D do if D is disjoint from the disks in I then I=I\cup\{D\}; return I;
```

Analysis of the greedy algorithm

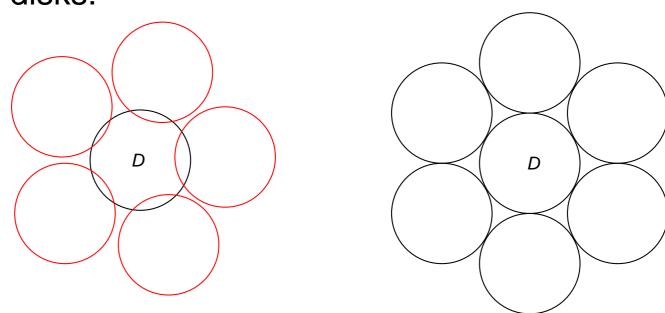
- ① Compare the greedy solution I with the optimal solution I^* .
- ② "Charge" every disk in I^* to a disk in I.
- \odot Bound the number of disks charged to the same disk in I.

Charging rules for a disk $D \in I^*$:

- \Rightarrow If D is in I, charge D to itself.
- \Rightarrow If D is not in I, then charge it to any disk that intersects D and was accepted by GREEDY before it processed D.

How often can a disk D in I be charged?

If D is also in I^* , D is charged only once. If D is not in I^* , it is charged by disks in I^* that intersect D. These disks are disjoint, so there can be at most 5 such disks:



 \Rightarrow $|I^*| \le 5|I|$ and GREEDY is a 5-approximation algorithm.

An improved greedy algorithm

Algorithm LEFTMOST-GREEDY

 $I=\emptyset$;

for all given disks D in order of increasing x-value do if D is disjoint from the disks in I then $I = I \cup \{D\};$

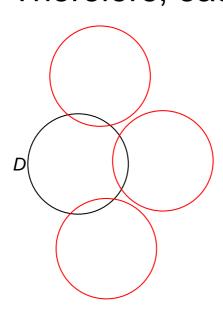
return *I*;

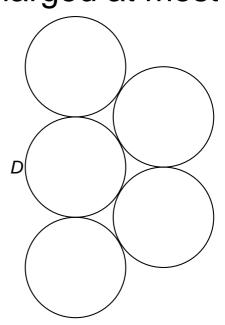
Claim. LEFTMOST-GREEDY is a 3-approximation algorithm for MIS in unit disk graphs.

Analysis of LEFTMOST-GREEDY

Use the same charging argument.

Note: A disk D in I receives charge from disks in I^* that are processed after D by LEFTMOST-GREEDY. Therefore, each disk is charged at most three times:





Do we need the representation?

GREEDY did not need to know the representation, but what about LEFTMOST-GREEDY?

For getting ratio 3 we needed only the following: When a disk D is selected, the disks intersecting D that are processed later contain at most three disjoint disks.

→ We can still get ratio 3 if we can identify a disk whose neighborhood does not contain four disjoint disks!

LEFTMOST-GREEDY w/o representation

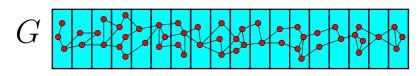
Given a graph G = (V, E) that is the intersection graph of unit disks, the following is a 3-approximation algorithm for MIS:

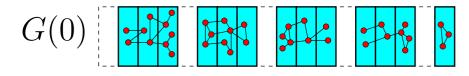
```
\begin{split} I &= \emptyset; \\ \textbf{repeat} \\ v &= \text{a vertex whose neighborhood does not have 4 independent vertices;} \\ I &= I \cup \{v\}; \\ \text{delete } v \text{ and its neighbors from the graph;} \\ \textbf{until the graph is empty;} \\ \textbf{return } I; \end{split}
```

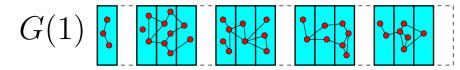
The vertex v can be found in $O(|V|^5)$ time.

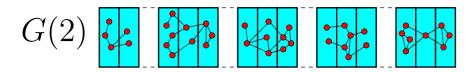
The shifting strategy

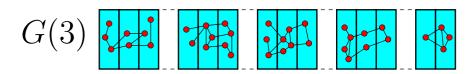
[Baker, 1984; Hochbaum and Maass, 1985]









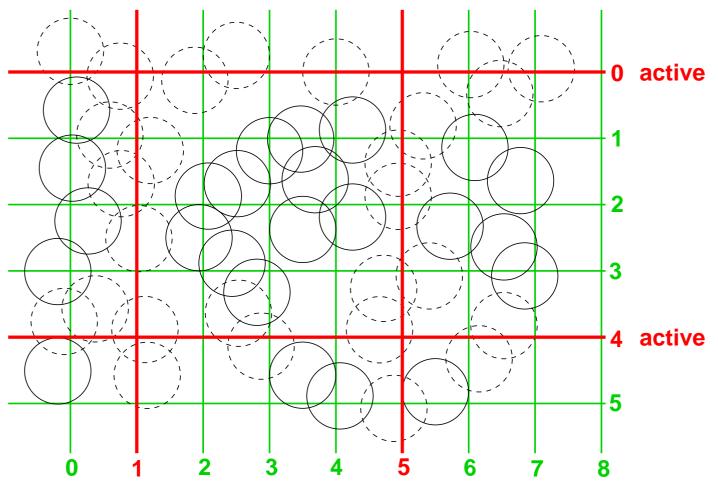


- Partition graph into slices.
- **2** Let k > 0 be a fixed integer.
- **3** Remove slices equal to ℓ modulo k and compute a maximum independent set in the graph $G(\ell)$, $0 \le \ell < k$.
- Output the largest set found in this way.

The largest of these sets contains at least $(1 - \frac{1}{k})$ OPT vertices.

Shifting for unit disk graphs

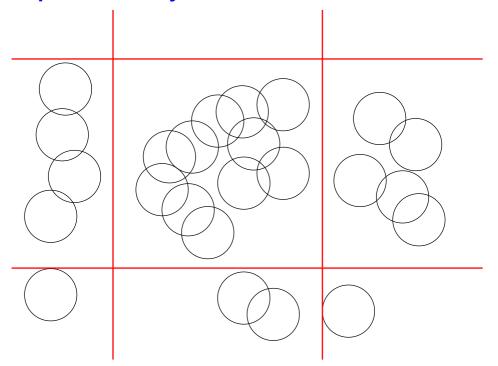
[Hochbaum and Maass, 1985]



Remove disks hitting active lines (and shift active lines).

Solving the Subproblems

Active lines partition the plane into squares that can be considered independently:



⇒ Compute maximum independent set I in each square by brute-force enumeration. Since $|I| = O(k^2)$, time $n^{O(k^2)}$ suffices.

PTAS for MIS in unit disk graphs

- For $0 \le r, s < k$, get $\mathcal{D}(r, s)$ from \mathcal{D} by deleting disks that
 - \rightarrow hit a horizontal line equal to $r \mod k$ or
 - \rightarrow hit a vertical line equal to s modulo k.
- **2** Compute the maximum independent set I_S in each $k \times k$ square S of $\mathcal{D}(r,s)$ by brute-force enumeration.
- **3** The union of the sets I_S gives a maximum independent set in $\mathcal{D}(r,s)$.
- Output the largest independent set obtained in this way.

Running-time: $n^{O(k^2)}$ for n disks. (Can be improved to $n^{O(k)}$.)

Approximation: Computed solution has size at least $\left(1-\frac{2}{k}\right)$ OPT.

MIS in unit disk graphs: Summary

- *N*P-hard [Clark, Colbourn, Johnson 1990].
- GREEDY gives a 5-approximation. [Marathe et al., 1995]
- LEFTMOST-GREEDY gives a 3-approximation. There is a variant that does not need the representation.

