
Assigning AS Relationships to Satisfy the
Gao-Rexford Conditions

Luca Cittadini∗, Giuseppe Di Battista∗, Thomas Erlebach†, Maurizio Patrignani∗, and Massimo Rimondini∗
∗ Dept. of Computer Science and Automation, Roma Tre University
{ratm,gdb,patrigna,rimondin}@dia.uniroma3.it

† Dept. of Computer Science, University of Leicester
t.erlebach@mcs.le.ac.uk

Abstract—Compliance with the Gao-Rexford conditions [1]
is perhaps the most realistic explanation of Internet routing
stability, although BGP is renowned to be prone to oscillations.
Informally, the Gao-Rexford conditions assume that (i) the
business relationships between Internet Service Providers (ISPs)
yield a hierarchy, (ii) each ISP behaves in a rational way, i.e.,
it does not offer transit to other ISPs for free, and (iii) each
ISP ranks routes through customers better than routes through
providers and peers.

We show an efficient algorithm that, given a BGP configu-
ration, checks whether there exists an assignment of peer-peer
and customer-provider relationships that complies with the Gao-
Rexford conditions. Also, we show that preferring routes through
peers to those through providers, although more suitable than
the original formulation of Condition (iii) to describe the business
relationships between ISPs, makes the problem NP-hard.

The above results hold both in the clean theoretical framework
introduced in [2] to model BGP and in a more realistic setting
where (i) local preferences are assigned on a per-neighbor basis
and (ii) transit is allowed from/to specific neighbor pairs. Observe
that the latter setting, where policy complexity only depends
on the number of neighbors, is very close to the way in which
operators typically configure routers.

I. INTRODUCTION AND RELATED WORK

Internet interdomain routing relies on the Border Gateway
Protocol (BGP) [3]. Unfortunately, it has been shown that the
interaction of not-so-unlikely BGP configurations can lead to
permanent oscillations of Internet routing (see, e.g.,[2]). Even
worse, deciding whether a given BGP configuration is safe,
that is, free from oscillations, poses computationally difficult
problems (see, e.g., the game theoretical approach in [4] and
the stability problems analyzed in [5]).

Hence, safety in interdomain routing can be guaranteed
either by extending the protocol to dynamically resolve os-
cillations [6], [7], or by limiting the expressiveness of the
policies that ISPs can configure [8], [2]. Given the popularity
of BGP, the former option faces serious deployment issues.
In the context of the latter option, it is key that constraints
on policies be easy to enforce, or at least easy to check.
Jaggard and Ramachandran studied in [9] the special case
where policies are class-based, i.e., they are specified based on
classes of neighbors. The authors present a polynomial time
algorithm that checks whether such class-based policies may
potentially lead to oscillations in some specific topologies.

Gao and Rexford proposed in [1] a realistic set of conditions
that guarantees safety. A fundamental property of the Gao-

Rexford conditions is that they allow router configurations
that are consistent with simple economic requirements. In fact,
the conditions assume that the business relationships between
ISPs yield a hierarchy (acyclicity condition), and that each ISP
behaves in a rational way, i.e., it does not offer transit to other
ISPs for free (valley-free condition), and it ranks routes accord-
ing to revenues (prefer-customer condition). Those business
arguments led the Internet community to regard compliance
with the Gao-Rexford conditions as the intrinsic reason why
BGP is actually able to make the Internet work.

A BGP Internet-like network which is compliant with
the Gao-Rexford conditions also has other properties beyond
safety: for example, it is safe even under router or link
failures [10], and it has a bound on convergence time that,
assuming that customer-provider chains are of limited length,
is roughy constant [11]. In [10] an extension to the Gao-
Rexford conditions is proposed that guarantees safety even
when interdomain backup policies are in place.

Research interest in the complexity of checking the Gao-
Rexford conditions was originally spurred by the findings
in [12]. In [13] is devised a polynomial-time algorithm that,
given a set of paths, assigns business relationships in such a
way that all the paths satisfy the valley-free condition. In [14]
is shown that assigning relationships while satisfying the
acyclicity and valley-free conditions together takes polynomial
time in the general case. Both [13] and [14] regard compliance
with the Gao-Rexford conditions as a strong indication that the
inferred business relationships are realistic.

In this paper we aim at using the Gao-Rexford conditions to
prove that a given BGP network exhibits the highly desirable
stability properties listed above. More formally, given a set of
BGP policies, we study the problem of deciding whether an
assignment of relationships exists that satisfies all the Gao-
Rexford conditions. Notice that this is much different from
(and harder than) detecting violations to the Gao-Rexford
conditions when the relationships are known (see, e.g., [15]).
On the other hand, the assignment we compute (if any exists)
could differ from the actual business relationships in the
Internet: indeed, business relationships might be much more
complicated than the simple peer-peer and customer-provider
envisaged in the Gao-Rexford conditions. However, we stress
that our focus is on verifying the stability properties of the
network by means of the Gao-Rexford conditions, and not on

inferring realistic business relationships.
Observe that collecting Internet-wide BGP router configura-

tions is of course unfeasible, posing both technical and polit-
ical problems. However, verifying that a given set of policies
complies with the Gao-Rexford conditions is still a relevant
problem in the context of network simulators (e.g., [16]). Also,
there are situations (see, e.g., BGP confederations [17]) where
several BGP neighbors work together to define BGP policies
that fit a diverse set of interests. In that case the routing policies
of the confederation members are likely to be shared.

We show an efficient algorithm that is able to check whether,
for a given set of BGP policies, there exists an assignment of
relationships that complies with the Gao-Rexford conditions.
We use the theoretical framework introduced in [2] to model
BGP policies, because it is expressive enough to capture
virtually any routing policy, including, e.g., those resulting
from the use of BGP communities. We also prove our results in
a more realistic setting where (i) local preferences are assigned
on a per-neighbor basis and (ii) transit is allowed from/to
specific neighbors (e.g., traffic from ISP A can go through
ISP B and cannot go through ISP C). Observe that the latter
setting, where policy complexity only depends on the number
of neighbors, is very close to the way in which operators
typically configure routers. An interesting consequence of
our results is that, if reliable and accurate shared databases
of routing policies (which was the original goal of Internet
Routing Registries [18]) were available, then we would be
able to efficiently test the stability of the whole system.

The prefer-customer condition of [1] specifies that a routing
policy should prefer routes through customers over those
through peers and providers. However, ISPs are also likely
to prefer routes through peers over those through providers,
because of lower costs. Such a recasting of the conditions,
while preserving routing safety, better captures the economic
rationality of ISPs and one could wonder why the original
conditions have been stated as prefer-customer only. We show
that this question has a computational complexity answer.
Namely, we show that, given a BGP configuration, it is NP-
hard to check if there exists an assignment of relationships that
complies with the Gao-Rexford conditions augmented with a
prefer-peer guideline. Even this result is shown to hold both in
the theoretical framework in [2] and in a more realistic setting.

The rest of the paper is organized as follows. In Section II
we introduce the models we use to represent BGP policies and
we recall the Gao-Rexford conditions. Section III describes
an efficient algorithm to check whether a BGP configuration
complies with the Gao-Rexford conditions. In Section IV we
show that preferring peers to providers makes the same check
computationally hard. Conclusions and open problems are
discussed in Section V.

