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Computing the Types of the Relationships between
Autonomous Systems

Giuseppe Di Battista, Thomas Erlebach, Alexander Hall, Maurizio Patrignani, Maurizio Pizzonia, and
Thomas Schank

Abstract— We investigate the problem of computing the types
of the relationships between Internet Autonomous Systems. We
refer to the model introduced by Gao (IEEE/ACM Transactions
on Networking, 9(6):733–645, 2001) and Subramanian et al.
(IEEE Infocom, 2002) that bases the discovery of such relation-
ships on the analysis of the AS paths extracted from the BGP
routing tables. We characterize the time complexity of the above
problem, showing both NP -completeness results and efficient
algorithms for solving specific cases. Motivated by the hardness of
the general problem, we propose approximation algorithms and
heuristics based on a novel paradigm and show their effectiveness
against publicly available data sets. The experiments provide
evidence that our algorithms perform significantly better than
state-of-the-art heuristics.

I. INTRODUCTION

AN Autonomous System (AS) is a portion of the Internet
under a single administrative authority. Currently, there

are more than 10,000 ASes and their number is rapidly
growing. They interact to coordinate the IP traffic delivery,
exchanging routing information with a protocol called Border
Gateway Protocol (BGP) [1].

Several authors (see, e.g., [2], [3]) have pointed out that
the relationships between ASes can be roughly classified into
categories that have both a commercial and a technical flavor.
A pair of ASes such that one sells/offers Internet connectivity
to the other is said to have a provider-customer relationship. If
two ASes simply provide connectivity between their respective
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customers they are said to have a peer-to-peer relationship.
Finally, if two ASes offer each other Internet connectivity they
are said to be siblings. Of course, this classification does not
capture all the shades of the possible commercial agreements
and technical details that govern the traffic exchanges between
ASes but should be considered as an important attempt toward
understanding the Internet structure.

Since many applications would benefit from the knowledge
about the Internet structure, the research on the subject has
recently produced many contributions. More specifically, there
is a wide research area focusing on the discovery of the
topology underlying the Internet structure, either at the AS
or at the router level (see, for example, [4], [5], [6]).

Other researchers concentrate more directly on the above
mentioned relationships and on the hierarchy that they induce
on the set of ASes. Govindan and Reddy [4] study the interplay
between the degree of the ASes and their rank in the hierarchy,
where the degree of an AS is the number of ASes that have
some kind of relationship with it. Gao [7] studies, for the first
time, the following problem. ASes are the vertices of a graph
(AS graph) where two ASes are adjacent if they exchange
routing information; the edges of such a graph should be
labeled in order to reflect the type of relationship they have.
In order to infer the relationships between ASes, Gao uses
the information on the degree of ASes together with the AS
paths extracted from the BGP routing tables. An AS path is
the sequence of the ASes traversed by a connectivity offer
(BGP announcement). In [7] a heuristic is presented together
with experimental results. An analysis on the properties of the
labeled graphs obtained with such heuristics is provided in [8].

Subramanian et al. [9] formally define, as an optimization
problem, a slightly simplified version of the problem addressed
in [7] and conjecture its NP -completeness. They also propose
a heuristic based on the observation of the Internet from
multiple vantage points, which does not rely on the degree
of the ASes. Further, they validate the results obtained by the
heuristic against a rich collection of data sets.

A different approach towards obtaining the AS relationships
has recently been pursued by Siganos and Faloutsos [10];
they use data available from Internet Routing Registries about
the import and export policies of individual ASes in order to
determine the relationships between them.

This paper contributes to the line of research opened in [7],
[9]. Our main results are the following.

• We solve a problem explicitly stated in [9]. Namely, we
characterize the complexity of determining the relation-
ships between ASes while maximizing the number of
valid paths, i.e., the number of paths consistent with the
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edge labeling. In particular:
– We show that the problem is NP -hard in the general

case and cannot even be approximated within a factor
of 1/n1−ε for any ε > 0 unless NP = ZPP ,1 where
n is the number of given paths.

– We show that the problem remains NP -hard in the
case where all given paths are short (i.e., have length
at most `, where ` is an arbitrary constant greater or
equal to 2) — more specifically, we even show that
there is a constant less than 1 such that it is NP -
hard to approximate the problem within that constant
factor.

– We produce a linear time algorithm for determining
the AS relationships in the case in which the problem
admits a solution that makes all paths valid (i.e.,
consistent with the edge labeling); and

– We use the linear time algorithm to show that for
large portions of the Internet (e.g., data obtained
from single points of view) it is often possible to
determine the relationships between ASes in such a
way that all paths are valid.

• We introduce algorithms, based on novel approaches, for
determining the relationships between ASes with a large
number of valid paths (or equivalently, a small number of
anomalous paths, i.e., paths not consistent with the edge
labeling). For some of the algorithms we can prove that
their solution is guaranteed to be within a constant factor
of the optimal solution if the given AS paths are short.
Also, some of them are improvements over preliminary
versions described in [12], [13].

• We experimentally show that the proposed approaches
lead to algorithms that perform significantly better than
the cutting edge heuristics of [9] with respect to the
number of valid paths.

The paper is structured as follows. Section II describes the
addressed problem. Section III shows an algorithm for testing
if the problem admits a solution with no anomalous paths and
how to find such a solution if it exists. In Section IV we prove
the NP -completeness of the problem in the general case and
present our inapproximability results. Section V presents our
new algorithms. Their results are compared with the state of
the art in Section VI. Section VII discusses the problem of
discovering peer-to-peer relationships once customer-provider
relationships are known. Finally, Section VIII contains con-
clusions and open problems.

II. PROBLEM DESCRIPTION

A prefix is a block of destination IP addresses. An Internet
Autonomous System (AS) applies local policies to select the
best route for each prefix and to decide whether to export this
route to neighboring ASes.

Several authors have pointed out that ASes typically have
provider-customer or peer-to-peer relationships (see, e.g., [2],
[3], [14], [9]). A customer exports to a provider its routes

1
ZPP is the class of problems that can be solved by a probabilistic Turing

machine in expected polynomial time. According to [11], the faith in the
hypothesis NP 6= ZPP is almost as strong as in NP 6= P .

Fig. 1. An example of Type 1 (a) and of Type 2 (b) path.

and the routes learned from its own customers, but does not
export routes learned from other providers or peers. A provider
exports to a customer its routes, the routes learned from the
other customers, its providers, and its peers. Peers export to
each other their own routes and the routes learned from their
customers but do not export the routes learned from their
providers and other peers.

Consider the AS paths that are associated with the BGP
announcements of the routes. If all the ASes adopted export
policies according to the above model, then the AS paths
would have a peculiar structure [7], [9]. Namely, (1) no AS
path can contain more than one pair of ASes having a peer-
to-peer relationship; and (2) once a provider-customer or a
peer-to-peer pair of ASes is met in the AS path, no customer-
provider pair can be found in the remaining part of it.

Further, the above mentioned peculiarities of the AS paths
have been formally stated in a theorem of [7], that has been
also re-casted in [9]. A graph-theoretic formulation of the same
theorem will be given in what follows.

A. Type-of-Relationship Problem

The relationships between ASes in the Internet may be
represented as a graph G whose edges are either directed or
undirected. Each vertex is an AS. A directed edge from vertex
u to vertex v indicates that u is a customer of v (customer-
provider relationship), and an undirected edge between vertex
w and vertex z indicates that w and z are peers (peer-to-
peer relationship). A BGP AS path corresponds to a path on
G. Suppose path p is composed of the sequence of vertices
v1, . . . , vn. Then p is valid if it is of one of two types:

Type 1: p is composed of a (possibly empty) sequence
of forward edges followed by a (possibly empty) sequence of
backward edges; more formally, there exists a vertex vi of
p such that for j = 1, . . . , i − 1 the edge between vj and
vj+1 is directed from vj to vj+1 and for j = i, . . . , n− 1 the
edge between vj and vj+1 is directed from vj+1 to vj . (See
Figure 1.a.)

Type 2: p is composed of a (possibly empty) sequence
of forward edges, followed by an undirected edge, followed
by a (possibly empty) sequence of backward edges. (See
Figure 1.b.)

An invalid path is a path that is not valid. We refer to invalid
paths also as anomalous paths. If two consecutive edges of a
path violate the conditions of Type 1 and Type 2 above (i.e., if
the edges are a backward edge followed by a forward edge, a
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backward edge followed by an undirected edge, an undirected
edge followed by a forward edge, or two undirected edges),
we refer to these two edges as an anomaly. If we view an
undirected edge as pointing in both directions, two consecutive
edges on a path are an anomaly if and only if both edges point
away from their common vertex. Observe that every invalid
path must contain at least one anomaly.