 [Marathe et al., 1995]
- The shifting strategy gives a PTAS. It needs the representation.
 - [Hochbaum and Maass, 1985; Hunt III et al., 1998]

Recent related results

- Nieberg, Hurink, Kern, 2004] PTAS for maximum weight independent set in unit disk graphs without given representation.
- [van Leeuwen, 2005] Asymptotic FPTAS for maximum independent set (and various other problems) in unit disk graphs of bounded density.

MIS in general disk graphs

- \clubsuit The approximation ratio of GREEDY is only |V|-1.
- ♣ But it helps to process the disks in the right order:

Algorithm SMALLEST-GREEDY

$$I=\emptyset$$
;

for all given disks D in order of increasing diameter do if D is disjoint from the disks in I then

$$I = I \cup \{D\};$$

return *I*;

Analysis of SMALLEST-GREEDY

Again, charge disks in the optimal solution I^* to disks in the solution I computed by the algorithm.

ightharpoonup Every disk D in I receives charge only from disks in I^* that intersect D and were processed after D. There can be at most five such disks.

SMALLEST-GREEDY is a 5-approximation algorithm.

If the representation is not given: Find a vertex whose neighborhood does not contain an independent set of size 6, select it, and delete its neighbors.

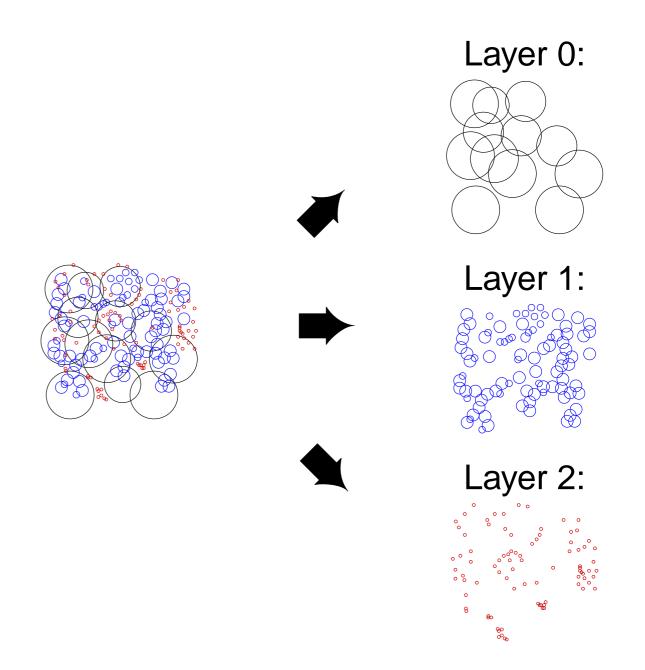
Extending the shifting strategy

- Classify the disks into layers according to their sizes.
- Use the shifting strategy on all layers simultaneously.
- After removing all disks that hit active lines, use dynamic programming to compute a maximum independent set.

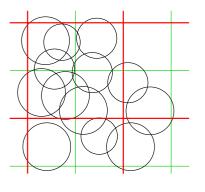
Classification into layers:

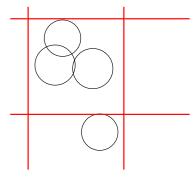
- > Assume that the largest disk has diameter 1.
- ightharpoonup Layer ℓ : disks with diameter d, $\frac{1}{(k+1)^{\ell}} \ge d > \frac{1}{(k+1)^{\ell+1}}$.
- ightharpoonup Lines on layer ℓ are $\frac{1}{(k+1)^{\ell}}$ apart, every k-th line is active.

Partition into layers

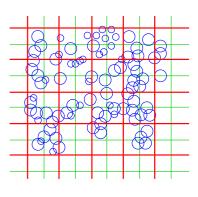


Layer 0:



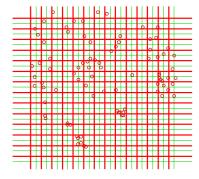


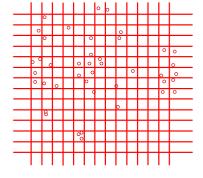
Layer 1:



	8	\circ	000	0	
	&	8	8	8	
	° Q	8	8	8	
	P		\bigcirc	8	

Layer 2:



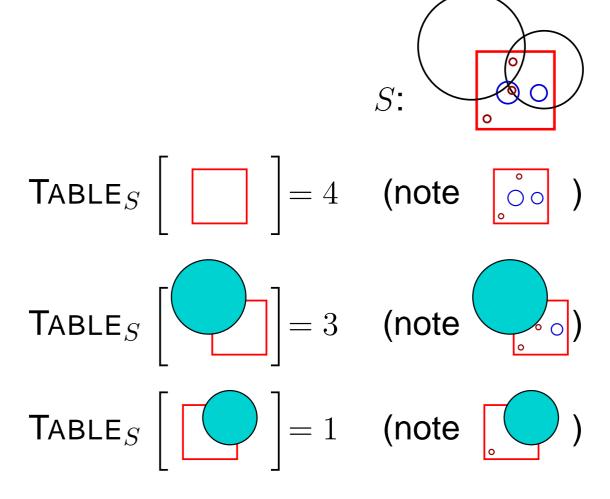


Dynamic programming table

At square S on level ℓ , compute TABLE $_S$. If I is an independent set of disks of level $<\ell$ intersecting S, then

```
\mathsf{TABLE}_S[I] = \begin{cases} \mathsf{size} \ \mathsf{of} \ \mathsf{maximum} \ \mathsf{independent} \ \mathsf{set} \ I' \\ \mathsf{of} \ \mathsf{disks} \ \mathsf{of} \ \mathsf{level} \ge \ell \ \mathsf{in} \ S \ \mathsf{such} \ \mathsf{that} \\ I \cup I' \ \mathsf{is} \ \mathsf{an} \ \mathsf{independent} \ \mathsf{set}. \end{cases}
```

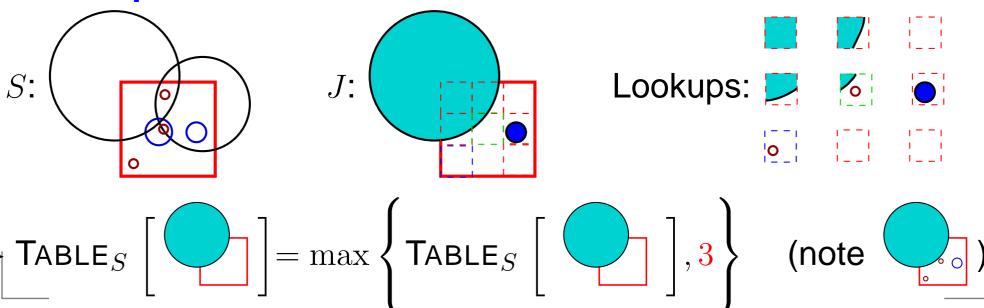
Example



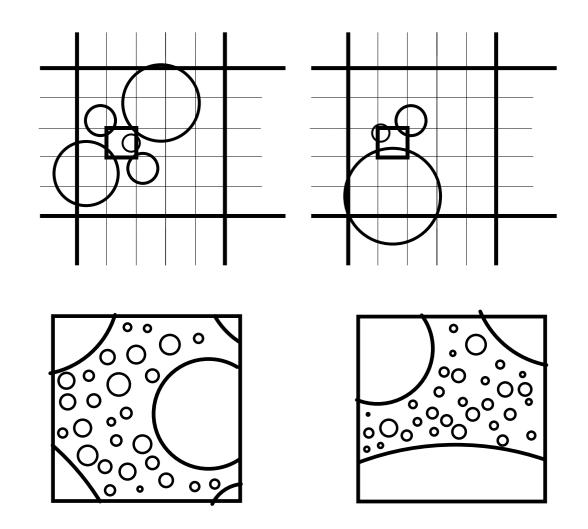
Computing TABLES

- 1. Enumerate all $n^{O(k^4)}$ independent sets J of disks of level $\leq \ell$ touching S.