II. A MODEL FOR BGP CONFIGURATIONS

In this paper we model BGP using the widely adopted Stable
Paths Problem (SPP) formalism [2], that is the reference point
of most of the scientific contributions on BGP stability.

A. The SPP Model

Let G = (V,E) be an undirected graph, with vertex set
V = {0, 1, . . . , n} and edge set E. Graph G is used to
represent the Internet topology at the level of the Autonomous
Systems (ASes). Vertices in V correspond to ASes, while
edges in E correspond to adjacency relationships between
ASes (also called peerings).

A path P in G is a sequence of k + 1 vertices P =
(vk vk−1 . . . v1 v0), vi ∈ V , such that (vi, vi−1) ∈ E for
i = 1, . . . , k. Vertex vk−1 is the next hop of vk in P . For
k = 0 we obtain the trivial path (v0) consisting of vertex
v0 alone. We denote the empty path by ε. The concatenation
of two nonempty paths P = (vk vk−1 . . . vi), k ≥ i, and
Q = (vi vi−1 . . . v0), i ≥ 0, denoted as PQ, is the path
(vk vk−1 . . . vi vi−1 . . . v0). We assume that Pε = εP = ε,
that is, the empty path can never extend or be extended by
other paths.

In the SPP model each vertex in V − {0} attempts to
establish a path to a single vertex 0. Since BGP manages
each destination independently from the others, we assume
that vertex 0 is the only destination in the network.

As pointed out by several authors (see, e.g. [8]), BGP
policies consist of filtering and ranking components. To model
BGP route filters, each vertex u ∈ V is assigned a set of
permitted paths Pu. All the paths in Pu are simple (i.e.,
without repeated vertices), start from u and end in 0, and
represent the paths that u can use to reach 0. The empty path
represents unreachability of 0 and is permitted at each vertex
u 6= 0. Let P0 = {(0)}, that is, vertex 0 can reach itself only
directly. Let P =

⋃
u∈V Pu. To model BGP path ranking,

for each vertex u ∈ V , a ranking function λu : Pu → N
determines the relative level of preference λu(P) assigned
by u to path P . If P1, P2 ∈ Pu and λu(P2) < λu(P1) (or,
more informally, P2 < P1), then P2 is preferred over P1. Let
Λ = {λu|u ∈ V }.

According to the model in [2], the following conditions hold
on the paths, for each vertex u ∈ V − {0}:

(i) ∀P ∈ Pu, P 6= ε: λu(P) < λu(ε) (unreachability of 0 is
the last resort);

(ii) ∀P1, P2 ∈ Pu, P1 6= P2 : λu(P1) = λu(P2) ⇒ P1 =
(u v)P ′1, P2 = (u v)P ′2, (strict ranking is assumed on all
the paths but those with the same next hop).

An instance S of SPP is a triple (G,P,Λ). An example
is shown in Fig. 1, using the same graphical convention as
in [2]. The list beside each vertex u represents the paths in
Pu sorted by increasing values of λu. The empty path and P0

are omitted for brevity. In the example, vertex 2 can use either
path in P2 = {(2 1 0), (2 0)} to reach 0 and prefers (2 1 0).

A path assignment is a function π that maps each vertex
v ∈ V to a path π(v) ∈ Pv , thus modeling the paths selected
by BGP. We have that π(0) = (0) and, if π(v) = ε, then v
cannot reach vertex 0.

In order to model the BGP protocol dynamics, π can be
updated according to a distributed algorithm known as Simple
Path Vector Protocol (SPVP) [6]. Very briefly, SPVP works

130

10

210

20

30
420

430

1 2

3 4

0

Fig. 1: Example of an SPP instance.

as follows (the details can be found in [6]). Vertex 0 keeps
announcing to its neighbors about its presence. Every other
vertex u first of all collects announcements from its neighbors
and discards those announcements containing paths that are
not in Pu. Thus, u can select a path in the following set:

choices(π, u) =

{
{(u v)π(v) | (u, v) ∈ E} ∩ Pu if u 6= 0
{(0)} if u = 0

Let W be the set of paths received by u from its neighbors.
At this point, u selects the best ranked path in W according
to its ranking function λu:

best(W,u) =

{
arg min
P∈W

λu(P) if W 6= �

ε if W = �
If this operation updated u’s selected path, then u sends
announcements to all its neighbors advertising path (u)P .

Given an SPP instance, we say that π is a stable path assign-
ment if, ∀u ∈ V : π(u) = best(choices(π, u), u), that is, every
vertex has settled to the best possible choice and has no better
ranked alternative. It has been shown that, possibly depending
on the timings with which announcements are exchanged, the
SPVP algorithm might oscillate indefinitely, never converging
to a stable state. An SPP instance S is safe [19], [1] if SPVP is
guaranteed to converge on S, regardless of the event timings.

Since vertices and edges that are not used by any paths in
P can never be part of any BGP-computed routing path, we
assume that the size of an SPP instance S is the size of P .

B. The Gao-Rexford Conditions

ISPs establish commercial agreements [1] with each other
in order to get the level of connectivity they require, and graph
G can be partially oriented to represent these agreements.
Namely, edge (u, v) is oriented from u to v (written (u→ v)),
if u is a customer of v, while (u, v) is unoriented (written
(u — v)) if u and v are peers. A graph with these features
is a customer-provider graph. The neighbors of each vertex
v are partitioned into sets customers(v), providers(v), and
peers(v), containing neighbors w such that w is a customer,
a provider, or a peer of v, respectively.

Assuming that each AS configures its routers in an eco-
nomically rational way, commercial agreements established
among ASes imply some constraints on BGP policies. In
particular, we say that an SPP instance satisfies the Gao-
Rexford conditions [1], [10] if:

(i) Acyclicity: The customer-provider graph does not contain
a directed cycle (cycle composed by directed edges only).

Cycles would correspond to unclear customer-provider
roles.

(ii) Valley-free: Each path of P is valley-free: provider-to-
customer and peer-peer edges can only be followed by
provider-to-customer edges. A valley is considered an
anomaly because it corresponds to an AS providing
transit to either its peers or its providers, hence bearing
a cost without getting revenues.

(iii) Prefer-customer: For each vertex v, let P1, P2 ∈ Pv . If
the next hop of P1 is in customers(v) and the next hop
of P2 is in providers(v) or in peers(v), then P1 < P2.
This corresponds to preferring routes with lower cost.

In [1], [10] it has been shown that an instance of SPP
satisfying all the above conditions is safe. In this sense, Gao
and Rexford proposed the above conditions as a methodolog-
ical guideline to configure routers. In this paper we look at
the conditions from a different perspective. Namely, given
the BGP configurations of the routers, and assuming no
knowledge of the customer-provider relationships, we want
to check whether these configurations are compliant with the
conditions. More formally, we tackle the following problem:

Problem: GAO-REXFORD-CHECK
Instance: An instance S = (G,P,Λ) of SPP.
Question: Can G be partially oriented to a customer-

provider graph such that S satisfies the Gao-
Rexford conditions?

The partial orientation of G, if it exists, is a solution of
GAO-REXFORD-CHECK.