At this point the above mentioned theorem [9] can be
restated as follows: if every AS obeys the customer, peer, and
provider export policies, then every advertised path is either
of Type 1 or of Type 2.

However, the Internet is more complex. To give a few
examples: ASes operated by the same company can have a
sibling relationship, where each AS exports all its routes to the
other; two ASes may agree on a backup relationship between
them, to overcome possible failures; or ASes may have peering
relationships through intermediate ASes. However, finding out
which is the portion of Internet that obeys the customer, peer,
and provider export policies can be considered as the first step
toward a complete comprehension of the relationships between
ASes. Such motivations have pushed the authors of [9] toward
identifying the following problem.

Type-of-Relationship (ToR) Problem [9]: Given an undi-
rected graph G and a set of paths P , give an orientation
to some of the edges of G to maximize the number of
valid paths in P .

An algorithm for the ToR problem is a ρ-approximation
algorithm if it runs in polynomial time and always produces
an orientation of some of the edges of the given graph such
that the number of valid paths in P is at least ρ ·S , where S is
the number of valid paths in the optimal solution. The value
ρ is always at most 1, and the goal is to find ρ-approximation
algorithms for which ρ is as close to 1 as possible.

Note that the objective of maximizing the number of valid
paths is equivalent to the objective of minimizing the number
of invalid paths in terms of optimal solutions. For approxima-
tion algorithms, the two objective functions are not equivalent.
Following [9], we treat the ToR problem as a maximization
problem with the number of valid paths as the objective.

Figure 2 shows an instance of the ToR problem for which an
orientation without invalid paths cannot be found. In particular,
each orientation of edge (AS701, AS5056) yields at least
one invalid path. Figure 3 shows an instance that admits an
orientation without invalid paths with a possible orientation.

B. Simplifying the Problem

The Type-of-Relationship Problem is a maximization prob-
lem. In order to study its complexity, following a standard
technique [15], we consider its corresponding decision version:

ToR-D Problem: Given an undirected graph G, a set of
paths P , and an integer k, test if it is possible to give an
orientation to some of the edges of G so that the number
of valid paths in P is at least k.

One of the ingredients that make the ToR-D problem
difficult is the presence of both directed and undirected edges.
Fortunately, the problem can be simplified by “ignoring” the

Fig. 2. An instance of the ToR problem that does not admit an orientation
without invalid paths. The six paths of the instance are represented with
different line styles.

Fig. 3. An instance of the ToR problem that admits an orientation without
invalid paths. The four paths of the instance are represented with different
line styles.

undirected edges, without losing generality. Namely, the ToR-
D problem admits a solution if and only if the following
simpler problem admits one.

ToR-D-simple Problem: Given an undirected graph G,
a set of paths P , and an integer k, test if it is possible
to give an orientation to all the edges of G so that the
number of valid paths in P is at least k.

Notice that ToR-D-simple considers Type 1 paths only.
In fact, consider an orientation of the edges of G that is

a solution for the ToR-D-simple problem. It is clear that the
same orientation is also a solution for the ToR-D problem.
Conversely, consider an orientation of some of the edges of
G that is a solution for the ToR-D problem and let (u, v) be
an edge of G that is undirected. Consider any path p of P
through (u, v). There are two cases: p is valid or p is invalid.
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If p is valid, then it is a Type 2 path and all the edges
of p preceding u are forward edges, while all the edges of
p following v are backward edges. If (u, v) is arbitrarily
oriented, then the only effect on p is that of transforming
it from Type 2 to Type 1. Hence, the number of invalid
paths does not increase. If p is invalid and (u, v) is arbitrarily
oriented either it becomes valid or it remains invalid. In this
case the number of invalid paths does not increase. The same
process can be repeated on all the undirected edges, until an
orientation of G that is a solution for ToR-D-simple is found.

To better understand the relation between the two problems,
observe that the above consideration suggests that for each
partial orientation of G that is a solution of ToR-D with u
undirected edges there exist 2u orientations that are a solution
for ToR-D-simple.

Further, we can pick an orientation that is a solution for
ToR-D-simple and consider it as a solution for ToR-D. Then,
we can refine such a solution by looking for edges whose
orientation can be removed without increasing the number of
anomalous paths. A necessary and sufficient condition, which
is also easy to test, for removing the orientation of a single
directed edge (u, v) is the following. Consider all the paths
through (u, v) and all the edges following (u, v) in such paths.
Edge (u, v) can be made undirected if such edges are all
directed toward v.

The above discussion justifies a two-step approach where
in the first step a solution is found for ToR-D-simple and in
the second step peering edges are discovered.

III. COMPUTING THE RELATIONSHIPS BETWEEN ASES
WITHOUT PATH ANOMALIES

In Section II we have seen that the problem of detecting
the types of relationships between ASes can be tackled by
studying the ToR problem, its decision version ToR-D, and a
simpler problem called ToR-D-simple. The relations among
these problems have also been discussed. In this section we
show that problem ToR-D-simple (and, consequently, ToR-D)
can be solved efficiently when k = |P |, that is when we want
to check if G admits an orientation where all the paths in P
are valid (i.e., there are 0 invalid paths).

A. Path Anomalies and Boolean Formulas

Observe that a path p on G composed of the sequence of
vertices v1, . . . , vn is of Type 1 if and only if there does not
exist a vertex vi (i = 2, . . . , n−1) of p such that the two edges
of p incident on vi are directed away from vi. Hence, to impose
that p is valid it suffices to rule out such a configuration. Based
on this observation ToR-D-simple can be mapped to a 2SAT
problem [15].

In the 2SAT problem you are given a set X of boolean
variables and a formula in conjunctive normal form. Such a
formula is composed of clauses of two literals, where a literal
is a variable or a negated variable. You are asked to find a
truth assignment for the boolean variables in X so that the
formula is satisfied.

The mapping of ToR-D-simple to 2SAT is a two-step
process. First, all the edges of G are arbitrarily (for example

randomly) oriented. Second, a boolean formula is constructed
to represent the constraints that each path imposes on the
orientation of G in order to be a path of Type 1. The
construction is performed as follows.

• For each directed edge (vi, vj) of G a variable xi,j is
introduced. A true value for xi,j means that, in the final
orientation, (vi, vj) will be directed from vi to vj (that
is, the direction of the initial arbitrary orientation will be
preserved), while a false value means that (vi, vj) will be
directed from vj to vi (that is, the direction of the initial
arbitrary orientation will be reversed).

• Consider a path p ∈ P and three consecutive vertices
vi−1, vi, vi+1 of p. Four cases are possible, according to
the arbitrary orientations that we have given to the edges
between vi−1, vi, and vi+1.

– Both edges are directed toward vi, i.e. such directed
edges are (vi−1, vi) and (vi+1, vi). We introduce
clause xi−1,i ∨ xi+1,i.

– Both edges are directed away from vi, i.e. such
directed edges are (vi, vi−1) and (vi, vi+1). We in-
troduce clause xi,i−1 ∨ xi,i+1.

– One edge is directed toward vi and the other toward
vi+1, i.e. such directed edges are (vi−1, vi) and
(vi, vi+1). We introduce clause xi−1,i ∨ xi,i+1.

– One edge is directed toward vi−1 and the other
toward vi, i.e. such directed edges are (vi, vi−1) and
(vi+1, vi). We introduce clause xi,i−1 ∨ xi+1,i.

In this way we introduce n − 2 clauses for each path of
P with n vertices. We impose that all the constraints are
simultaneously satisfied by considering the boolean “and” of
all the clauses. Since each clause has two literals, we have
mapped the ToR-D problem to a 2SAT formula.
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Fig. 4. (a) An initial orientation for a five vertices path and the boolean
variables associated with its edges. The orientation shown in (b), which makes
the path valid, corresponds to the truth assignment x1,2 = true, x3,2 =
false, x3,4 = false, and x4,5 = false, which satisfies formula (x1,2 ∨
x3,2) ∧ (x3,2 ∨ x3,4) ∧ (x3,4 ∨ x4,5) associated with the path. Conversely,
the orientation shown in (c), which makes the path invalid, corresponds to the
truth assignment x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true,
which does not satisfy the formula.
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As an example consider a path composed of five vertices
v1, . . . , v5 and suppose that the initial orientation step has
given to the edges of the path a direction as follows: (v1, v2),
(v3, v2), (v3, v4), and (v4, v5). We have variables x1,2, x3,2,
x3,4, and x4,5 (see Figure 4.a). Applying the above procedure
we obtain the following 2SAT formula: (x1,2∨x3,2)∧ (x3,2∨
x3,4)∧(x3,4∨x4,5). Consider the truth assignment x1,2 = true,
x3,2 = false, x3,4 = false, and x4,5 = false. It is easy
to see that it satisfies the formula and that it corresponds to
an orientation of the edges of the path toward vertex v3 (see
Figure 4.b). On the other hand, consider the truth assignment
x1,2 = true, x3,2 = false, x3,4 = false, and x4,5 = true. It
is easy to see that it does not satisfy the formula and that it
corresponds to an orientation of the edges of the path that is
not consistent with Type 1 (see Figure 4.c).