- 2. Look up corresponding entries of TABLES' for subsquares of S.
- 3. Update TABLE_S[I] for $I = \{D \in J \mid D \text{ has level } < \ell\}$.

Example:



Two more examples for lookups



The PTAS for MIS

- For $0 \le r, s < k$, get $\mathcal{D}(r, s)$ from \mathcal{D} by deleting disks that
 - → hit a horizontal line equal to r modulo k on their level, or
 - → hit a vertical line equal to s modulo k on their level
- **2** Compute dynamic programming tables for $\mathcal{D}(r,s)$ in all squares.
- **1** The union of TABLE $_S[\emptyset]$ over all top-level squares gives a maximum independent set in $\mathcal{D}(r,s)$.
- Output the largest independent set obtained in this way.

Running-time: $n^{O(k^4)}$ for n disks. (Can be improved to $n^{O(k^2)}$.)

Approximation: Computed solution has size at least $(1 - \frac{2}{k})$ OPT.

MIS in disk graphs: Summary

SMALLEST-GREEDY is a 5-approximation algorithm. There is a variant that does not need the representation.

[Marathe et al., 1995]

The shifting strategy combined with dynamic programming gives a PTAS. It needs the representation.

[E, Jansen, Seidel'01: $n^{O(k^2)}$; Chan'01: $n^{O(k)}$]

Note: These results can be adapted to squares, regular polygons and other "disk-like" or fat objects, also in higher dimensions. The PTAS works also for the weighted version.

Vertex Coloring

Coloring disk graphs

Goal: Assign a minimum number of colors to the disks such that intersecting disks get different colors!

Algorithm SMALLEST-DEGREE-LAST(graph G) v = a vertex with minimum degree in G; color $G \setminus \{v\}$ recursively; assign v the smallest available color;

Observation. Let D be the maximum degree of a vertex v at the time it was colored. Then the algorithm needs at most D+1 colors.

Analysis for disk graphs

Let v be the vertex corresponding to the smallest disk. Let N(v) be the set of neighbors of v.

Note: At most 5 disks in N(v) can get the same color.

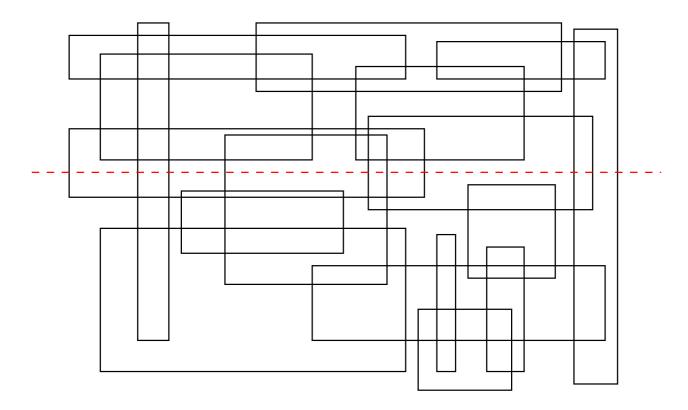
- → Optimal number of colors OPT is at least $1 + \frac{|N(v)|}{5}$.
- $\Rightarrow |N(v)| \leq 5 \cdot \text{OPT} 5.$
- ightharpoonup So we must also have $D < 5 \mathrm{OPT} 5$.

The SMALLEST-DEGREE-LAST algorithm colors any disk graph with at most $5\mathrm{OPT}-4$ colors. [Marathe et al. 1995; Gräf 1995]

Rectangle Intersection Graphs

MIS in Rectangle Graphs

* Idea: find a "stabbing line" with at most half of the rectangles above and below.



Approximation algorithm for rectangles

```
Algorithm RECTANGLE-APPROX(set of rectangles R) \ell= stabbing line with at most |R|/2 rectangles above and below; R_{\mathrm{above}}= rectangles above stabbing line; R_{\mathrm{below}}= rectangles below stabbing line; R_{\mathrm{mid}}= rectangles intersecting stabbing line; compute approximations I_1 and I_2 for R_{\mathrm{above}} and R_{\mathrm{below}} recursively; compute optimal independent set I_0 for R_{\mathrm{mid}}; return the larger of I_0 and I_1 \cup I_2;
```

Analysis of RECTANGLE-APPROX

Theorem The algorithm achieves approximation ratio $\log n$ for n rectangles.

Proof. By induction on the number of rectangles.

Let I^* be an optimal independent set.

Let I_0^* , I_1^* , I_2^* be the rectangles in I^* that are on, above, below ℓ .

Case 1: $|I_0^*|$ is at least $|I^*|/\log n$.

Algorithm outputs a set of size at least

$$|I_0| \ge |I_0^*| \ge \frac{|I^*|}{\log n}.$$

Case 2: $|I_0^*|$ is smaller than $|I^*|/\log n$. The algorithm outputs a set of size at least

$$|I_{1} \cup I_{2}| \geq \frac{\operatorname{OPT}(R_{\operatorname{above}})}{\log |R_{\operatorname{above}}|} + \frac{\operatorname{OPT}(R_{\operatorname{below}})}{\log |R_{\operatorname{below}}|}$$

$$\geq \frac{\operatorname{OPT}(R_{\operatorname{above}})}{(\log n) - 1} + \frac{\operatorname{OPT}(R_{\operatorname{below}})}{(\log n) - 1}$$

$$\geq \frac{|I_{1}^{*}| + |I_{2}^{*}|}{(\log n) - 1} = \frac{|I^{*}| - |I_{0}^{*}|}{(\log n) - 1}$$

$$\geq \frac{|I^{*}| \cdot \left(1 - \frac{1}{\log n}\right)}{(\log n) - 1} = \frac{|I^{*}|}{\log n}$$

MIS in rectangle graphs: Summary

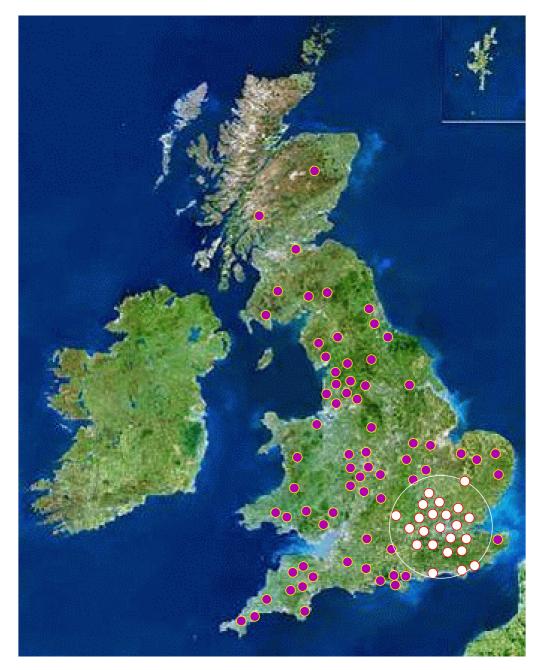
- There is an $O(\log n)$ -approximation algorithm (with given representation).