C. A Succinct Model of BGP Routing Policies

The SPP model has the advantage of representing policies
in a clear and intuitive way while being expressive enough
to model virtually any routing policy (including, e.g., those
resulting from the use of BGP communities). On the other
hand, such expressiveness requires an explicit representation of
all the paths permitted by BGP filters. This implies that the size
of S can be exponential in |V |. However, in order to keep the
complexity of BGP policies manageable, router configuration
languages typically use constructs that allow network operators
to express policies in a succinct way, without the need to
enumerate a large number of routes. To show the practical
applicability of our techniques, we define a very simple variant
of the SPP model that overcomes this problem by representing
BGP policies succinctly. We call this variant SSPP.

Let G = (V,E) be defined as for standard SPP instances.
To model BGP route filters, for each vertex u ∈ V , we define
a set of permitted path fragments P̃u such that (i) all path
fragments have length at most 3; (ii) path fragments in the
form (u 0) can be in P̃u only if (u, 0) ∈ E; and (iii) path
fragments in the form (u v w) can be in P̃u only if u, v, and
w are distinct vertices in V and (u, v), (v, w) ∈ E.

The only permitted path fragment at vertex 0 is P̃0 = {(0)}.
A vertex u ∈ V −{0} can use any path starting with a fragment
in P̃u to reach 0. We implicitly assume that ε ∈ P̃u, ∀u ∈
V − {0}. Let P̃ =

⋃
u∈V P̃u.

342

310

10

134

210

421

3

4

2

1 0

520

5320

320

3520

210

20

2410

410

10 21 3

4 5

0

(a) (b)

Fig. 2: (a) An instance of the SSPP model for BGP policies.
(b) Instance of GAO-REXFORD-CHECK.

Each vertex u ∈ V − {0} ranks path fragments in P̃u

according to a function λ̃u : P̃u → N which determines the
level of preference assigned to paths starting with a fragment
in P̃u. Namely, if λ̃u((u v w)) < λ̃u((u x y)) (or, more
informally, (u v w)) < (u x y)), then any path starting with
(u v w) is preferred over any path starting with (u x y).

Similarly to the SPP model, unreachability is the last resort,
i.e., ∀P ∈ P̃u, P 6= ε: λ̃u(P) < λ̃u(ε).

Differently from the SPP model, two path fragments can
have the same rank even if they have a different next hop.
Moreover, paths through the same neighbor always have the
same rank, i.e., let (u v w) and (u v z) be two path fragments
in P̃u, we have λ̃u((u v w)) = λ̃u((u v z)). Finally, any
deterministic criterion (e.g., shortest path) can break ties.

An instance S̃ of SSPP is then a triple (G, P̃, Λ̃).
We remark that SSPP is particularly suitable to capture the

semantics of a network where routers have policies that depend
only on the neighbors. Such policies envisage only filters of the
type “pass all the routes learned from neighbor w to neighbor
v”, and only rankings of the type “rank routes learned from
neighbor x better than those learned from neighbor y”.

Whereas sharing significant similarities, SSPP cannot be
regarded as a variant of the model presented in [9]. Most no-
ticeably, SSPP is more expressive in that each AS preserves its
own autonomy rather than being compelled to rank and filter
routes according to predetermined network-wide constraints.

Observe that the size of an SSPP instance is polynomial in
|V |. In fact, the number of path fragments at each vertex u is
bounded by the square of the maximum vertex degree of G.

Consider, for example, the graph in Fig. 2(a). It represents
a network where vertices apply the following policies: 1
announces paths received from 0 to 2 and 3; 2 announces paths
received from 1 to 4; 3 announces paths received from 4 to
1; 4 announces paths received from 2 to 3; and all the other
paths are filtered out. Also, 1 prefers to use the direct path
to 0, and 3 prefers paths through its neighbor 4. An instance
of SSPP modeling these polices can be built as in Fig. 2(a).
It is interesting to notice that the presence of (3 4 2) in P̃3

does not represent an explicit statement of 3, but rather the
combined effect of the ranking policy of 3 and of the filtering
policy of 4.

The Gao-Rexford conditions can be easily restated in the
SSPP model: the valley-free and prefer-customer conditions
are applied to path fragments instead of paths, while the

acyclicity condition remains unaltered.
Given a specific tie break criterion, an instance S̃ =

(G, P̃, Λ̃) of SSPP can be uniquely mapped to an in-
stance S = (G,P,Λ) of SPP in the following way.
Graph G is unchanged. Given k + 2 path fragments
(u1 v1 w1), (u2 v2 w2), . . . , (uk vk wk), (vk wk 0), (wk 0),
such that ui+1 = vi and vi+1 = wi for i = 1, . . . , k − 1, we
define their chain as the path (u1 v1 w1 w2 w3 . . . wk 0).
The set P consists of all the possible chains of path frag-
ments in P̃ . Sets Pu are naturally defined as consisting
of the paths in P starting at u. For each vertex u ∈ V ,
if λ̃u((u v w)) < λ̃u((u x y)), then we require that
λu((u v w)P) < λu((u x y)Q) for any (u v w)P, (u x y)Q ∈
Pu. Ties are then broken according to the deterministic
criterion used in the definition of the SSPP instance.

SSPP is clearly less expressive than SPP, yet it admits
instances where SPVP fails to converge (see, e.g., the BAD-
GADGET example in [2]). We say that an SSPP instance S̃
is safe if the SPP instance S obtained by mapping S̃ to S
is safe. We now exploit the following property to assess the
relationship between the restated Gao-Rexford conditions and
the safety of an SSPP instance.

Property 2.1: A path P is valley-free if and only if all the
subpaths of P are valley-free.

Lemma 2.1: If an SSPP instance S̃ satisfies the Gao-
Rexford conditions, then S̃ is safe.

Proof: We prove the statement by showing that the SPP
instance S obtained by mapping S̃ to S satisfies the Gao-
Rexford conditions. This is obvious for acyclicity. Since paths
in P are constructed by chaining the valley-free path fragments
in P̃ , by Property 2.1 instance S also satisfies the valley-free
condition. Last, ranking functions in Λ̃ enforce the prefer-
customer condition by applying an appropriate per-neighbor
ranking. By construction, the same per-neighbor ranking is
retained in the functions in Λ, therefore instance S also
satisfies the prefer-customer condition.

It is therefore interesting to also consider the following
problem:

Problem: GAO-REXFORD-CHECK-SUCCINCT

Instance: An instance S̃ = (G, P̃, Λ̃) of SSPP.
Question: Can G be partially oriented to a customer-

provider graph such that S̃ satisfies the Gao-
Rexford conditions?

III. A POLYNOMIAL TIME ALGORITHM TO CHECK THE
GAO-REXFORD CONDITIONS

In this section we present a polynomial time algorithm for
problem GAO-REXFORD-CHECK. Let S = (G,P,Λ) be an
instance of SPP, where G = (V,E) is an undirected graph.
For a vertex u ∈ V and two different edges (u, v), (u,w) ∈ E,
we let (u, v) ≺ (u,w) if vertex u prefers some path starting
with (u v) to some path starting with (u w). More formally,
(u, v) ≺ (u,w) if there exist paths P,Q ∈ Pu, P ′ ∈ Pv ,
Q′ ∈ Pw such that P = (u v)P ′, Q = (u w)Q′, and
λu(P) < λu(Q). We assume that (u, v) ≺ (x, y) can only

hold if u = x. Derived from the prefer-customer condition, we
interpret (u, v) ≺ (u,w) as the following constraint: (u← w)
implies (u ← v). We refer to all these constraints as the ≺
constraints. Furthermore, we consider the transitive closure of
≺, i.e., we assume that (u, v) ≺ (u,w) and (u,w) ≺ (u, x)
implies (u, v) ≺ (u, x). We also use the expression u prefers
v to x to express (u, v) ≺ (u, x).