B. Computational Aspects
Problem 2SAT may be efficiently solved by using the well

known result in [16] that maps 2SAT into a problem on a
suitable directed graph G2SAT. Observe that G and G2SAT are
different graphs.

Although this result is clearly illustrated in the literature, we
give a brief description to help the reader to better understand
the algorithms described in Sections III-D and V.

Graph G2SAT has two nodes for each boolean variable x
of 2SAT, corresponding to its two literals x and x. For each
clause of the form l1 ∨ l2, where l1 and l2 are literals, the two
directed edges (l1, l2) and (l2, l1) are introduced. Intuitively,
edge (l1, l2) represents the logical implication l1 → l2, while
edge (l2, l1) represents l2 → l1. Problem 2SAT admits a
solution if and only if for no variable x there is a directed cycle
in G2SAT containing both x and x (i.e. a logical contradiction).

Testing for each variable if there exists a cycle containing its
two literals can be quite time consuming. However, fortunately,
the problem of testing for all the variables in 2SAT whether
such a cycle exists in G2SAT can be efficiently solved by
computing the strongly connected components of G2SAT and
by testing for each variable if x and x are in the same strongly
connected component. We recall that a strongly connected
component of a directed graph is a maximal set of vertices
such that for each pair u, v of vertices of the set there exists
a directed path from u to v and vice versa. Computing the
strongly connected components of a directed graph can be
done in time linear in the size of the graph [17].

From a theoretical point of view, the outcome is that ToR-
D-simple (and, as a consequence, ToR-D) with k = |P |, i.e.
the problem of deciding if a graph G of n vertices and m
edges admits an orientation so that all the paths of a set P
are valid, can be solved in O(n+m+ q) time, where q is the
sum of the lengths of the paths of P .

More practically, the above algorithm can be implemented
by exploiting a facility from the Leda [18] software library
that efficiently computes the strongly connected components
of a directed graph.

C. Experiments
This section illustrates the first group of experiments of this

paper. Such experiments have the purpose of understanding if

at least for partial views of the Internet graph the ToR problem
admits a solution without invalid paths. This is important, in
our opinion, at least for the following reason. Even if it is
unlikely that the entire Internet AS graph could be classified
in terms of customer-provider and peer-to-peer relationships
without exceptions (and we will see evidence of this in the
remainder of this paper), it is unclear if this is possible for
what is visible from a specific observation point (“vantage
point” in [9]) of the network.

The test bed consists of BGP data sets obtained as follows.
Each data set is extracted from the BGP routing table of
a Looking Glass server. First, the output of the “show ip
bgp” command is collected. Second, a file of AS paths is
computed by discarding the prefix column and all the BGP
attributes different from the AS path. Duplicate ASes arising
from prepending [1] are removed in each path. Note that
duplicated paths may be present in the set.

There are many Looking Glass servers on the Internet and
it is very difficult to say which are the most representative.
In order to compare our work with previous results, we have
chosen to use the collection of ten BGP data sets obtained from
Telnet Looking Glass servers already adopted as a test bed by
Subramanian et al. [9], who collect such test beds periodically
and make them publicly available [19].

For each data set we have constructed a different AS graph
(a partial view of the global AS graph) by using only the
adjacencies contained in the AS paths of the specific data set.
Table I shows the main features of the graphs constructed from
the ten data sets. Note that values of Tables I and IV of [9]
and values computed from data available in [19] (and that
are presented in Table I of this paper) appear to be slightly
different.

TABLE I
TELNET LOOKING GLASS SERVERS AND CORRESPONDING AS GRAPHS.

AS # AS Name Apr 18, 2001 Apr 6, 2002
nodes / edges / paths nodes / edges / paths

1 Genuity 10,203 / 13,001 / 58,156 12,700 / 15,946 / 63,744
1740 CERFnet 10,007 / 13,416 / 70,830 not available
3549 Globalcrossing 10,288 / 13,039 / 60,409 12,533 / 16,025 / 76,572
3582 U. of Oregon 10,826 / 22,440 / 2.5·106 13,055 / 27,277 / 4.6·106

3967 Exodus Comm. 10,387 / 18,401 / 254,123 12,616 / 21,527 / 339,023
4197 Global Online J. 10,288 / 13,004 / 55,060 12,518 / 15,628 / 59,745
5388 Energis Squared 10,411 / 13,259 / 58,832 12,659 / 16,822 / 117,003
7018 AT&T 9,252 / 12,117 / 120,283 11,706 / 15,429 / 170,325
8220 COLT Internet 8,376 / 10,932 / 46,606 12,660 / 18,421 / 154,855
8709 Exodus, Europe 10,333 / 15,006 / 114,931 12,555 / 18,175 / 126,370

Table II shows the results of the experiments. Observe that
for all partial views but the one of the University of Oregon
server [20], the ToR problem admits a solution without invalid
paths. In fact, the server of the University of Oregon is not
just a Looking Glass that gives a view of the Internet from
a specific point of observation, but it offers an integrated
view obtained from 52 peering sessions with routers spread
on 39 different ASes. This clearly indicates that integrating
information from different points of view makes the problem
much more difficult.

Figure 5 shows six rows extracted from the routing table
of the U. of Oregon dated Apr 18, 2001. Observe that the six
paths are exactly those used in Figure 2 to give an example
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TABLE II
TESTING IF THE TOR PROBLEM HAS A SOLUTION WITHOUT INVALID

PATHS FOR SEVERAL BGP ROUTING TABLES.

AS # AS Name Orientable w/o anomalies
Apr 18, 2001 Apr 6, 2002

1 Genuity yes yes
1740 CERFnet yes not available

3549 Globalcrossing yes yes
3582 U. of Oregon no no
3967 Exodus Comm. yes yes
4197 Global Online J. yes yes
5388 Energis Squared yes yes
7018 AT&T yes yes
8220 COLT Internet yes yes
8709 Exodus, Europe yes yes

of an instance of the ToR problem that does not admit an
orientation without invalid paths.

Network Next Hop Path
200.1.225.0 167.142.3.6 5056 701 6461 4926 4270 4387 i
200.10.112.0/23 167.142.3.6 5056 701 4926 4926 4926 6461 2914 174

174 174 174 14318 i
204.71.2.0 203.181.248.233 7660 1 5056 701 11334 i
213.172.64.0/19 167.142.3.6 5056 1239 1 1755 1755 1755 1755 3216

13099 i
200.33.121.0 167.142.3.6 5056 1 1239 8151 i
204.71.2.0 144.228.241.81 1239 5056 701 11334 i

Fig. 5. Six rows extracted from the BGP routing table of the U. of Oregon
dated Apr 18, 2001. Each orientation of the edges of the corresponding graph
yields at least one invalid path.

It is worth noting that we have conducted all the experiments
on a PC Pentium III with 1 GB of RAM. Each of the above
experiments required a few seconds of computation time.

D. Finding an Orientation for ToR-D-simple
If a solution for ToR-D-simple with k = |P | exists, that

is, if G admits an orientation where all the paths are valid,
computing it is an easy task. Since we mapped ToR-D-
simple to 2SAT, we can find a solution to ToR-D-simple
by computing a truth assignment for the boolean variables of
the corresponding 2SAT instance. A standard method [16] for
computing such an assignment is the following. A function
f(v) can be computed for all the vertices of the graph G2SAT
associated with 2SAT (see Section III-B) such that, for any
two vertices u and v, if there exists a directed path from u to v,
then f(u) ≤ f(v). Furthermore, two vertices u and v receive
the same function value, f(u) = f(v), if and only if they are
in the same strongly connected component. A true value is
assigned to variable x if f(x) > f(x), a false value otherwise.
The satisfiability of 2SAT guarantees that f(x) 6= f(x).

Function f can be efficiently computed by exploiting the
decomposition of the graph into strongly connected compo-
nents and by computing a special ordering, called topological
sorting [18], on the directed acyclic graph of the components.