 - [Agarwal et al., 1998; Khanna et al. 1998; Nielsen 2000]
- For every constant c > 0, there is an approximation algorithm with ratio $1 + \frac{1}{c} \log n$. [Berman et al., 2001]
- If all rectangles have the same height, there is a PTAS. [Agarwal et al., 1998]

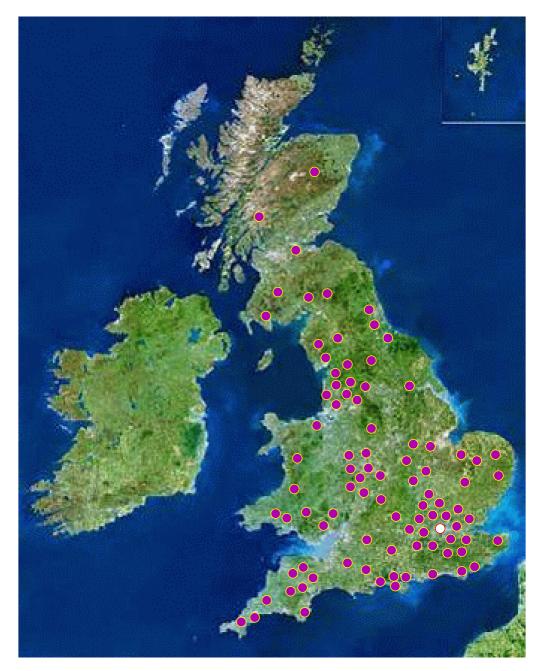
Minimum Dominating Set

Flooding an Ad-Hoc Network

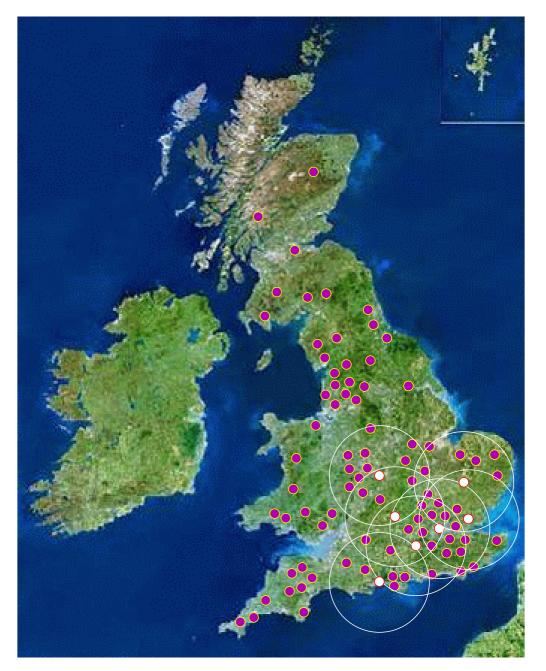
Flooding an Ad-Hoc Network

Flooding an Ad-Hoc Network





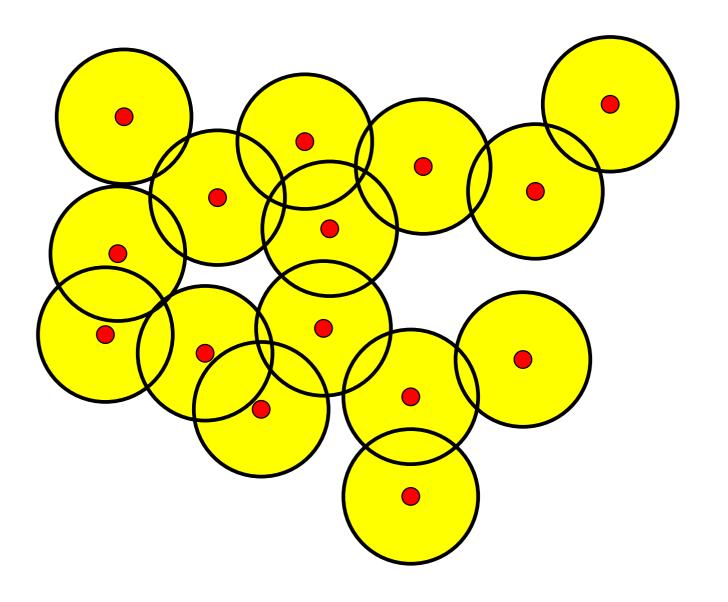
T. Erlebach – Approximation algorithms for geometric intersection graphs – Winter School on Algorithms – King's College London – 10th December 2007 – p. 49



Routing Backbone

- For efficient flooding, we want to find a small subset of the nodes that can reach all other nodes. That subset is then the routing backbone. [Guha and Khuller, 1999]
- We can model the network as a graph.
 - Simple model: Unit Disk Graph Two nodes can reach each other if their distance is at most d, for some fixed value d.
 - Each node corresponds to a unit disk, and there is an edge between two nodes if the disks intersect.
- The problem of identifying a small routing backbone then becomes the minimum (connected) dominating set problem in unit disk graphs.

Unit Disk Graph

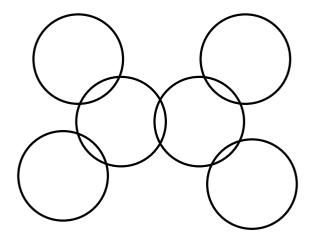


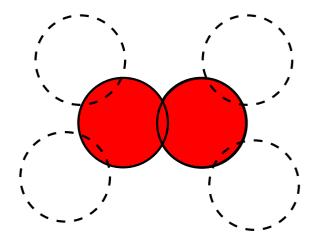
Minimum Dominating Set (MDS)

Input: a set \mathcal{D} of unit disks in the plane

Feasible solution: subset $A \subseteq \mathcal{D}$ that dominates all disks

Goal: minimize |A|



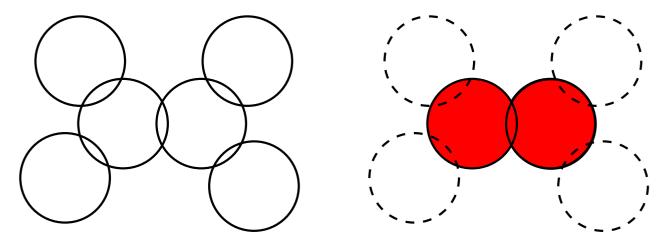


Minimum Dominating Set (MDS)

Input: a set \mathcal{D} of unit disks in the plane

Feasible solution: subset $A \subseteq \mathcal{D}$ that dominates all disks

Goal: minimize |A|



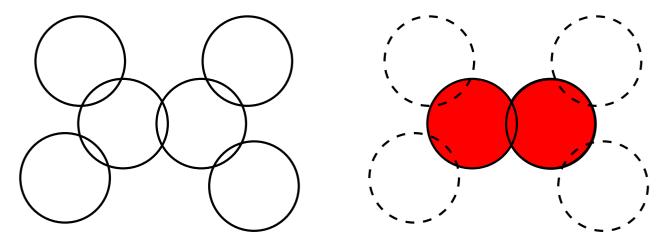
In the weighted case (MWDS), each disk is associated with a positive weight.

Minimum Dominating Set (MDS)

Input: a set \mathcal{D} of unit disks in the plane

Feasible solution: subset $A \subseteq \mathcal{D}$ that dominates all disks

Goal: minimize |A|



In the weighted case (MWDS), each disk is associated with a positive weight.

For Minimum (Weight) Connected Dominating Set (MCDS/MWCDS), the dominating set must induce a connected subgraph.

Approximation Algorithms

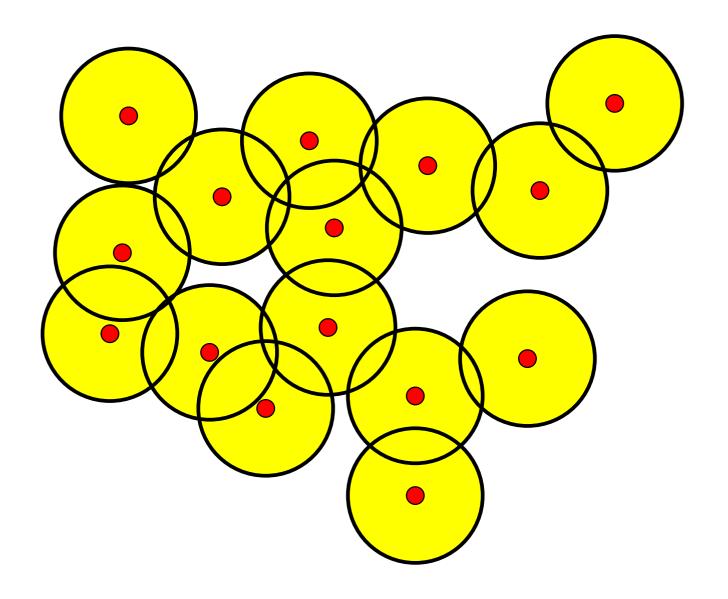
An algorithm for MWDS is a ρ -approximation algorithm if it runs in polynomial time and always outputs a solution of weight at most $\rho \cdot \mathrm{OPT}$, where OPT is the weight of an optimal solution.