Let (G,P,≺) be a triple consisting of a graph G, a set of
paths P in G, and a transitive binary relation ≺ on the edges of
G. We assume that some of the edges of G may already have
been oriented. We now consider a relaxed variant of the Gao-
Rexford conditions in which prefer-customer is replaced by
the ≺ constraints. Namely, we address the following problem:

Problem: GAO-REXFORD-SIMPLE-CHECK
Instance: A triple (G,P,≺) and an orientation for some

edges of G.
Question: Can G be partially oriented to an acyclic

customer-provider graph such that the input
orientation is maintained, paths in P are
valley-free, and the ≺ constraints are satisfied?

A partial orientation of G that satisfies the above constraints
is a solution for GAO-REXFORD-SIMPLE-CHECK.

Lemma 3.1: A polynomial-time algorithm for problem
GAO-REXFORD-SIMPLE-CHECK gives a polynomial-time al-
gorithm for problem GAO-REXFORD-CHECK.

Proof: Given an instance S = (G,P,Λ) of GAO-
REXFORD-CHECK, construct instance S′ = (G,P,≺) of
GAO-REXFORD-SIMPLE-CHECK by keeping G and P and by
defining ≺ as above. It is easy to see that a partial orientation
of G is a solution for S′ if and only if it is a solution for the
original instance S.

We now describe a polynomial-time algorithm for GAO-
REXFORD-SIMPLE-CHECK. Let S = (G = (V,E),P,≺) be
an instance of GAO-REXFORD-SIMPLE-CHECK.

The idea of the algorithm is to follow the basic approach of
Kosub et al. [14]. For a given set of paths P in an undirected
graph G, their algorithm finds an acyclic orientation of G that
makes all paths in P valley-free, if one exists. Their algorithm
simply identifies a vertex v that is not traversed by any path
(i.e., there is no path in P such that v is an internal node of
the path), orients the edges of v away from v, and recurses on
V − v. In our algorithm, we process the vertices in the same
order, but it is not possible to determine the orientation of the
edges as easily. In particular, the ≺ constraints force us to
deal with the edges incident with v in a much more intricate
way. For some of the edges we need to leave the orientation
undecided initially, and only after V − v has been oriented,
we can also orient these edges. Furthermore, we need to add
auxiliary paths to P before the recursive call in order to ensure
that the edges incident with v can be oriented consistently in
the end.

The details of our algorithm are as follows. First, the
algorithm finds a vertex v ∈ V that is not traversed by any
path (i.e., v does not appear as an internal node of any path in
P) and that does not have any edge oriented towards it. If no

Huv a

b

c

Fuvu

v

e

f

Luv
d

Fig. 3: Illustration of edge sets Huv , Luv and Fuv assuming
ua ≺ uv, ub ≺ uv, uv ≺ uc, and uv ≺ ud.

such vertex exists, the algorithm stops and answers that S is
a no-instance. Note that if S is a yes-instance, i.e., there is an
acyclic orientation that makes all paths in P valley-free, there
must be at least one vertex that has no incoming edges in that
orientation, and that vertex cannot be traversed by any path.

The algorithm aims to orient each edge incident with v away
from v (customer-provider edge) or leave it unoriented (peer-
to-peer edge). Any such orientation satisfies the ≺ constraints
at v and cannot create a valley at v. Furthermore, any solution
for S in which some edges are oriented towards v is still a
valid solution if those edges are made unoriented.

The algorithm considers each edge (v, u) incident with v in
turn. The edge to neighbor u is processed as follows. Define
the following (not necessarily disjoint) sets of edges incident
with u:

• Let Huv be the set of edges (u,w) ∈ E with w 6= v and
(u,w) ≺ (u, v). In other words, Huv is the set of edges
(u,w) such that u prefers w to v. (‘H’ indicates higher
preference.)

• Let Luv be the set of edges (u,w) ∈ E with w 6= v and
(u, v) ≺ (u,w). In other words, Luv is the set of edges
(u,w) such that u prefers v to w. (‘L’ indicates lower
preference.)

• Let Fuv be the set of edges (u,w) ∈ E with w 6= v such
that P contains a path containing edges (v, u) and (u,w).
Fuv contains edges that follow (v, u) (or are followed by
(u, v)) in some path in P .

See Fig. 3 for an illustration. The motivation for defining these
edge sets is as follows. The edges in sets Huv and Luv interact
with (v, u) because of the ≺ constraints, and the edges in Fuv

because of the valley-free constraints.
In the following, whenever the algorithm decides to assign

a certain orientation to an edge (or to make the edge a
peer-to-peer edge) and the edge has previously been oriented
differently (either in the initial partial orientation or in a
previous step of the algorithm), the algorithm outputs ‘no’
at this stage. In order to simplify the presentation, we do not
mention this explicitly in every step.

If the edge (v, u) has already been oriented as (v → u), the
algorithm orients all edges in Huv towards u (forced by ≺),
and the processing of the edge (v, u) is finished.

Assume now that (v, u) has not yet been oriented. First,

the algorithm checks if Huv ∩ Fuv 6= ∅. If so, the algorithm
orients every edge (u,w) in Huv∩Fuv as (u← w). Any other
orientation would create a contradiction, as it implies (v → u)
(by valley-freeness) and then (u← w) (since (u,w) ≺ (u, v)).

Next, the algorithm checks the following cases one by one in
order to detect if there is a constraint that forces the orientation
of the edge (v, u):
• If Fuv contains an edge that has been oriented away

from u, then the algorithm fixes the orientation (v → u)
(forced by valley-freeness) and orients all edges in Huv

towards u (forced by ≺).
• If Luv contains an edge that has been oriented towards u,

then the algorithm fixes the orientation (v → u) (forced
by ≺) and orients all edges in Huv towards u (again,
forced by ≺).

• If there is an edge in Luv ∩ Fuv , the algorithm fixes
the orientation (v → u) and orients all edges in Huv

towards u. If (v, u) were oriented differently, all edges
in Fuv and thus also the edge in Luv would have
to be oriented towards u, implying (v → u) by the
≺ constraints.

If any of these cases applies, the processing of (v, u) is fin-
ished. Otherwise, the processing of (v, u) continues as follows:
For every pair of edges (u,w) ∈ Huv and (u, x) ∈ Fuv−Huv ,
the algorithm adds the path (x u w) to P . (If one of the two
edge sets is empty, no paths are added.) Denote the set of these
added paths as Quv . In the example of Figure 3, four paths
would be added, namely all paths consisting of one of the two
edges (a, u) and (b, u), and one of the two edges (u, e) and
(u, f). This completes the processing of (v, u).