Of course, an instance of the problem ToR-D-simple may
admit several different solutions. The structure of the problem
constrains some variables to have the same truth values in all
the solutions, while other variables may assume any true/false
assignment. Coming back to problem ToR-D-simple, this
means that some edges have a constrained customer-provider
orientation, while others may assume different orientations.

Interestingly, the proposed approach permits to “explore”
the solution space. Namely, if some knowledge is available on
the customer-provider relationships between ASes, it is easy
to force the solution to respect such constraints. For example,
suppose that we know in advance that AS vi is a customer
of AS vj and suppose that in the initial arbitrary orientation
edge (vi, vj) is directed from vi to vj . We can impose that the
solution respects the constraint by adding to the 2SAT formula
associated with Problem ToR-D-simple the clause (xi,j∨xi,j).
Of course, adding constraints to the problem decreases the size
of the solution space and may lead to unsatisfiable instances.

IV. THE DIFFICULTY OF MAXIMIZING VALID PATHS

The ToR problem was conjectured to be NP -complete
in [9]. In Section III we have shown that finding a solution
with zero invalid paths (provided that it exists) is a tractable
problem. In this section we show that the ToR problem is
indeed NP -complete in the general case, that is, when it does
not admit an orientation without invalid paths. In addition, we
derive inapproximability results showing that it is even hard
to approximate the ToR problem within a small factor. First,
we consider the case of instances where the given paths can
have arbitrary length. Then, we show that the problem remains
hard even if all given paths are short.

A. Paths with Arbitrary Length

We give an approximation-preserving polynomial reduction
from the NP -hard maximum independent set problem (de-
noted MAXIS) to the ToR problem. The goal of the MAXIS
problem is to find, for a given undirected graph, a largest set
of nodes such that no two nodes in the set are adjacent.

First, consider a graph G with two paths as shown in
Figure 6. Similarly to the example of Figure 2, it is easy
to verify that there is no orientation of the edges such that
both paths are valid. In particular, any orientation of edge e1

yields a contradiction on the orientation of edges e2 or e3.

Fig. 6. A graph with two paths that cannot both be valid in any orientation.

Lemma 1: There exists a graph G with two paths such that
only one of the two paths can be valid.

We will use this construction as a gadget to obtain a
reduction from MAXIS to the ToR problem. Let an instance
of MAXIS be given by an undirected graph H = (VH , EH).
We create an instance (G,P ) of the ToR problem by mapping
every node in H to a path in P such that any two paths in P

• are edge-disjoint if there is no edge between them in H
• and cannot be valid simultaneously in any orientation if

there is an edge between them in H .
Obviously, such an instance (G,P ) can be constructed in
polynomial time using the gadget of Figure 6.
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Now observe that there is a one-to-one correspondence
between orientations of G with t valid paths and independent
sets in H with cardinality t. In particular, if we could solve
the ToR problem in polynomial time or approximate it in
polynomial time with ratio ρ, we could also solve MAXIS in
polynomial time or approximate it with ratio ρ, respectively.
Since MAXIS is known to be NP -hard [15] and not even
approximable with ratio 1/n1−ε on graphs with n nodes for
any ε > 0 unless NP = ZPP [11], we obtain the following
hardness result for the ToR problem.

Theorem 1: The ToR problem is NP -hard and cannot be
approximated within a factor of 1/n1−ε on instances with n
paths for any ε > 0 unless NP = ZPP .

The arguments leading to the theorem imply that the deci-
sion problems ToR-D and ToR-D-simple are NP -complete,
as their membership in NP is easy to verify.

As it is not feasible to get a good approximation ratio for
the general ToR problem, one might hope to be able to exploit
the structure of real AS graphs or the observed routing paths in
order to give an algorithm with good approximation ratio for a
restricted case. One observation about the real data is that most
of the AS paths are relatively short. Therefore, we investigate
the complexity and approximability of the ToR problem if the
length of the paths is bounded by a constant.

B. Instances with Short Paths
In this section we show that even instances of the ToR prob-

lem that contain only paths of length 2 cannot be approximated
better than some constant unless P = NP .

Theorem 2: Unless P = NP , there is no approximation
algorithm for the ToR problem with paths of length at most
` that achieves ratio at least q = 0.955 if ` ≥ 3 and ratio at
least 4+3q

7
≤ 0.981 if ` = 2.

Proof: We reduce the MAX2SAT problem and apply
an inapproximability result by Håstad [21]. An instance of
the MAX2SAT problem is given in the same way as an
instance of 2SAT, but the goal is to find an assignment to
the boolean variables that maximizes the number of satisfied
clauses. Håstad [21] has shown that MAX2SAT cannot be
approximated within ratio q = 0.955 unless P = NP .

We start by reducing a MAX2SAT instance to a ToR
instance (G,P ) with paths of length 3. Then we explain how
this instance can be modified such that it contains only paths
of length 2.

Assume that we are given a MAX2SAT instance with
variables xi, i ∈ {1 . . . n′} and clauses cj , j ∈ {1 . . . m′}.
For each variable xi we add two nodes xi, xi to G and an
edge ei = {xi, xi} between them. If in a solution to the
ToR problem this edge is directed towards xi this corresponds
to xi = true. Otherwise, if it is directed towards xi, this
means xi = false. For each clause ck = li ∨ lj , with literals
li ∈ {xi, xi} and lj ∈ {xj , xj}, one edge {li, lj} is added.
Additionally a path of length 3 is added to P along the
nodes li, li, lj , lj . Figure 7 shows a simple example with one
clause, and the graph of Figure 8.a shows an example with
two clauses.

The paths and edges are defined such that a path is valid in
a solution to the instance of the ToR problem if and only if the

Fig. 7. Example of how an instance of the ToR problem is constructed
from a MAX2SAT instance. The MAX2SAT instance composed of the single
clause (x1 ∨ x2) corresponds to the ToR instance composed of the single
path x1, x1, x2, x2 represented in (a). The solution of the ToR instance
represented in (b) corresponds to the solution of the MAX2SAT instance
{x1 = true, x2 = false}.

corresponding clause is satisfied. This is clear because a path
is valid if and only if ei is directed towards li or ej towards
lj , which corresponds to a truth assignment where li ∨ lj is
satisfied. In particular, note that given a satisfied clause the
edge {li, lj} can always be directed in such a way that the
whole path is valid. Conversely, for an unsatisfied clause no
such direction of {li, lj} exists.

Thus, maximizing the number of valid paths also maximizes
the number of satisfied clauses. With [21] we get that the
ToR problem is not approximable within ratio q = 0.955 for
instances with paths of length at most k for constant k ≥ 3.

To obtain a similar result for paths of length 2, we modify
the instance as follows: each path li, li, lj , lj is replaced by
two overlapping paths li, li, lj and li, lj , lj . See Figures 8.a
and 8.b for an example of such a replacement. Clearly, in
any ToR solution one of the two paths is always valid. The
corresponding clause is satisfied if and only if both paths
are valid. So an optimal solution to the instance of the ToR
problem with S valid paths gives an optimal assignment to the
variables such that S−m′ clauses are satisfied, where m′ is the
number of clauses of the MAX2SAT instance. An approximate
solution to the ToR problem giving A2 valid paths leads to
A2−m′ satisfied clauses. With [21] we know that A2−m′

S−m′
≤ q

for at least one instance of MAX2SAT. With S−m′ ≥ 3/4·m′

(at least 3/4 of the clauses of any MAX2SAT instance can be
satisfied2) this yields A2 ≤ 4+3q

7
· S , which concludes the

proof.

V. ALGORITHMS FOR COMPUTING THE AS
RELATIONSHIPS

In Section IV we have seen that the ToR problem is compu-
tationally hard (even approximation-wise), and in Section III
we have seen that, even if portions of the Internet admit a
hierarchical structure without anomalies, when the data set
becomes large, such a “strong” structure does not exist (see,
e.g., the AS 3582 in Table II).

This section aims at giving efficient methods for discovering
the AS relationships in a big chunk of the Internet with a
large number of valid paths. First, we present approximation

2A random truth assignment satisfies each clause of a 2SAT formula with
probability 3/4, implying that the expected number of satisfied clauses in
a random assignment is 3/4 of the total number of clauses, see e.g. [22,
pp. 104–105].