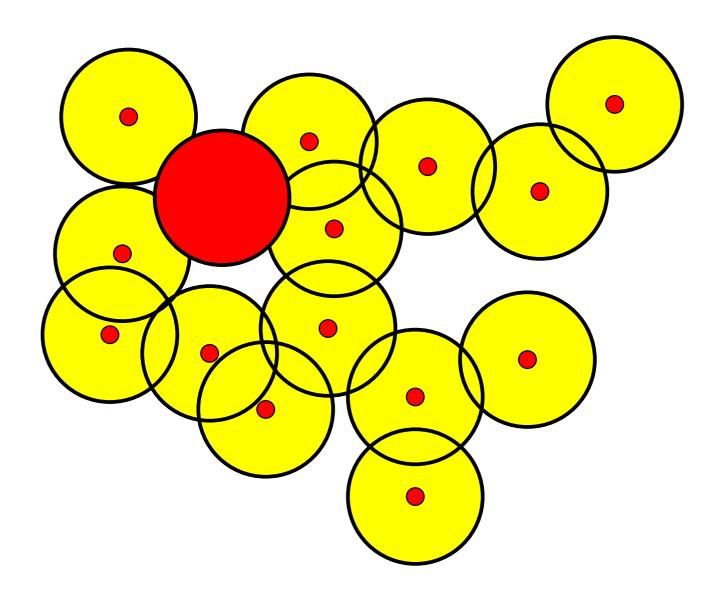
A polynomial-time approximation scheme (PTAS) is a family of algorithms containing a $(1 + \varepsilon)$ -approximation algorithm for every fixed $\varepsilon > 0$.

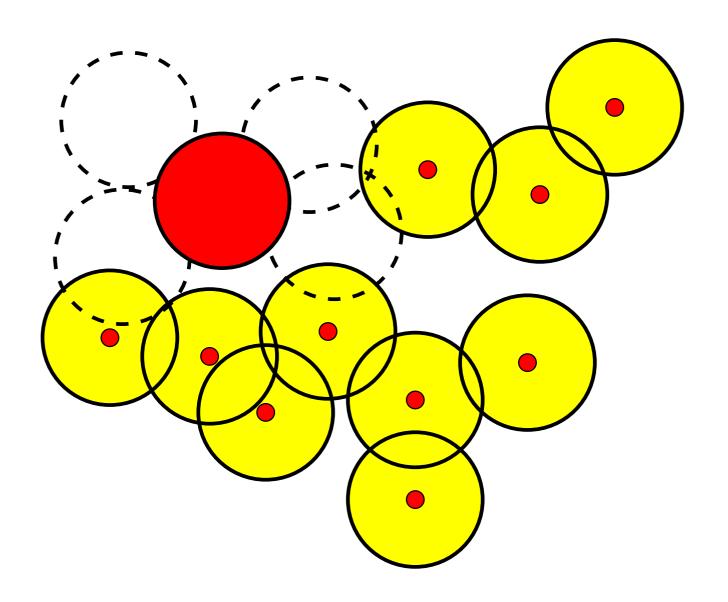
Remark: In practice, we are interested in distributed algorithms with fast running-time and good performance in realistic scenarios.

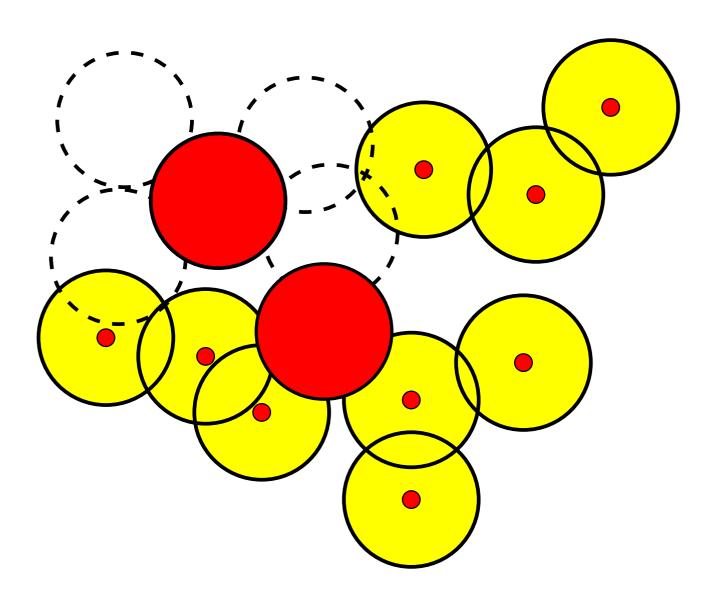
A simple algorithm for MDS

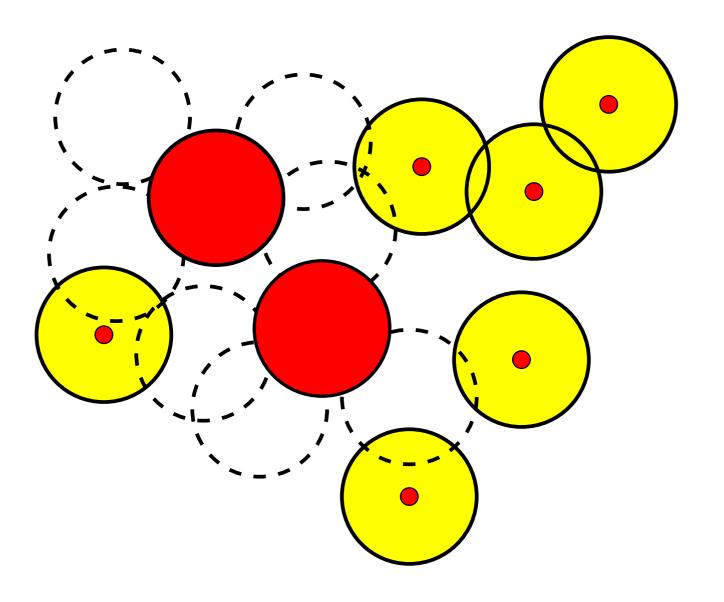
- Initialise \mathcal{U} as the empty set.