After processing all edges (v, u) incident with v in this
way, the algorithm now calls itself recursively with parameters
G \ v, P ′, and ≺′ provided that V − v is not empty. Here,
P ′ is the set of paths obtained from the paths in P (after
adding the auxiliary paths in the sets Quv) by restricting
them to V − v, and ≺′ is the restriction of ≺ to the nodes
in V − v. If the recursive call returns ‘no’, the algorithm
outputs ‘no’. Otherwise, the algorithm orients the edges not
incident with v according to the partial orientation returned
by the recursive call, and determines the orientation of each
edge (u, v) incident with v whose orientation has not yet been
determined as follows:
• If all edges in Huv are directed towards u, the algorithm

fixes the orientation (v → u).
• If at least one edge in Huv is not directed to u, the

algorithm fixes the orientation (v — u). (In this case
there cannot be an edge Luv that is oriented towards u,
because this would mean that the recursively computed
solution for G \ v is invalid.)

We remark that the paths Quv have been added to P to ensure
that either all edges in Huv are oriented towards u or all
edges in Fuv are oriented towards u. In the latter case, making
(v, u) a peer-to-peer edge does not violate valley-freeness and
ensures that the ≺ constraints at u are satisfied.

Theorem 3.1: The algorithm solves GAO-REXFORD-

21 3

4 5

0

21 3

4 5

0

≺ constraints:
(2, 1) ≺ (2, 0) ≺ (2, 4)
(3, 2) ≺ (3, 5)
(5, 2) ≺ (5, 3)

≺ constraints:
(2, 1) ≺ (2, 4)
(3, 2) ≺ (3, 5)
(5, 2) ≺ (5, 3)

(a) (b)

Fig. 4: (a) Instance of GAO-REXFORD-SIMPLE-CHECK con-
structed from the instance of GAO-REXFORD-CHECK shown
in Fig. 2(b). (b) Instance of GAO-REXFORD-SIMPLE-CHECK
passed to the recursive call after node 0 has been processed.

SIMPLE-CHECK correctly in polynomial time.
Proof: It is clear that the algorithm runs in polynomial

time because the number of vertices is reduced by one for
each recursive call and the steps before and after the recursive
call can be implemented in polynomial time.

The algorithm fixes the orientation of an edge only when
the orientation of that edge is implied by constraints and/or
the orientations of previously fixed edges, or if the orientation
of that edge cannot possibly create any conflicts. Furthermore,
the path sets Quv that are added to P by the algorithm have
the property that they are valley-free in any solution of GAO-
REXFORD-SIMPLE-CHECK.

In any valid orientation of G, either all edges of Huv must
be directed to u (if (u, v) is oriented as (v → u)) or all edges
of Fuv must be directed to u (if (u, v) is oriented as (v ← u)
or (v — u)). Therefore, if the algorithm answers ‘no’ because
it wants to orient an edge differently from an orientation that
has been fixed earlier, or because it cannot find a vertex that is
not traversed by a path and has no incoming edge, it is clear
that the given instance is a no-instance.

By Lemma 3.1, we obtain the following corollary.
Corollary 3.1: There is a polynomial-time algorithm for

problem GAO-REXFORD-CHECK.
We illustrate our algorithm with a complete example.

Consider the instance of GAO-REXFORD-CHECK shown in
Fig. 2(b). First, the algorithm creates the instance of GAO-
REXFORD-SIMPLE-CHECK shown in Fig. 4(a), where the
graph G and the set of paths P are drawn (paths consisting
of one edge are omitted) and the precedence constraints ≺ are
listed (the transitive constraint (2, 1) ≺ (2, 4) is implicit).

In the first step, the algorithm picks node 0 as a node v
that is not traversed by any path and has no edge oriented
towards it. When it processes edge (0, 1), we have F10 =
{(1, 2), (1, 4)}, L10 = ∅ and H10 = ∅. None of the rules that
fix orientations of edges apply, and hence the edge (0, 1) is
left undecided for now.

When the algorithm processes edge (0, 2), we have F20 =
{(2, 5), (2, 3)}, L20 = {(2, 4)} and H20 = {(2, 1)}. The
algorithm adds the auxiliary paths Q10 = {125, 123} and

2 3

4 5

0

1 3

5

0

1 2

4

≺ constraints:
(3, 2) ≺ (3, 5)
(5, 2) ≺ (5, 3)

≺ constraints:
(none)

(a) (b)

Fig. 5: (a) Instance of GAO-REXFORD-SIMPLE-CHECK
passed to the recursive call after nodes 0 and 1 have been
processed. (b) Instance passed to the recursive call after nodes
0, 1, 2, and 4 have been processed. There are no paths left,
and the precedence relation ≺ is empty.

leaves the orientation of (0, 2) undecided for now. The re-
sulting problem instance for the recursive call is now shown
in Fig. 4(b), where vertex 0 and its incident edges (which are
not passed to the recursive call) are drawn in gray. (Paths of
length 1 are omitted as they are not relevant.)

Now, the algorithm picks node 1 as a node v that is not
traversed by any path and has no edge oriented towards it.
When it processes edge (1, 4), we have F41 = {(4, 2)}, L41 =
∅ and H41 = ∅. When the algorithm processes edge (1, 2), we
have F21 = {(2, 5), (2, 3)}, L21 = {(2, 4)} and H21 = ∅. For
none of the two edges (1, 4) and (1, 2), any of the rules to fix
orientations apply, so these two edges are left undecided for
now. The resulting problem instance for the recursive call is
shown in Fig. 5(a), where vertex 1 and its incident edges are
also drawn in gray.

Next, the algorithm can pick node 2 or 4, and ties can
be broken arbitrarily. Let us assume that the algorithm picks
node 2. When it processes the edge (2, 4), we have F42 =
H42 = L42 = ∅. No rules apply, and the orientation of
(2, 4) is left undecided for now. When processing (2, 5), we
have F52 = {(5, 3)}, L52 = {(5, 3)} and H52 = ∅. As
F52 ∩ L52 6= ∅, the algorithm fixes the orientation of (2, 5)
as (2 → 5). The processing of (2, 3) is analogous and fixes
the orientation of (2, 3) as (2 → 3). The resulting problem
instance for the next nontrivial recursive call (skipping the
processing of node 4 that has no effect as that node does not
have any incident edges left) is shown in Fig. 5(b).

Next the algorithm can pick 3 or 5, ties can be broken
arbitrarily. Let us assume the algorithm picks node 3. The
processing of edge (3, 5) does not fix any orientation. The
graph obtained from deleting node 3 contains only node 5
and no edges. The recursive call for this graph terminates the
recursion and returns the graph with only node 5 as a valid
partial orientation.

As the recursive calls terminate, the nodes are processed in
reverse order, and each node decides the orientations of the
edges to nodes that have already been processed during this
second phase of the algorithm. When node 3 is processed,
the algorithm fixes the orientation of (3, 5) as (3 → 5) since

2 3

4 5

0

1

520

5320

320

3520

210

20

2410

410

10 21 3

4 5

0

≺ constraints:
(2, 1) ≺ (2, 0) ≺ (2, 4)
(3, 2) ≺ (3, 5)
(5, 2) ≺ (5, 3)

(a) (b)

Fig. 6: (a) Situation before node 0 is processed during the tail
end of the recursion. (b) Solution obtained for the instance of
GAO-REXFORD-CHECK of Fig. 2(b).