SUBMISSION TO IEEE/ACM TRANSACTIONS ON NETWORKING 8

(a) (b) (c)

Fig. 8. Network and paths resulting from the two clauses x1 ∨ x2, x2 ∨ x3: Constructed instance with length 3 paths (a), modified instance with length 2
paths (b), and possible solution where both clauses are satisfied (c).

algorithms that are based on known algorithms for MAX2SAT.
We can show that these algorithms achieve good approxima-
tion ratios for instances with short paths. After that, we will
present a heuristic approach that also exploits the relationship
to the MAX2SAT problem.

A. Approximation Algorithms for Short Paths

In the following, we first present a very simple randomized
approach achieving constant approximation ratio for the case
of paths with bounded length. Then we show how to use an ap-
proximation algorithm for MAX2SAT to achieve significantly
better approximation ratios for instances containing only paths
of length at most ` for ` = 2, 3, 4.

For paths of constant length there is a very easy randomized
approximation algorithm: just select the directions of the edges
independently at random. If each edge is oriented in one of the
two possible ways with probability 1/2, a path of length ` is
valid with probability `+1

2` . To see this, note that in a valid path
the direction of the edges can change only once at one of the
`− 1 internal nodes or not at all. There are `− 1 possibilities
for the direction of all edges in the path in the former case
and 2 possibilities in the latter case. Altogether there are 2`

possibilities to orient the edges. If all n paths have length at
most `, we get by linearity of expectation

E(Arand) ≥
` + 1

2`
n ≥

` + 1

2`
S ,

where Arand is the value of the approximate solution and
S the value of the optimum. The algorithm can easily be
derandomized in the standard way (method of conditional
probabilities), giving the following theorem.

Theorem 3: The ToR problem with paths no longer than
` edges can be approximated within a factor of `+1

2` of the
optimum in polynomial time.
For example, this gives ratio 0.75 for paths of length at most
2, 0.5 for paths of length at most 3, and 5/16 = 0.3125 for
paths of length at most 4. We can also state the following
corollary.

Corollary 1: The ToR problem with average path length
bounded by ` can be approximated within a factor of 2`+1

2·4` of
the optimum in polynomial time.

Proof: Consider an instance of the ToR problem with n
paths. If the average path length is `, there are at least n/2
paths with length at most 2`. Applying the simple randomized
algorithm described above to these n/2 paths, we obtain a
solution with at least n

2
· 2`+1

4` valid paths.

To obtain better ratios for paths of length at most 4 or less,
we employ an approximation algorithm for MAX2SAT as a
subroutine. The first approximation algorithm for MAX2SAT
based on semidefinite programming (SDP) was presented
by Goemans and Williamson in their seminal paper [23].
Their algorithm has approximation ratio 0.878. Feige and
Goemans improved the algorithm and obtained approximation
ratio 0.931. The currently best known approximation algorithm
for MAX2SAT is due to Lewin, Livnat and Zwick [24]. It
achieves approximation ratio r = 0.940.

Given an instance (G,P ) of the ToR problem, we construct
an instance of MAX2SAT from the paths as described in
Section III (by adding a clause for every pair of consec-
utive edges on each given path) and apply the MAX2SAT
approximation algorithm to the resulting instance. Then we
orient the edges of G according to the assignment returned
by the MAX2SAT algorithm. It may seem surprising that this
approach gives a good ratio because there is not necessarily
a one-to-one correspondence between paths and clauses. The
resulting approximation guarantee for this algorithm on paths
of length at most 4 or less as well as the ratio obtained by
the simple randomized algorithm of Theorem 3 for instances
with longer paths are stated in the following theorem.

Theorem 4: The ToR problem with paths no longer than `
edges can be approximated within a factor c` of the optimum
in polynomial time, where c` has the following form: c2 :=
0.940, c3 := 0.839, c4 := 0.358, and c` := `+1

2` for ` > 4.
Proof: For the case of ` > 4, the result follows from

Theorem 3. Now consider an instance of the ToR problem with
paths of length at most ` for some ` ≤ 4. As described above,
our algorithm constructs a MAX2SAT instance as described
in Section III, applies the 0.940-approximation algorithm for
MAX2SAT from [24] to it, and orients the edges according to
the resulting truth assignment.

To analyze the algorithm, let us first introduce a bit of
notation: Let S denote the optimum value of the considered
instance of the ToR problem and A` the value of our ap-
proximate solution for an instance with path length bounded
by `. For 1 ≤ i ≤ `, let gi be the number of paths in
P that have length exactly i. Note that paths of length 1
can be ignored, since they are always valid. Hence, we can
assume g1 = 0. Furthermore, note that for deriving lower
bounds on the approximation ratio A`/S , it suffices to consider
only instances in which all paths have length exactly `: If
an instance contains a shorter path, this path can easily be
lengthened by adding an appropriate number of extra nodes
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and edges to the path at one of its ends. At most ` · n edges
and nodes are added, and a solution to this modified instance
clearly gives a solution to the original instance with at least
the same number of valid paths.

In the simplest case, when all paths have length 2, we can
directly transfer the ratio r = 0.940 from MAX2SAT to the
ToR problem, because each path is represented by exactly one
clause that is satisfied if and only if the path is valid.

Now consider a path of length 3. It is represented by two
2SAT clauses. The variable corresponding to the edge in the
middle appears in both clauses, once negated and once not
negated. Therefore, one of the two clauses is always satisfied.
Clearly, both clauses are satisfied if and only if the path is
valid. This gap of either one or two clauses being satisfied
can be used to derive a bound on the approximation ratio.
Consider an instance of the ToR problem with n = g3 paths
of length 3. Note that an optimal solution of MAX2SAT has
the value S + g3 and directly gives an optimal solution to the
ToR problem (with value S ). The MAX2SAT approximation
algorithm satisfies A3 + g3 clauses with

A3 + g3

S + g3

≥ r. (1)

Because there is always an easily computable solution to
MAX2SAT such that at least 3/4 of the clauses are satisfied
and there are 2 ·g3 clauses, we can assume A3 +g3 ≥ 3/2 ·g3

or g3 ≤ 2 · A3. Applying this to (1) leads to A3 ≥ r · (S +
g3)− g3 ≥ r ·S +2(r− 1) ·A3 and thus A3 ≥ r ·S/(3− 2r),
giving approximation ratio r/(3− 2r) ≥ 0.839. Note that this
is a considerable improvement over the ratio 1/2 obtained for
paths of length three by Theorem 3.

In a MAX2SAT instance derived from paths of length 4
there will be three clauses for each of the paths. We refer to the
three clauses of a path as a triple. With the same argumentation
as for length 3 paths, we have that for each triple at least one
clause is always satisfied and all three are satisfied if and only
if the corresponding path is valid. This shows that any solution
of this instance satisfies x + y + g4 clauses, where g4, y and
x are the number of triples with at least one, at least two and
exactly three satisfied clauses, respectively. Note that x yields
the number of valid paths and x ≤ y ≤ g4.

We now compare a solution T = A4 + y + g4 computed
by the MAX2SAT approximation algorithm with a solution
T ∗ = S + y′ + g4 derived from an optimal solution of the
corresponding instance of the ToR problem. By [25] we know
that T/T ∗ ≥ r. From this we can bound the approximation
ratio A4/S . In the worst case y = g4 and y′ = S . This gives

A4 + 2 · g4

2 · S + g4

≥ r

A4 ≥ 2r · S + (r − 2) · g4 ≥ 2r · S + 4(r − 2)A4,

because there are 3 · g4 clauses of which at least 3/4 are
satisfied in the approximate solution, i.e. A4 +2 ·g4 ≥ 9/4 ·g4

or g4 ≤ 4 · A4. Solving for A4 we get A4 ≥ 2r
9−4r

· S . This
gives an approximation ratio of 2r/(9 − 4r) ≥ 0.358, which
is a slight improvement compared to 5/16 = 0.3125.

Note that this analysis cannot be carried over to paths of
length greater than 4. It uses the fact that at least 3/4 of the

clauses can be satisfied, which does not help if each path is
represented by 4 or more clauses and the path is valid if and
only if all of them are satisfied.

B. A Heuristic Approach

In this section, we propose a heuristic algorithm based on
the idea of computing a maximal set P ′ ⊆ P of paths (subset
of the given set P of paths) such that ToR-D with k = |P ′|
admits a solution that makes all paths in P ′ valid. A set of
paths is maximal if no path can be added to the set without
introducing anomalies.

A simple strategy for computing a maximal set of paths is
the following. Starting from the empty set, add all the paths
one-by-one, each time testing if the set admits an orientation
without anomalies. The test can be performed in linear time
by exploiting the algorithm presented in Section III. If the
insertion of a path makes the set not orientable, then it is
discarded, otherwise it is added to the set. At the end of the
process we have a maximal set of paths. However, this simple
strategy is infeasible. In fact we would have to run the testing
algorithm millions of times. Even if each run takes only one
second, it could take weeks until the maximal set is computed.