- Repeat until no disk left:
 - pick an arbitrary disk D
 - insert D into the set \mathcal{U}
 - delete the disk D and all its neighbours from the instance
- ullet Output the set ${\cal U}$ as dominating set

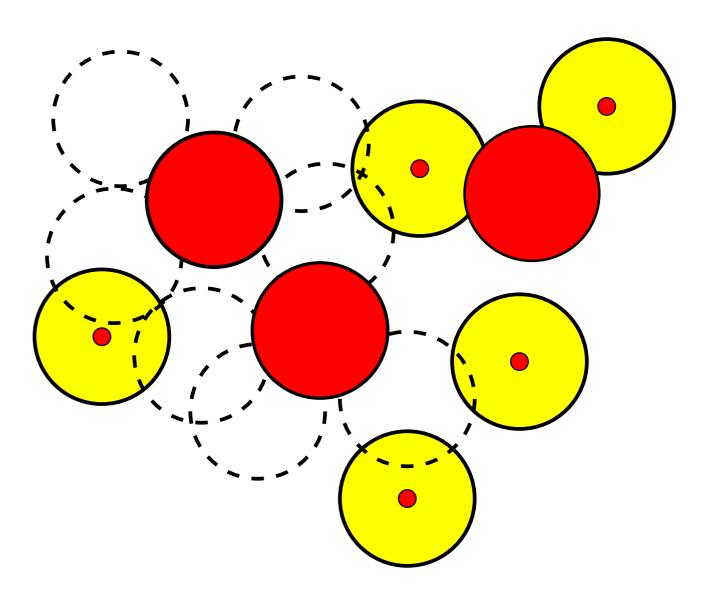


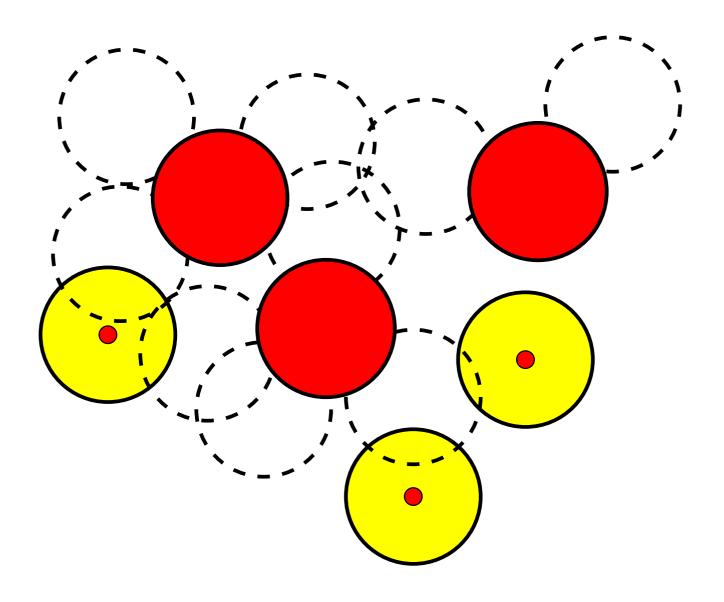


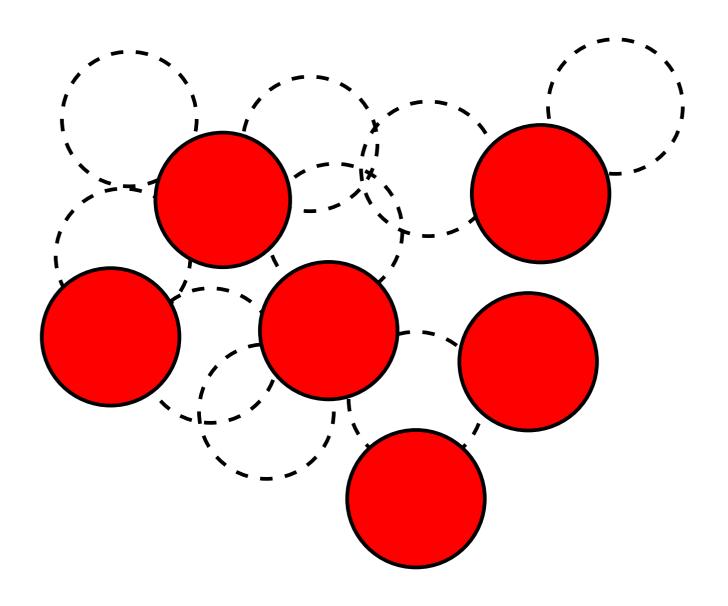












Analysis of the algorithm

How much worse than the optimal dominating set can the solution produced by this algorithm be?

Analysis of the algorithm

- How much worse than the optimal dominating set can the solution produced by this algorithm be?
- The set \mathcal{U} output by the algorithm consists of disjoint disks.

Analysis of the algorithm

- How much worse than the optimal dominating set can the solution produced by this algorithm be?
- The set \mathcal{U} output by the algorithm consists of disjoint disks.
- The optimal solution also needs to dominate all disks in \mathcal{U} .

Analysis of the algorithm

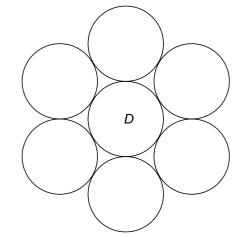
- How much worse than the optimal dominating set can the solution produced by this algorithm be?
- The set \mathcal{U} output by the algorithm consists of disjoint disks.
- The optimal solution also needs to dominate all disks in \mathcal{U} .
- ullet How many disks in ${\cal U}$ can one disk D from the optimal solution dominate?

Analysis of the algorithm

- How much worse than the optimal dominating set can the solution produced by this algorithm be?
- The set \mathcal{U} output by the algorithm consists of disjoint disks.
- The optimal solution also needs to dominate all disks in \mathcal{U} .
- ullet How many disks in ${\cal U}$ can one disk D from the optimal solution dominate?

D

At most 5:



The algorithm outputs the set $|\mathcal{U}|$, and the optimal solution has size at least $|\mathcal{U}|/5$.

The algorithm outputs the set $|\mathcal{U}|$, and the optimal solution has size at least $|\mathcal{U}|/5$.

Theorem (Marathe et al., 1992)

This simple greedy algorithm is a 5-approximation algorithm for MDS in unit disk graphs.

The algorithm outputs the set $|\mathcal{U}|$, and the optimal solution has size at least $|\mathcal{U}|/5$.

Theorem (Marathe et al., 1992)

This simple greedy algorithm is a 5-approximation algorithm for MDS in unit disk graphs.

Theorem (Marathe et al., 1992)

There is a simple 10-approximation algorithm for MCDS in unit disk graphs.

The algorithm outputs the set $|\mathcal{U}|$, and the optimal solution has size at least $|\mathcal{U}|/5$.

Theorem (Marathe et al., 1992)

This simple greedy algorithm is a 5-approximation algorithm for MDS in unit disk graphs.

Theorem (Marathe et al., 1992)

There is a simple 10-approximation algorithm for MCDS in unit disk graphs.

Remark: There are also fast distributed approximation algorithms for dominating set problems.

(Kuhn & Wattenhofer, 2005)

Known dom. set approximations

- In arbitrary graphs, ratio $\Theta(\log n)$ is best possible (unless P = NP) for MDS, MWDS, MCDS and MWCDS. [Feige '96; Arora and Sudan '97; Guha and Khuller '99]
- For MDS in unit disk graphs, a PTAS can be obtained using the shifting strategy [Hunt III et al., 1994]:
 - Any maximal independent set is a dominating set.
 - Therefore, the smallest dominating set in a constant-size square can be found in polynomial time by enumeration.
- PTAS for MDS in unit disk graphs without representation [Nieberg and Hurink, 2005]
- PTAS for MCDS in unit disk graphs [Cheng et al., 2003]
- Question: MWDS and MWCDS in unit disk graphs?

Shifting strategy doesn't seem to work

MWDS can be arbitrarily large for unit disks in an area of constant size:

large weight small weight

Brute-force enumeration does no longer work.

Constant-Factor Approximation

Theorem (Ambühl, E, Mihal'ák, Nunkesser, 2006) There is a constant-factor approximation algorithm for MWDS in unit disk graphs.

Ideas:

- Partition the plane into unit squares and solve the problem for each square separately.
- In each square, reduce the problem to the problem of covering points with weighted disks.
- Use enumeration techniques (guess properties of OPT) and dynamic programming to solve the latter problem.

The constant factor is 72.

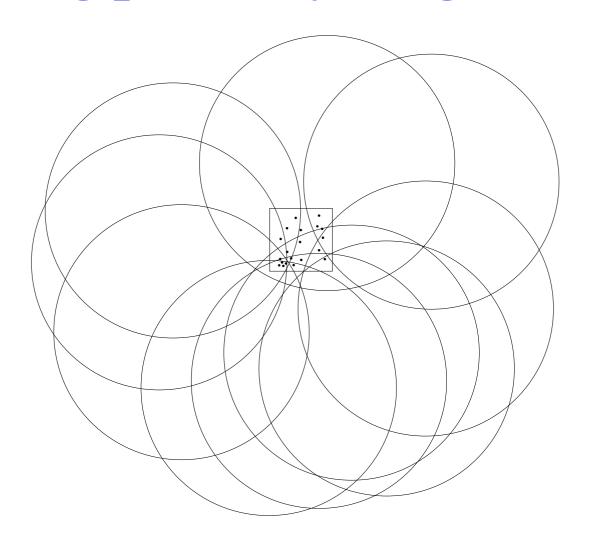
The subproblem for each square

- Find a dominating set for the square:
 - Let \mathcal{D}_S denote the set of disks with center in a 1×1 square S.