H53 is empty. When node 4 is processed, nothing happens.
When node 2 is processed, edge (2, 4) is oriented as (2→ 4)
since H24 is empty. Now, node 1 is processed. Edge (1, 4) is
oriented as (1 → 4) since H41 is empty, and edge (1, 2) is
oriented as (1→ 2) since H21 is empty. The situation is now
as shown in Fig. 6(a).

When node 0 is processed, edge (0, 1) is oriented as (0→
1) since H10 = ∅. Edge (0, 2) is oriented as (0 → 2) since
all edges in H20 = {(2, 1)} have been oriented towards 2.
The final solution obtained for the original instance of GAO-
REXFORD-CHECK is shown in Fig. 6(b). Since the algorithm
has found a valid partial orientation, it answers ‘yes’ for the
given instance of GAO-REXFORD-CHECK. This concludes the
detailed example.

We now show that an analogous result to Corollary 3.1 holds
in the more realistic scenario where BGP policies are repre-
sented according to the SSPP model. We adapt our approach
to address the problem GAO-REXFORD-CHECK-SUCCINCT.
Given an instance S̃ = (G, P̃, Λ̃) of the problem, we can
transform it into an instance S′ = (G,P,≺) of problem GAO-
REXFORD-SIMPLE-CHECK as follows: We let P be the union
of the sets P̃u of path fragments for any u, and we define that
uw ≺ uv if P̃u contains path fragments p1 = (u w x) and
p2 = (u v y), for some nodes x, y, with λ̃u(p1) < λ̃u(p2).
Furthermore, we make the relation ≺ transitive by determining
the transitive closure. Analogously to Lemma 3.1, one can
show that a partial orientation of G is a solution to S̃ if
and only if it is a solution to S′. Thus, a polynomial-time
algorithm for problem GAO-REXFORD-SIMPLE-CHECK gives
a polynomial-time algorithm for problem GAO-REXFORD-
CHECK-SUCCINCT. By Theorem 3.1, we obtain the following
corollary.

Corollary 3.2: There is a polynomial-time algorithm for
problem GAO-REXFORD-CHECK-SUCCINCT.

IV. FINDING AN ORIENTATION IS HARD IF PEERS ARE
PREFERRED TO PROVIDERS

In this section we show that changing condition prefer-
customer so that peers are ranked better than providers makes
the check NP-hard. We call Gao-Rexford* this variant and

prefer-customer* the corresponding condition. This result im-
plies that an algorithm to check compliance with the Gao-
Rexford* conditions would be of little use, given that it would
fail to be either correct, or complete, or efficient and further
justifies the original Gao-Rexford model where routes from
peers and routes from providers are ranked into the same class.
Namely, we consider the following problem:

Problem: GAO-REXFORD-STRICT-CHECK
Instance: An instance S = (G,P,Λ) of SPP.
Question: Can G be partially oriented to a customer-

provider graph such that S satisfies the Gao-
Rexford* conditions?

We show that GAO-REXFORD-STRICT-CHECK is NP-hard
by reducing the 3SAT problem to it. In the 3SAT problem you
are given a set of clauses, each consisting of three literals, and
are asked to find a truth assignment to the Boolean variables
such that each clause has at least one true literal. Given an
instance ϕ of 3SAT, we describe how to build a corresponding
instance Sϕ = (G,P,Λ) of SPP such that G admits a partial
orientation to a customer-provider graph satisfying the Gao-
Rexford* conditions if and only if ϕ admits a solution.

We build the SPP instance Sϕ by composing some special
gadgets. The goal is to introduce for each clause a clause
gadget which forces the presence of a cycle in the customer-
provider graph whenever the clause is not satisfied.

First of all, consider the symmetric configuration
SC(u, v, w) represented in Fig. 7. In this configuration
vertex v is reached by the two paths P1 and P2 received from
its neighbor u and by the two paths P3 and P4 received from
its neighbor w. The ranking function λv at vertex v is such
that P1 < P3 < P4 < P2, while λu and λw are such that
these four paths are ranked better than any other paths.

Lemma 4.1: Let Sϕ = (G,P,Λ) be an instance of SPP
containing a symmetric configuration SC(u, v, w). In any solu-
tion of GAO-REXFORD-STRICT-CHECK, one of the following
holds: (i) v is a customer of both u and w; (ii) v is a provider
of both u and w; or (iii) v is a peer of both u and w.

Proof: Since v prefers P1 to P3, the orientations (u ←
v ← w), (u ← v — w), and (u — v ← w) make λv violate
the prefer-customer* condition. Symmetrically, since v prefers
P4 to P2, the orientations (u→ v → w), (u — v → w), and
(u → v — w) make λv violate the prefer-customer* condi-
tion. Hence, the remaining three orientations (u → v ← u),
(u ← v → u), and (u — v — u) are the only possible.
Observe that in any feasible orientation all edges between u
and 0 along P1 and P2 can be oriented away from 0. The
same holds for edges between w and 0 along P3 and P4.

By simply concatenating two symmetric configurations
SC(u, v, w) and SC(v, w, x) one obtains a configuration where
either all the three edges are peer-to-peer edges, or edge
e1 = (u, v) has the same orientation of edge e2 = (w, x).
We call this configuration, denoted DC(e1, e2) and depicted
in Fig 8(a), de-coupling configuration, since in any solution
of GAO-REXFORD-STRICT-CHECK a directed cycle can not
traverse it.

P
1

P
2

P
3

P
4

u v w

0

+
+

+
+

0 0 0

Fig. 7: The symmetric configuration SC(u, v, w). All the paths
originate from 0. Small dots along the paths represent entries
in P . Small + signs near the dots mean that the corresponding
paths are preferred (assigned lower values of λ) by the
corresponding vertex. Function λv ranks P1 < P3 < P4 < P2.

P
1

P
3

0

P
2

P
4

1
e

1
e

2
e

2
e

u x=

0

0

0 0

00 0

+
+

+
+

+
+

P P
6 8

+
+

u v w
P P

75

x

(a)

(b)

wv

Fig. 8: (a) The de-coupling configuration is composed by
two symmetric configurations SC(u, v, w) and SC(v, w, x).
We compactly represent the de-coupling configuration as in
(b).

For each Boolean variable xi of ϕ we introduce a variable
gadget (see Fig. 9) that is composed by a de-coupling config-
uration DC(e1, e2) plus a true-false path (v u . . . x w . . . 0)
as depicted in the figure.

Lemma 4.2: Let Sϕ = (G,P,Λ) be an instance of SPP
containing a variable gadget. In any solution of GAO-
REXFORD-STRICT-CHECK, the edges of the true-false path
are either all directed from x to u or from u to x.