Motivated by the above discussion, we propose a two-phase
approach. In the first phase, we compute a very large (albeit
not maximal) set of valid paths with an ad-hoc technique.
In the second phase, we check if the discarded paths can be
reinserted with the method described above.

The first phase, i.e., the computation of the initial very large
set of valid paths, is performed as follows. Initialize P ′ with
the set of all paths in P .

1) Construct the G2SAT graph considering all the adjacen-
cies of P ′.

2) Set up the following data structure: for each undirected
edge (vi, vj) of the AS adjacency graph keep the number
of paths traversing (vi, vj); call it covering of (vi, vj).

3) Compute the strongly connected components of G2SAT
(e.g., with the algorithm in [17]).

4) Identify each variable x such that x and x are in the
same strongly connected component of G2SAT.

5) Select among those variables the variable xi,j whose
corresponding edge (vi, vj) has the smallest covering
and remove all the paths that cover such an edge
from P ′.

Execute steps (1) through (5) until no strongly connected
component contains both literals of the same variable.

Observe that at each iteration, since we remove all the
paths traversing a specific edge of the AS graph, the literals
associated with such an edge disappear from G2SAT.

At the end of the first phase, we have a large set P ′ ⊆ P of
paths for which there is an orientation of the graph that makes
all paths in P ′ valid. In the second phase, we consider each
path π in P \ P ′ and check whether there is an orientation
that makes all paths in P ′ ∪ {π} valid. If this is the case, we
add π to P ′, otherwise we discard π and leave P ′ unchanged.

At the end of the second phase, we have a maximal set
P ′ of paths that admits an orientation without anomalies, and
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we compute such an orientation with the algorithm for ToR-D-
simple with k = |P ′| of Section III. In this way, all edges used
by at least one path in P ′ are oriented. The remaining edges are
not assigned an orientation; in our experiments (Section VI),
we treat them as undirected (peer-to-peer) edges.

Alternatively, the second phase can be replaced by the
following heuristic. Let P ′ be the set of paths obtained at
the end of the first phase. Now the idea is to let every path in
P \P ′ that contains a so far unoriented edge “vote” in which
way this edge should be directed. A path π ∈ P \P ′ votes for
one of the two possible directions of an unoriented edge if π
can only be valid in case the edge is directed correspondingly.
To give a simple example, imagine a path consisting of three
edges: a forward edge, a backward edge, and finally a so far
unoriented edge. This path can only be valid if the last edge
is directed to be a backward edge. Thus the path would vote
for this direction here. Another example would be a path that
consists of a forward edge, an unoriented edge, and a backward
edge. This path would vote for neither of the directions of
its middle edge, since the path is valid no matter in which
way the edge is directed. After all paths have voted, for each
previously unoriented edge the direction is chosen according
to the majority of the votes that the edge has received (ties
are broken arbitrarily).

The hope is that this approach should work quite well if
most edges are already oriented after the first phase and only
few edges are left to be oriented in the second phase.

VI. EXPERIMENTAL RESULTS

In this section, we describe experimental results obtained
with our new algorithms and compare them with previous
approaches. First, in Section VI-A, we discuss the implemen-
tations of our own algorithms and of previous approaches that
we have used in our experiments. Then, in Section VI-B, we
describe the data sets on which we have tested the algorithms.
In Section VI-C, we report the results of comparing the
different algorithms with respect to the number of valid paths
that they achieve on these data sets. In Section VI-D, we study
the relationship between anomalies and anomalous paths in
more detail, i.e., we investigate for the edge classifications
obtained with the different algorithms whether there are a
few anomalies that are responsible for most of the anomalous
paths. Finally, in Section VI-E, we employ the methodology
proposed by Subramanian et al. [9] to validate their approach
to formalizing the ToR problem: We check whether the clas-
sifications computed by our algorithms also make many paths
valid in additional sets of AS paths from different sources.

A. Evaluated Algorithms

First, we have implemented an approximation algorithm
for instances with short paths along the lines discussed in
Section V-A. The algorithm constructs a MAX2SAT instance
from the given paths and uses an SDP-based algorithm to
obtain an approximate solution. In our implementation, the
paths are first preprocessed by directing edges that can be
directed without conflicts. This shortens the paths considerably
(see Section VI-B). Then it is checked with the ToR-D-simple

algorithm for k = |P | described in Section III whether the
graph can be oriented such that all paths are valid. If this is
not the case, an approximate solution is calculated as follows:
MAX2SAT is relaxed to a semidefinite program following
[23]. The rounding is done as in [25], which improves the
approximation ratio of [23] by adding new constraints and
modifying the rounding strategy. We did not add the extra
constraints because the instances would have become too large,
but adopted the new rounding strategy.3 The freely available
solver DSDP 4.5 [26] was used to solve the semidefinite
programs. We refer to the resulting implementation as algo-
rithm EHS. For instances consisting of several million paths
in a graph with 15,000 nodes, it produces edge classifications
within a few minutes on a modern workstation.

Furthermore, we have implemented the heuristic approach
described in Section V-B. Both alternatives of implementing
the second phase were considered. The algorithm that executes
the second phase by checking for each path π in P \P ′ whether
the set P ′ ∪ {π} can be valid is referred to as DPP. In the
setting with multiple paths (see Section VI-B), we process the
paths in P \ P ′ in order of non-increasing multiplicity. The
alternative algorithm that executes the second phase by letting
the paths in P ′\P vote for a direction of the unoriented edges
is referred to as DPP∗. On a modern workstation, DPP needs
a calculation time of several hours for one data set (most of
the time is spent in the second phase), while a run of DPP∗

usually takes only a few minutes.
In order to compare our algorithms with Subramanian et

al.’s algorithm from [9] we downloaded the edge classifications
that they have obtained with their algorithm from the webpage
[19]. We refer to their algorithm as SARK.

For Gao’s algorithm [7], which we refer to as GAO, we
used the implementation available from [27].

B. Description of Data Sets

TABLE III
CHARACTERISTICS OF AS DATA SETS AT FIVE DIFFERENT DATES.

Date nodes / edges paths / unique p. m1 / m2 a1 / a2
2001/04/18 10,916 / 23,761 3,423,422 / 502,515 12 / 10 3.5 / 1.7
2002/02/04 12,766 / 27,759 4,988,100 / 768,688 11 / 9 3.5 / 1.3
2002/04/06 13,124 / 28,326 6,356,435 / 982,320 11 / 8 3.5 / 1.4
2003/01/09 14,674 / 30,800 5,993,411 / 906,285 11 / 8 3.6 / 1.3
2004/02/10 16,911 / 37,369 7,525,967 / 1,151,245 12 / 9 3.7 / 1.5

For our experiments we used the data that has been ac-
cumulated by Subramanian et al. [9] and made available on
the WWW [19]. For five different dates (18 April 2001, 4
February 2002, 6 April 2002, 9 January 2003, and 10 February
2004), routing paths from 10, 9, 14, 10 and 10 autonomous
systems, respectively, were collected. This data yields ToR
instances with several million paths (between 3.4 and 7.5
million) in graphs of about 11,000–17,000 nodes and 23,000–
37,000 edges. Note that the data set of 18 April 2001, which
consists of the union of all the paths of the Telnet Looking
Glasses of Table I, was used by Subramanian et al. [9] as the

3We did not implement the best known MAX2SAT approximation algo-
rithm from [24], because we already obtained very good results with our
implementation of the algorithm based on [23], [25].
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basis for evaluating their classification algorithm. Therefore,
it is important to compare our new algorithms from Section V
with previous algorithms on this reference data set. In addition,
we use the four other, more recent data sets in order to obtain
richer experimental results.

In order to get the data sets, we downloaded the processed
path files from the website [19]. In a first cleaning step, we
replaced consecutive identical ASes on each path by a single
occurrence of that AS and removed AS paths consisting of
a single AS only. Some characteristics of the five resulting
data sets are shown in Table III. Note that many paths occur
more than once in the path files. In the table, we report
the number of paths counting multiple occurrences as well
as the number of unique paths. Whenever we deal with a
data set, we use the expressions “multiple paths” and “unique
paths” to indicate whether we use the original path files (with
multiple occurrences of many paths) or a reduced data set
with a single occurrence of every distinct path, respectively.
We ran the algorithms EHS, DPP, DPP∗, and GAO on both
unique paths and multiple paths4 as input, thus producing
one edge classification for the case of unique paths and a
possibly different edge classification for the case of multiple
paths with each algorithm. The edge classifications produced
by the SARK algorithm were downloaded from [19] and thus
we use the same SARK classification for the case of unique
paths and of multiple paths.