 - Let $N(\mathcal{D}_S)$ denote the disks in \mathcal{D}_S and their neighbors.
 - **Task:** Find a minimum weight set of disks in $N(\mathcal{D}_S)$ that dominates all disks in \mathcal{D}_S .

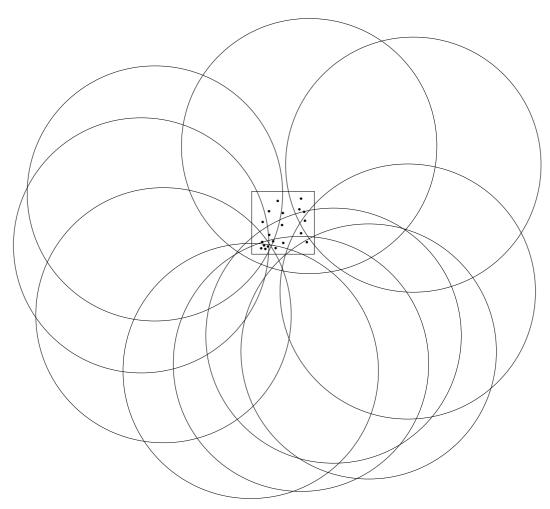
The subproblem for each square

- Find a dominating set for the square:
 - Let \mathcal{D}_S denote the set of disks with center in a 1×1 square S.
 - Let $N(\mathcal{D}_S)$ denote the disks in \mathcal{D}_S and their neighbors.
 - **Task:** Find a minimum weight set of disks in $N(\mathcal{D}_S)$ that dominates all disks in \mathcal{D}_S .
- Reduces (by guessing the max weight of a disk in OPT_S) to covering points in a square with weighted disks:
 - Let P be a set of points in a $\frac{1}{2} \times \frac{1}{2}$ square S.
 - Let \mathcal{D} be a set of weighted unit disks covering P.
 - Task: Find a minimum weight set of disks in \mathcal{D} that covers all points in P.

Covering points by weighted disks



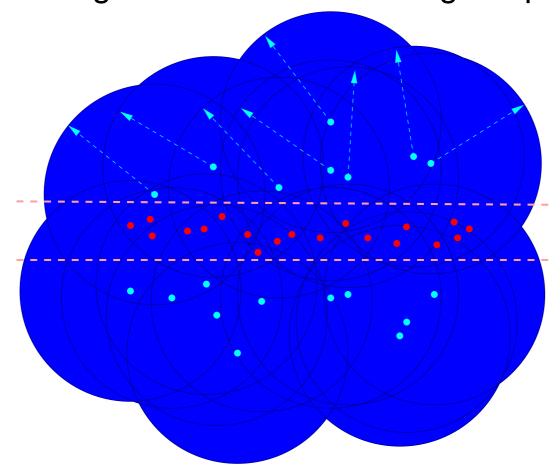
Covering points by weighted disks



Remark. O(1)-approximation algorithms are known for unweighted disk cover [Brönninmann and Goodrich, 1995].

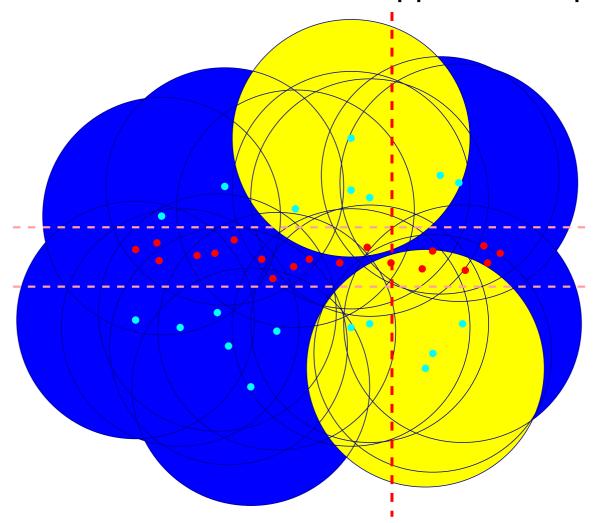
Polynomial-time solvable subproblem

Given a set of points in a strip, and a set of weighted unit disks with centers outside the strip, compute a minimum weight set of disks covering the points.



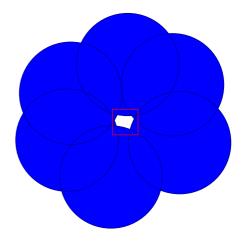
Dynamic programming

Vertical sweepline, table entry for every pair of disks that could be on the lower and upper envelope:

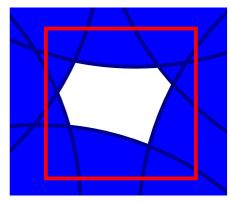


Main cases: One hole or many holes

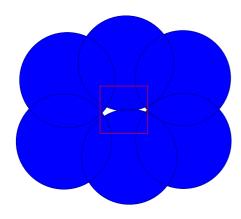
One-hole case:



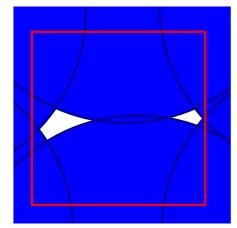
Enlarged:



Many-holes case:

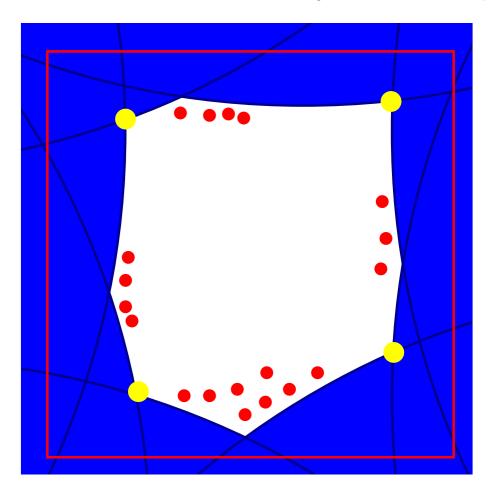


Enlarged:



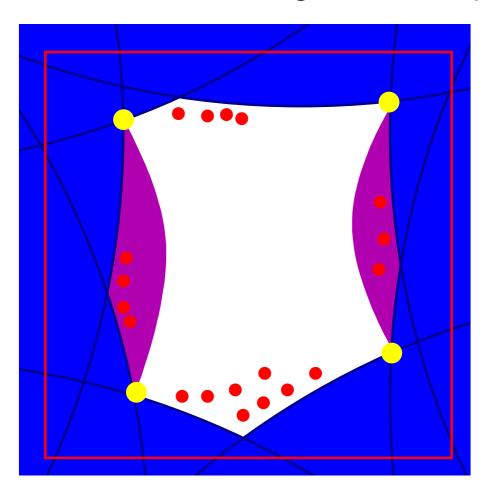
Sketch of the one-hole case

Step 1: Guess the four "corner points" of the optimal solution (each of them is defined by two disks).



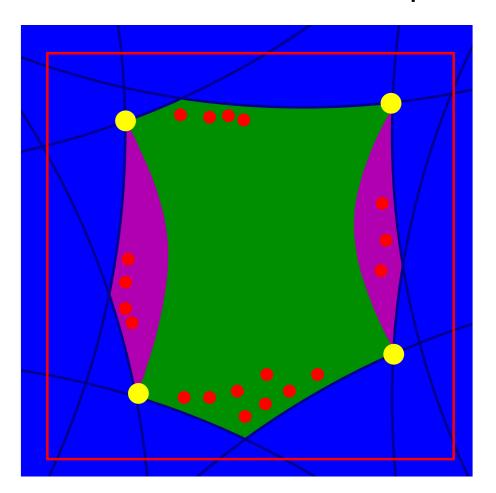
Sketch of the one-hole case

Step 2: Two regions that can only be covered with disks whose centers are to the left or right of the square.