Proof: Due to Lemma 4.1, the Gao-Rexford* conditions
can only be satisfied by one of the following orientations of
edges e1, e2: (i) (u→ v) and (w → x); (ii) (u← v) and (w ←

1e

0

=u x
2e

+

true−false path

= wv

ix =true

ix =false

Fig. 9: The variable gadget is composed by a de-coupling
configuration plus the true-false path depicted in the figure.
All the edges of the true-false path are either directed from x
to u (the variable is true) or from u to x (the variable is false).

x); or (iii) both e1 and e2 are peer-to-peer edges. Case (iii) is
ruled out, because it would violate valley-freeness of the true-
false path. Hence, Cases (i) and (ii) are the only two possible.
Also, in any feasible orientation all edges between 0 and w
along the true-false path can be oriented away from 0.

Intuitively, the orientation from x to u of the true-false path
of variable xi will be associated with a true value for xi,
while the opposite orientation from u to x will be associated
with a false value. These orientations are exploited by the
tap configurations, which are responsible for “extracting” truth
values from a true-false path.

Let C = l1 ∨ l2 ∨ l3 be a clause of ϕ, and let x1,
x2, and x3 be its variables. For each li, i = 1, 2, 3, we
introduce a tap configuration T C(u, v), shown in Figs. 10
and 11. A tap configuration T C(u, v) consists of a de-coupling
configuration and a pair of adjacent vertices (u, v). The de-
coupling configuration is attached on one side to vertex u and,
on the other side, to the true-false path of the variable gadget
of xi. The attachment to the true-false path depends on the
literal li. In particular, if li is a direct literal, then we attach to
the true-false path the tap configuration in Fig. 10. Otherwise,
if li is a negated literal, we attach to the true-false path the tap
configuration in Fig. 11. The function of tap configurations is
to force edge (u, v) to be oriented from v to u in any partial
orientation of G that satisfies the Gao-Rexford* conditions,
whenever the corresponding literal li is false (i.e., if li = xi
and xi = false, or if li = x̄i and xi = true).

With arguments similar to the ones used in the proofs of
Lemmas 4.1-2, the following lemma can be easily proved.

Lemma 4.3: Let Sϕ = (G,P,Λ) be an instance of SPP
containing a tap configuration T C(u, v) attached to the true-
false path of variable xi and corresponding to a direct
(negated) literal of xi. In any solution of GAO-REXFORD-
STRICT-CHECK, if the edges of the true-false path are oriented
towards 0 (away from 0, respectively), then edge (u, v) is
oriented from v to u.

Before describing the clause gadget, we need to introduce
a final tool. Given two non-adjacent vertices u and v of G,
the purpose of the forcing configuration, denoted FC(u, v)
and depicted in Fig. 12, is to add to G an edge (u, v) that
is forced to be oriented from u to v in any solution of GAO-
REXFORD-STRICT-CHECK. To this purpose, we add two paths
P1 = (0 . . . u v w x) and P2 = (0 . . . u v x w) to P . Paths
P1 and P2 are assigned highest ranks by λu and λv . Also,
P1 is best ranked by λw and P2 is best ranked by λx (see
Fig. 12).

Lemma 4.4: Let Sϕ = (G,P,Λ) be an instance of SPP
containing a forcing configuration FC(u, v). In any solution
of GAO-REXFORD-STRICT-CHECK, edge (u, v) is oriented
from u to v.

Proof: Consider the three possible orientations for edge
(w, x). If (w → x) or (w ← x) then, for both P1 and P2 to be
valley-free, it must be (u → v). Similarly, if (w — x) then,
for P1 and P2 to be valley-free it must also be (u→ v).

Hence, suppose (u→ v). Orient the edges (w → x), (v →
w), (v → x), and orient all the other edges of P1 and P2 from

u

v

0

0

+

tru
e−

fa
ls
e
pa

th
 fo

r v
ar

ia
bl

e
x

+

=

i

u

v

x
 =

tr
u
e

0

0

+

+

=

i

u

v

x
 =

fa
ls
e

0

0

+

+

=

i

(a) (b) (c)

Fig. 10: (a) The tap configuration T C(u, v) for a direct literal
xi. In any partial orientation satisfying the Gao-Rexford*
conditions, if xi = true, edge (u, v) may have an arbitrary
orientation (b). If xi = false, then v is a customer of u (c).

0

u

v

0

+

+

+

tru
e−

fa
ls
e
pa

th
 fo

r v
ar

ia
bl

e
x

=

i

u

v

x
 =

tr
u
e

0

0

+

+

+

=

i

u

v

x
 =

fa
ls
e

0

0

+

+

+

i

=

(a) (b) (c)

Fig. 11: The tap configuration T C(u, v) for a negated literal
x̄i. In any partial orientation satisfying the Gao-Rexford*
conditions, if xi = true, then v is a customer of u (b). If
xi = false, edge (u, v) may have an arbitrary orientation (c).

0 to u. It is easy to check that P1 and P2 are valley-free, that
v, w, and x do not form a directed cycle, and that, whatever
the other paths traversing u and v are, the ranking of paths
P1 and P2 makes all the vertices of FC(u, v) compliant with
the prefer-customer* condition.

The clause gadget for a clause C = l1 ∨ l2 ∨ l3 is shown
in Fig. 13. It consists of three tap configurations T C(u1, v1),
T C(u2, v2), and T C(u3, v3) (direct or negated, depending on
the case) attached to the true-false paths of the variable gadgets
for x1, x2, and x3, respectively. Further, we add three forcing

v

u

0 0

+

++

+
++

w x

v

u u

v

(a) (b) (c)

Fig. 12: The forcing configuration FC(u, v). Let u and v be
two non-adjacent vertices (a). Whatever the ranking functions
at vertices u and v are, the two most preferred paths added to
u and v (b) force the new edge (u, v) to be oriented from u
to v. We compactly depict the forcing gadget as in (c).

configurations FC(u1, v2), FC(u2, v3), and FC(u3, v1).
Lemma 4.5: Let Sϕ = (G,P,Λ) be an instance of SPP

corresponding to the 3SAT instance ϕ. Graph G admits a
partial orientation to a customer-provider graph satisfying the
Gao-Rexford* conditions if and only if ϕ admits a solution.

Proof: Suppose that ϕ admits a solution. Consider the
true-false-path associated with each variable and orient its
edges according to the truth value satisfying ϕ. Each clause has
at least a true literal. Consider a clause C = l1∨ l2∨ l3 and the
corresponding clause gadget containing the tap configurations
T C(u1, v1), T C(u2, v2), and T C(u3, v3). Suppose, without
loss of generality, that C has the true literal l2. Orient edges
(u1 ← v1), (u2 → v2), and (u3 ← v3). All the remaining
edges are oriented as described above for each gadget. Observe
that, in this way, there cannot be any directed cycles within
a single clause gadget. Due to the de-coupling configurations
inserted into the tap configurations, there cannot be a directed
cycle involving two clause gadgets either. Finally, due to
the de-coupling configuration into the variable gadget, there
cannot be a directed cycle using the true-false path.

Conversely, suppose that G admits partial orientation to a
customer-provider graph satisfying the Gao-Rexford* condi-
tions. Consider the clause gadget corresponding to a clause
C = l1 ∨ l2 ∨ l3 and containing the tap configurations
T C(u1, v1), T C(u2, v2), and T C(u3, v3). For the orientation to
satisfy the Gao-Rexford* conditions, at least one edge (ui, vi),
i = 1, 2, 3 must be oriented (ui → vi). By Lemma 4.3, this
implies that the true-false path for the corresponding variable
is oriented so that literal li is true, satisfying clause C.