From each set of path files (for one date), we then created
an AS graph by taking all nodes and edges that occur in the
path files. The number of nodes and edges of the resulting
graphs are also given in the table.

It is notable that the path lengths in these real data sets
are relatively short. The last two columns of Table III give
the maximal and average path lengths before (m1 and a1)
and after (m2 and a2) the preprocessing done by algorithm
EHS as mentioned in Section VI-A. (The numbers refer to
the data with multiple paths.) This shows that the assumption
in Section V-A that the path lengths are bounded by a small
constant is quite realistic.

To illustrate how DPP works in practice, we describe in
more detail how the computation of DPP progresses for the
data set of 18 April 2001 (multiple paths). For this data set
with 3,423,422 paths, the starting G2SAT graph contains 47,522
nodes and 375,100 edges. It contains one strongly connected
component with 2,156 literals and 12,570 edges. The other
components contain just one literal. The set of valid paths
computed during the first phase contains 3,236,823 paths.
During the second phase, 171,756 paths have been re-inserted
without causing anomalies. The final maximal set of valid
paths contains 3,408,579 paths.

After computing a maximal set of paths, an orientation for
the edges of the AS graph obtained from those paths was
computed using the technique illustrated in Section III-D. A
fragment of the computed orientation has in fact been used
for the example of Figure 3.

4In the case of multiple paths, we ran algorithm GAO on the original data,
i.e. we did not perform the cleaning step that removes prepending and empty
paths. This yielded slightly better results.

Using the condition discussed in Section II-B we have
also checked for edges that can be made undirected while
preserving the quality of the solution and found 3,270 such
edges that can be considered as candidates for being peer-
to-peer edges. We found that about 40% of the edges in the
AS graph that connect different top-level providers (the 20
ASes classified as ‘inner core’ according to the AS hierarchy
for 18 April 2001 from [19]) are among these peer-to-peer
candidates.

On the same platform as the one described in Section III,
this run of DPP, involving 3,423,422 paths, required a com-
putation time of about 10 hours.

C. Comparison of Edge Classification Algorithms

We used the algorithm EHS, DPP, DPP∗, GAO and SARK
to infer the AS relationships for the five data sets described in
the previous section (in the case of SARK, we downloaded the
resulting classification from [19]). First, we checked with our
ToR-D-simple algorithm for k = |P | (cf. Section III) whether
the graph can be oriented in such a way that all paths are valid.
This turned out not to be the case for all five data sets.

For the relationship classifications obtained with each of
the five different algorithms, we computed the number (and
percentage) of valid and invalid paths. The results are shown
in Table IV. For each algorithm and each date, we report the
percentage of invalid paths. The results to the left refer to
the data with multiple paths, i.e. duplicates were not removed
and the reported numbers count the invalid paths including
multiple occurrences. The right side of the table refers to the
data with unique paths, i.e., we removed duplicate paths in the
input before we ran the algorithms and the reported numbers
refer to the number of unique paths that are invalid. Each
of the tables has two columns for algorithm GAO: in column
“sib”, the edges classified by the algorithm as sibling edges are
indeed interpreted as siblings (i.e., they can occur anywhere
on a path without making the path invalid); in column “peer”,
these edges are treated like undirected (peer-to-peer) edges.
The edge classifications produced by the SARK algorithm,
which we downloaded from [19], leave the classification
of some edges open. We treated these unlabeled edges as
undirected edges (peer-to-peer edges) for our evaluation.

On almost all of the instances, the orientations computed
by DPP, DPP∗ and EHS make less than 0.5%, 0.3%, and
0.3%, respectively, of the given paths invalid. This should be
contrasted with the edge classifications computed by SARK
and GAO (peer). In these edge classifications, about 15–30%
of the paths are invalid. This demonstrates clearly that our
new heuristics DPP and DPP∗ as well as our SDP-based
approximation algorithm EHS outperform previous approaches
for the ToR problem if edge classifications without sibling
edges are desired. DPP∗ and EHS produce the best results and
even fare well in comparison to GAO (sib), which classifies
roughly 1.5% of the edges as sibling edges; DPP∗, EHS
and GAO (sib) achieve comparable numbers of invalid paths,
although DPP∗ and EHS do not use any sibling edges (note
that sibling edges simplify the task of making paths valid).

The improvement shown by DPP and EHS with respect to
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TABLE IV
PERCENTAGE OF INVALID PATHS FOR THE DIFFERENT ALGORITHMS (LEFT: MULTIPLE OCCURRENCES OF PATHS COUNTED, RIGHT: UNIQUE PATHS).

Date DPP DPP∗ EHS SARK GAO (sib) GAO (peer) DPP DPP∗ EHS SARK GAO (sib) GAO (peer)
2001/04/18 0.43% 0.27% 0.18% 27.87% 0.26% 29.90% 0.57% 0.37% 0.30% 28.80% 0.43% 28.19%
2002/02/04 0.29% 0.13% 0.14% 29.54% 0.29% 27.64% 0.36% 0.24% 0.22% 32.85% 0.40% 26.92%
2002/04/06 0.37% 0.16% 0.12% 28.41% 0.37% 25.57% 0.45% 0.21% 0.20% 31.33% 0.38% 24.38%
2003/01/09 0.26% 0.13% 0.12% 30.68% 0.14% 16.05% 0.36% 0.26% 0.21% 33.83% 0.09% 17.62%
2004/02/10 0.19% 0.12% 0.10% 22.93% 0.05% 14.98% 0.28% 0.22% 0.20% 25.04% 0.07% 17.05%
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Fig. 9. Plot for 18 April 2001 showing how many anomalies are responsible
for invalidating the majority of the invalid paths, considering the individual
solutions of the algorithms DPP∗, EHS, SARK and GAO (peer).

their preliminary implementations described in [12], [13] are
due to code debugging and re-engineering.

It is interesting to know how many edges of the AS graph
are classified in the same way by different classification algo-
rithms. We have checked this for any pair of algorithms among
DPP∗, EHS, SARK and GAO (peer) for 18 April 2001. The
fractions of identically classified edges are 95.34% for DPP∗

and EHS, 89.61% for DPP∗ and SARK, 89.68% for DPP∗ and
GAO(peer), 91.15% for EHS and SARK, 90.63% for EHS and
GAO(peer), and 89.99% for SARK and GAO(peer).

D. Relating Anomalies to Anomalous Paths

Recall that an anomaly is a situation where two consecutive
edges on a path point away from an internal node of that path.
Thus each anomaly in a solution invalidates at least one of the
given paths. An interesting question is how the invalid paths
are distributed over the anomalies. In other words: How many
anomalies are responsible for invalidating the majority of the
invalid paths? It turns out that a few anomalies invalidate most
of the invalid paths. Figure 9 shows this relationship for the
solutions computed by the four algorithms DPP∗, EHS, SARK,
and GAO (peer) for the data set of 18 April 2001 (multiple
paths). For the solution computed by the SARK algorithm,
we again treat the unlabeled edges as peer-to-peer edges. For
example, one can see in the figure that 1% to 20% (depending
on the algorithm) of the anomalies are already responsible for
70% of the invalid paths. The plots for the other dates are
qualitatively very similar and thus not included here.

The data points for the plot were computed by first assessing
for each anomaly how many paths it invalidates. This is done
by traversing each invalid path until the first anomaly is found
and then increasing a counter for this anomaly. The total
number of anomalies with positive counters in the solutions
of DPP∗, EHS, SARK and GAO (peer) was 250, 318, 2,564
and 2,316, respectively. Subsequently, the anomalies are sorted
by descending counters, i.e., the first anomaly invalidates
the most paths. Then we compute, for each anomaly, the

cumulative number of invalidated paths, i.e., the number of
paths invalidated by the anomalies up to this one in sorted
order. In the plot, the horizontal axis (in logarithmic scale)
corresponds to the anomalies in sorted order, and the vertical
axis gives the cumulative number of invalidated paths.

E. Validation with Additional Path Sets

Following the experimental guideline of [9], we checked for
the orientations computed by the five algorithms DPP, DPP∗,
EHS, SARK and GAO how many valid paths they achieve on
the 10 individual data sets of 18 April 2001 as well as on
four additional data sets that were not input of the algorithms.
We consider the data with multiple paths. The extra group of
data sets is, again, available from [19] and contains data from
AS1755, AS2516, AS2548, and AS6893. Among the paths in
these four data sets, there are 1.2%, 12.6%, 0.5% and 9.0%,
respectively, that contain edges that are not present in the 10
data sets we used as input of our algorithms. We discarded
these paths in our computations.