Sketch of the one-hole case

Step 3: Remaining area can only be covered with disks whose centers are above or below the square.



Summary: MWDS in unit disk graphs

- Partition the plane into unit squares and solve the problem for each square separately. (We lose a constant factor compared to OPT.)
- For each square, reduce the weighted dominating set problem to a weighted disk cover problem.
- Distinguish one-hole case and many-holes case.
- In each case, we have a 2-approximation or optimal algorithm for covering points in the square with weighted unit disks.
- This implies the constant-factor approximation algorithm for MWDS in unit disk graphs.

Weighted Connected Dominating Sets

Theorem. There is a constant-factor approximation algorithm for MWCDS in unit disk graphs.

Algorithm Sketch:

- First, compute an O(1)-approximate MWDS D.
- Build auxiliary graph H with a vertex for each component of D, and weighted edges corresponding to paths with at most two internal vertices.
- Compute a minimum spanning tree of H and add the disks corresponding to its edges to D.

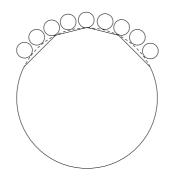
We can show: The total weight of the disks added to D is at most $17 \cdot \mathrm{OPT}$, where OPT is the weight of a minimum weight connected dominating set. The overall approximation ratio is then 72 + 17 = 89.

Further results on MDS and MWDS

Theorem. [E, van Leeuwen 2007/2008] For disk graphs with bounded ply, there is a $(3 + \varepsilon)$ -approximation algorithm for MWDS. For intersection graphs of r-regular polygons, there is an $O(r^2)$ -approximation algorithm for MDS.

Theorem. [E, van Leeuwen 2007/2008] For rectangle intersection graphs, MDS is APX-hard.

Theorem. [E, van Leeuwen 2007/2008] For intersection graphs of convex fat objects, MDS cannot be approximated with ratio $o(\log n)$ unless P = NP.



Open Problems

Disk graphs

- Improve running-time and/or approximation ratio for MWDS in unit disk graphs.
- Is there a PTAS for MDS in disk graphs with bounded ply?
- What is the best possible approximation ratio for minimum dominating set in general disk graphs:
 - Is there an O(1)-approximation algorithm or even a PTAS?
 - Is the problem APX-hard?
- What is the complexity of the maximum clique problem in disk graphs?
 (polynomial for unit disk graphs [Clark et al., 1990], NP-hard for ellipses [Ambühl, Wagner 2002])

Rectangle intersection graphs

- What is the best possible approximation ratio for maximum independent set?
 - Known: For every c>0, there is an approximation algorithm with ratio $1+\frac{1}{c}\log n$. [Berman et al., 2001]
 - Known: If all rectangles have the same height, there is a PTAS. [Agarwal et al., 1998]
- Can we achieve approximation ratio $o(\log n)$ for MDS and MWDS?
- Can rectangle intersection graphs be **colored** with $O(\omega)$ colors, where ω is the clique number? (best known upper bound: $O(\omega^2)$ colors [Asplund and Grünbaum, 1960])

Thank you!

Appendix

Minimum Vertex Cover

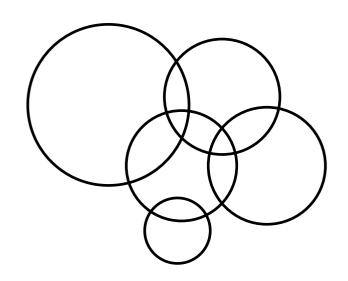
The problem MINVERTEXCOVER

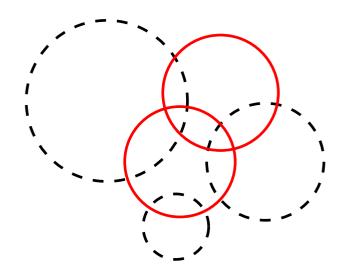
Input: a set \mathcal{D} of disks in the plane

Feasible solution: subset $C \subseteq \mathcal{D}$ of disks such that, for any

 $D_1, D_2 \in \mathcal{D}$, $D_1 \cap D_2 \neq \emptyset \Rightarrow D_1 \in C$ or $D_2 \in C$.

Goal: minimize |C|





Approximating MINVERTEXCOVER

An algorithm for MINVERTEXCOVER is a ρ -approximation algorithm if it

- > runs in **polynomial time** and
- \succ always outputs a vertex cover of size at most $\rho \cdot \text{OPT}$, where OPT is the size of the optimal vertex cover.

A polynomial-time approximation scheme (PTAS) is a family of $(1 + \varepsilon)$ -approximation algorithms for every constant $\varepsilon > 0$.

PTAS idea for MINVERTEXCOVER

- ightharpoonup Fact: I is an independent set $\Leftrightarrow \mathcal{D} \setminus I$ is a vertex cover
- ➤ To approximate MINVERTEXCOVER in unit disk graphs, we can again use the **shifting strategy**.
- Disks that hit an active line are considered in all squares that they intersect (at most 4 squares).



PTAS: MINVERTEXCOVER in unit disk graphs

- For $0 \le r, s < k$, partition the plane into squares via
 - → horizontal lines equal to r modulo k and
 - \rightarrow vertical lines equal to $s \mod k$.
- **2** Compute the minimum vertex cover C_S among the disks intersecting each $k \times k$ square S by computing a maximum independent set and taking the complement.
- **9** The union of the sets C_S gives a candidate vertex cover (for each (r,s)).
- Output the smallest vertex cover obtained in this way.

Running-time: $n^{O(k^2)}$ for n disks. (Can be improved to $n^{O(k)}$.)

Analysis of PTAS for MINVERTEXCOVER

- lacktriangle Let C^* be an optimum vertex cover.
- For $0 \le r, s < k$ let $C^*(r, s)$ be the disks intersecting active lines for (r, s) and let S(r, s) be the set of all $k \times k$ squares determined by these active lines.
- For a $k \times k$ -square S, let C_S^* be the disks in C^* intersecting S and let $\mathrm{OPT}(S)$ be the optimum vertex cover of the disks intersecting S.

Candidate vertex cover computed by the algorithm for (r,s) has size

$$\left| \bigcup_{S \in \mathcal{S}(r,s)} \text{OPT}(S) \right| \leq \sum_{S \in \mathcal{S}(r,s)} |\text{OPT}(S)|$$

$$\leq \sum_{S \in \mathcal{S}(r,s)} |C^*(S)|$$

$$\leq 3|C^*(r,s)| + |C^*|$$

For some choice of (r, s):

- \Rightarrow at most $\frac{1}{k}|C^*|$ disks of C^* intersect vertical active lines
- \Rightarrow at most $\frac{1}{k}|C^*|$ disks of C^* intersect horizontal active lines

For this choice, we have $|C^*(r,s)| \leq \frac{2}{k}|C^*|$.

⇒ Solution has size at most $\left(1 + \frac{6}{k}\right) C^*$ for some choice of (r, s)

MINVC in disk graphs: Summary

- PTAS for unit disk graphs using the shifting strategy (needs the representation). [Hunt III et al., 1994]
- $\frac{3}{2}$ -approximation algorithm for **general disk graphs** (not needing the representation). [Malesińska, 1997]
- PTAS for **general disk graphs** using the shifting strategy and dynamic programming (needs the representation).

[E, Jansen, Seidel'01]

Note: PTAS adapts to squares, regular polygons etc., also in higher dimensions. Result holds for the weighted version as well.