Theorem 4.1: Problem GAO-REXFORD-STRICT-CHECK is

x

=
 t
ru

e

1

0

u
1

v
1

v
2

u
3

v
3

u
2

0

0

0

x

=
 f
al

se

2

0

0

x
 =

 tru
e

3

+

+

+

+

+

+

+

+

= =

=

Fig. 13: The clause gadget for clause x̄1 ∨ x2 ∨ x̄3. There is
a directed cycle of six edges (u1 v2 u2 v3 u3 v1 u1) when
x1 = true, x2 = false, and x3 = true.

NP-hard.
Proof: We exploit the reduction from 3SAT to GAO-

REXFORD-STRICT-CHECK described above. Let Sϕ =
(G,P,Λ) be the instance corresponding to instance ϕ of 3SAT.
By Lemma 4.5, we have that G admits a partial orientation
to a customer-provider graph satisfying the Gao-Rexford*
conditions, if and only if ϕ admits a solution. Since Sϕ can
be constructed in polynomial time, the statement follows.

We remark that a construction similar to the one described
in this section allows to prove an analogous result in the SSPP
model. Namely, we consider the following problem:

Problem: GAO-REXFORD-STRICT-CHECK-SUCCINCT

Instance: An instance S̃ = (G, P̃, Λ̃) of SSPP.
Question: Can G be partially oriented to a customer-

provider graph such that S̃ satisfies the Gao-
Rexford* conditions?

Theorem 4.2: Problem GAO-REXFORD-STRICT-CHECK-
SUCCINCT is NP-hard.

Proof: We prove this by showing that the same filtering
and ranking policies adopted in the gadgets described for the
reduction from 3SAT to GAO-REXFORD-STRICT-CHECK can
be applied by just using the path fragments of the SSPP model.

First of all, given the instance Sϕ = (G = (V,E),P,Λ),
each path P ∈ P can be suitably replaced by fragments
such that their chain produces P . It can be verified that
this easily applies to the symmetric, de-coupling, and forcing
configurations, as well as to the variable gadget. For the tap
gadget, we need to apply a small variation. Consider Fig. 14,
that shows how the tap gadget is attached to the variable

=

0

0

0

P
tru

e−
fa

ls
e
pa

th
 fo

r v
ar

ia
bl

e
x

+

w

x

+

+
=

y

Fig. 14: To show that GAO-REXFORD-STRICT-CHECK is NP-
hard, paths of the tap gadget must be slightly modified when
combined with the variable gadget.

gadget. By looking at the figure, we can see that there is no
combination of fragments that allows vertex w to propagate
the true-false path to its neighbor x while filtering out path P̄ .
However, even if path P̄ is propagated as far as vertex y, the
gadget continues to work as required.

About the ranking, all the preferences represented by +
signs can be expressed using per-neighbor rankings, which
are compatible with the SSPP model. The only exception is
the symmetric configuration in Fig. 7, where paths P1, P2, P3,
and P4 cannot be ranked on a per-neighbor basis. However,
recall that the purpose of the symmetric configuration is to
ensure that neighbors u and w of v are of the same type
(both customers, both providers, or both peers). The same
constraint can be rendered in the SSPP model by requiring
that λ̃u((v u x)) = λ̃u((v w y)) for every x, y such that
(u, x) ∈ E and (w, y) ∈ E.

V. CONCLUSIONS

A stable BGP routing is a crucial requirement for a proper
operation of the Internet. Lots of research efforts have there-
fore been devoted to finding BGP configuration guidelines
that satisfy this requirement. To date, the conditions stated
by Gao and Rexford [1] are the most widely accepted to
ensure guaranteed routing stability, and indeed are regarded
as a fundamental reason for the stability of the Internet.

Due to the relevance of these conditions, the feasibility
of checking whether a BGP configuration honors them has

a remarkable practical importance. We show an efficient
algorithm that, given a BGP configuration, checks whether
there exists an assignment of peer-peer and customer-provider
relationships that complies with the Gao-Rexford conditions.
We also show that a slight modification of the Gao-Rexford
conditions, which makes them more realistic, is sufficient to
make the problem intractable. Our results also hold in a model
where BGP policies are expressed using lifelike constructions
such as “prefer routes through customer x over those through
customer y” or “pass routes learned from neighbor w to
neighbor v”.

Considering policy guidelines from this algorithmic per-
spective opens several interesting problems. First of all, one
could understand how complex it is to check if a BGP
configuration complies with guidelines that support backup
routing [10]. Also, the complexity of checking less constrain-
ing conditions for guaranteed BGP convergence [2] is still
unknown. All of the above questions, as well as the problems
we have addressed in this paper, can also be reconsidered in
different models of BGP policies (see, e.g., [20]).

REFERENCES

[1] L. Gao and J. Rexford, “Stable Internet routing without global coordi-
nation,” in Proc. SIGMETRICS, 2000.

[2] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” Transactions on Networking, vol. 10, no. 2,
2002.

[3] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
IETF RFC 4271, 2006.

[4] A. Fabrikant and C. Papadimitriou, “The complexity of game dynamics:
BGP oscillations, sink equilibria, and beyond,” in Proc. SODA, 2008.

[5] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” in Proc. SIGCOMM, 1999.

[6] T. G. Griffin and G. T. Wilfong, “A Safe Path Vector Protocol,” in Proc.
INFOCOM, 2000.

[7] C. T. Ee, V. Ramachandran, B.-G. Chun, K. Lakshminarayanan, and
S. Shenker, “Resolving inter-domain policy disputes,” in Proc. SIG-
COMM, 2007.

[8] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” Transactions on Networking,
vol. 15, no. 6, 2007.

[9] A. D. Jaggard and V. Ramachandran, “Robustness of class-based path-
vector systems,” in Proc. ICNP, 2004.

[10] L. Gao, T. Griffin, and J. Rexford, “Inherently safe backup routing with
BGP,” in Proc. INFOCOM, 2001.

[11] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in Proc. INFOCOM, 2009.

[12] L. Gao, “On inferring Autonomous System relationships in the Internet,”
Transactions on Networking, vol. 9, no. 6, 2001.

[13] G. Di Battista, T. Erlebach, A. Hall, M. Patrignani, M. Pizzonia,
and T. Schank, “Computing the types of the relationships between
Autonomous Systems,” Trans. on Networking, vol. 15, no. 2, 2007.

[14] S. Kosub, M. G. Maaß, and H. Täubig, “Acyclic type-of-relationship
problems on the Internet,” in Proc. CAAN, 2006.

[15] S. Epstein, K. Mattar, and I. Matta, “Principles of safe policy routing
dynamics,” in Proc. ICNP, 2009.

[16] B. Quoitin and S. Uhlig, “Modeling the routing of an Autonomous
System with C-BGP,” IEEE Network, vol. 19, no. 6, 2005.

[17] P. Traina, D. McPherson, and J. Scudder, “Autonomous System Confed-
erations,” IETF RFC 5065, 2007.

[18] “The Internet Routing Registry: History and Purpose,”
http://www.ripe.net/db/irr.html.

[19] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-
vector protocols,” in Proc. ICNP, 1999.

[20] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proc. SIGCOMM,
2005.