TABLE V
DETAILED VIEW OF THE RESULTS OBTAINED WITH DIFFERENT

CLASSIFICATION ALGORITHMS FOR 18 APRIL 2001.

AS # AS Name DPP DPP∗ EHS SARK GAO
(sib) / (peer)

1 Genuity 0.34% 0.13% 0.10% 16.85% 0.03% / 8.65%
1740 CERFnet 0.32% 0.09% 0.11% 5.90% 0.00% / 7.14%
3549 Globalcr. 0.12% 0.20% 0.25% 17.28% 0.01% / 12.20%
3582 U. of Oregon 0.39% 0.25% 0.17% 29.75% 0.14% / 31.86%
3967 Exodus C. 0.74% 0.34% 0.28% 29.65% 0.04% / 14.33%
4197 Global O. J. 0.34% 1.58% 0.13% 13.39% 0.05% / 81.42%
5388 Energis Squ. 0.33% 0.19% 0.10% 55.35% 0.08% / 54.51%
7018 AT&T 0.12% 0.09% 0.11% 23.30% 0.00% / 7.72%
8220 COLT I. 0.19% 0.15% 0.18% 11.38% 1.24% / 8.49%
8709 Exodus, Eur. 1.61% 0.25% 0.31% 10.60% 4.15% / 48.87%
1755 Ebone 1.07% 0.19% 0.22% 5.42% 0.02% / 4.86%
2516 KDDI 5.31% 4.25% 5.79% 72.87% 5.44% / 18.11%
2548 MaeWest 0.20% 0.18% 0.12% 2.36% 0.02% / 4.26%
6893 CW 2.13% 1.79% 1.22% 16.28% 0.12% / 13.51%

Table V shows that algorithms DPP, DPP∗ and EHS leave
a very small percentage of invalid paths. In particular, they
perform significantly better, in terms of invalid paths, than the
cutting edge heuristic SARK of [9]. Note that the numbers we
give for algorithm SARK differ from the numbers provided
in [9]. This seems to result from different ways of checking
the validity of paths. For example, Subramanian et al. did
not count as invalid Type 2 paths containing two consecutive
undirected edges instead of one [28]; their motivation for
relaxing the model in this way is that two ASes may have
an “indirect peering”, i.e., a peer-to-peer relationship through
an intermediate AS. Algorithm GAO (peer) performs similarly
to SARK on three of the data sets, but significantly better than
SARK on the data from AS 2516.
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VII. DISCOVERING THE PEERING RELATIONSHIPS

A solution for the ToR-D-simple problem provides an
orientation for all the edges of the AS graph (customer-
provider relationships). However, as described in Section II-B,
it is possible to refine the obtained solution by reintroducing
peering relationships. In that section a sufficient condition has
been given for modifying a directed edge into an undirected
edge while still having a solution for ToR-D.

Several different criteria can be adopted to measure the
quality of a solution once peerings are reintroduced. For
example, one could say that a solution is especially interesting
if many peerings have been discovered. Unfortunately, it can
be shown that, given a solution for a ToR-D-simple instance,
i.e., with no peerings, the problem of producing a solution for
the corresponding ToR-D instance that maximizes the number
of peering edges is a hard one. The problem can be formally
stated as follows:

PEERING-DISCOVERY Problem: Given a directed
graph G, a set of paths P , and an integer k, test if it
is possible to remove the orientation of k edges of G
without increasing the number of invalid paths in P .
We prove its hardness by using a reduction from the

following NP -complete problem:

INDEPENDENT-SET Problem: Given an undirected
graph with node set N and edge set A and an integer k,
find a subset of the nodes of size k such that no two
nodes of the subset are adjacent.

Fig. 10. An instance of the INDEPENDENT-SET problem (a) and the
corresponding instance of the PEERING-DISCOVERY problem (b).

To build the instance of the PEERING-DISCOVERY prob-
lem corresponding to the instance of the INDEPENDENT-
SET problem we introduce an edge (vi, vtop) for each node
ni ∈ N and we introduce a path vi, vtop, vj for each edge
{ni, nj} ∈ A. The edges of the PEERING-DISCOVERY
instance can be directed toward vertex vtop in order to have a
solution with no invalid path. It can be easily shown that the
problem of reintroducing k peering edges without increasing
the number of invalid paths is equivalent to the problem of
finding an independent set of size k. Therefore, and since
PEERING-DISCOVERY is easily seen to lie in NP , we
obtain the following theorem.

Theorem 5: PEERING-DISCOVERY is NP -complete.
We remark that our reduction from the INDEPENDENT-

SET problem to the PEERING-DISCOVERY problem pro-
vides also an approximation-preserving reduction between the
maximization versions of the problems. Following arguments

similar to Section IV-A, we therefore obtain that the problem
of maximizing the number of reintroduced peer-to-peer edges
in a graph with n vertices does not admit an approximation
algorithm with ratio 1/n1−ε for any ε > 0 unless NP = ZPP .

VIII. CONCLUSIONS AND OPEN PROBLEMS

In this paper we introduced a novel approach for computing
the relationships between Autonomous Systems starting from
a set of AS paths, so that the number of valid paths is maxi-
mized. Also, we proved that the corresponding maximization
problem is NP -hard in the general case (as conjectured in [9])
and cannot even be approximated well in the worst case.

Our approach consists of mapping the problem into a 2SAT
formulation, which can be exploited in several ways. For
example, a solution for the 2SAT formulation can be found in
linear time, if it exists, determining a solution to the original
problem without invalid paths. Also, we take advantage of
the theoretical insight gained with the 2SAT formulation to
conceive new approximation algorithms and heuristics for the
general case. The approximation algorithms are guaranteed to
give good solutions for instances with short AS paths. For
all our algorithms we demonstrate experimentally that they
are more effective than previously presented approaches with
respect to the resulting number of valid paths.

The website http://www.dia.uniroma3.it/∼compunet/ con-
tains further details on the experiments and the data sets.

Several problems remain open. While our approach pro-
duces good relationship classifications with respect to the
number of valid paths, further work is necessary in order to
address the problem of classifying peer-to-peer edges, which
make up a significant portion of the real AS relationships.
In particular, an alternative formulation of the ToR problem
in which the objective function also reflects the quality of
the peer-to-peer classifications would be highly desirable.
Also, the recognition of AS relationships can probably take
advantage of further information provided by the BGP routing
tables, for example, the size of the prefixes. Can this lead to
a prefix-driven formulation of the problem instead of the AS-
path driven formulation adopted until now? Further, it could
be interesting to improve existing tools for the visualization of
the AS graph (see, e.g., [29]) in order to provide information
about the relationships between ASes.

ACKNOWLEDGMENTS

We are grateful to the authors of [9] for their help and to
Fontas Dimitropoulos and Dmitri Krioukov for discovering a
bug in an earlier version of our EHS code. Also, we would like
to thank Massimo Rimondini for re-engineering and debugging
the code for the DPP algorithm and Andrea Vitaletti and
Debora Donato for interesting conversations.

REFERENCES

[1] J. W. Stewart, BGP4: Inter-Domain Routing in the Internet. Reading,
MA: Addison-Wesley, 1999.

[2] C. Alaettinoglu, “Scalable router configuration for the internet,” in Proc.
IEEE IC3N, October 1996.

[3] G. Huston, “Interconnection, peering, and settlements,” in Proc. INET,
June 1999.



SUBMISSION TO IEEE/ACM TRANSACTIONS ON NETWORKING 14

[4] R. Govindan and A. Reddy, “An analysis of internet inter-domain
topology and route stability,” in Proc. IEEE INFOCOM 1997, April
1997.

[5] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map
discovery,” in Proc. IEEE INFOCOM 2000, March 2000.

[6] W. Theilmann and K. Rothermel, “Dynamic distance maps of the
internet,” in Proc. IEEE INFOCOM 2000, March 2000.

[7] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745,
December 2001.

[8] Z. Ge, D. R. Figueiredo, S. Jaiswal, and L. Gao, “On the hierarchical
structure of the logical internet graph,” in Proc. SPIE ITCom 2001, 2001.

[9] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing
the internet hierarchy from multiple vantage points,” in Proc. IEEE
INFOCOM 2002, 2002.

[10] G. Siganos and M. Faloutsos, “Analyzing BGP policies: Methodology
and tool,” in Proc. IEEE INFOCOM 2003, March 2003.
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