An Efficient Algorithm for the Fast Delivery Problem

Iago A. Carvalho1 \hspace{1cm} Thomas Erlebach2 \hspace{1cm} Kleitos Papadopoulos2

1Dept. of Computer Science, Universidade Federal de Minas Gerais, Brazil
2School of Informatics, University of Leicester, England

FCT 2019, Copenhagen, Denmark, 14 August 2019
Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to collaborate to deliver a package as quickly as possible?
Motivation: Delivery of Packages by Drones

What if drones (or agents) with different speeds need to collaborate to deliver a package as quickly as possible?
Problem Definition: **FastDelivery**

Input:
- Undirected graph $G = (V, E)$ with edge lengths $\ell_e > 0$.
 Convention: $|V| = n, |E| = m$
- $k \leq n$ agents. For $1 \leq i \leq k$, agent i is located at node $a_i \in V$ at time 0 and has velocity $v_i > 0$.
- A package that needs to be delivered from source $s \in V$ to destination $y \in V$

Output:
- Schedule of agent movements to collaboratively deliver the package from s to y.

Objective:
- Minimize the time when the package reaches y.

Remark: Package handovers are instantaneous and can happen at a node or at any point on an edge.
Problem Definition: FastDelivery

Input:
- Undirected graph $G = (V, E)$ with edge lengths $\ell_e > 0$.
 Convention: $|V| = n$, $|E| = m$
- $k \leq n$ agents. For $1 \leq i \leq k$, agent i is located at node $a_i \in V$ at time 0 and has velocity $v_i > 0$.
- A package that needs to be delivered from source $s \in V$ to destination $y \in V$

Output:
- Schedule of agent movements to collaboratively deliver the package from s to y.

Objective:
- Minimize the time when the package reaches y.

Remark:
- Package handovers are instantaneous and can happen at a node or at any point on an edge.
Example

agent 1: $v_1 = 1$
agent 2: $v_2 = 2$
agent 3: $v_3 = 4$
Example

agent 1: $v_1 = 1$
agent 2: $v_2 = 2$
agent 3: $v_3 = 4$

t = 1
agent 1 picks up package
Example

agent 1: \(v_1 = 1 \)
agent 2: \(v_2 = 2 \)
agent 3: \(v_3 = 4 \)

t = 2
Example

agent 1: $v_1 = 1$
agent 2: $v_2 = 2$
agent 3: $v_3 = 4$

t = 3
handover from agent 1 to 2
Example

$t = 3.5$

handover from agent 2 to 3

agent 1: $v_1 = 1$
agent 2: $v_2 = 2$
agent 3: $v_3 = 4$
Example

agent 1: \(v_1 = 1 \)
agent 2: \(v_2 = 2 \)
agent 3: \(v_3 = 4 \)

\[t = 3.75 \]

agent 3 delivers package to \(y \)
Example

$t = 3.75$
agent 3 delivers package to y

agent 1: $v_1 = 1$
agent 2: $v_2 = 2$
agent 3: $v_3 = 4$

Note: The velocities of the agents carrying the package are strictly increasing.
Previous Work

- **Bärtschi, Graf, Mihalák 2018:**
 - $O(k^2 m + kn^2 + \text{APSP})$ time algorithm for \textsc{FastDelivery} based on dynamic programming
 - For minimizing the energy consumption among all fastest delivery schedules: NP-hardness for planar graphs, polynomial algorithms for paths and for equal velocities

- **Bärtschi et al. 2017:**
 - Energy-efficient delivery by agents with equal speed: NP-hard for multiple packages, polynomial for a single package

- **Chalopin et al. 2013, 2014; Bärtschi et al. 2017:**
 - Energy-constrained collaborative delivery
Our Result

Theorem

FastDelivery can be solved in $O(kn \log n + km)$ time

- Improvement over $O(k^2m + kn^2 + \text{APSP})$ by Bärtschi et al. 2018:
 - $O(n^4)$ to $O(n^3)$ for dense graphs and $k = \Omega(n)$
 - $O(n^3)$ to $O(n^2 \log n)$ for sparse graphs and $k = \Omega(n)$
Our Result

Theorem

FastDelivery can be solved in $O(kn \log n + km)$ time

- Improvement over $O(k^2 m + kn^2 + \text{APSP})$ by Bärtschi et al. 2018:
 - $O(n^4)$ to $O(n^3)$ for dense graphs and $k = \Omega(n)$
 - $O(n^3)$ to $O(n^2 \log n)$ for sparse graphs and $k = \Omega(n)$

- **Main idea**: Apply Dijkstra’s algorithm for graphs with edges with **time-dependent transit times** (cf. Cooke and Halsey, 1966; Delling and Wagner, 2009)
Our Result

Theorem

FastDelivery can be solved in $O(kn \log n + km)$ time

- Improvement over $O(k^2m + kn^2 + \text{APSP})$ by Bärtschi et al. 2018:
 - $O(n^4)$ to $O(n^3)$ for dense graphs and $k = \Omega(n)$
 - $O(n^3)$ to $O(n^2 \log n)$ for sparse graphs and $k = \Omega(n)$

- **Main idea:** Apply Dijkstra’s algorithm for graphs with edges with time-dependent transit times (cf. Cooke and Halsey, 1966; Delling and Wagner, 2009)

- **Key Ingredient:** Transport package over an edge as quickly as possible (FastLineDelivery problem).
In each step:
- find the unfinished node v with smallest tentative distance
- make v final and update the tentative distances of its unfinished neighbors ("relax" edges)
In each step:

- find the unfinished node v with smallest tentative earliest arrival time (EAT)
- make v final and update the tentative EAT of its unfinished neighbors, using current transit times

Correct if transit times satisfy FIFO property (no overtaking).
For any edge $uv \in E$, let $a_t(u, v)$ be the earliest time when a package present at u at time t can reach v over edge uv.

The transport of the package from u to v can be visualised in a time-space diagram:
Claim

For $t < t'$, $a_t(u, v) \leq a_{t'}(u, v)$.

Proof.
Assume otherwise:
Claim

For $t < t'$, $a_t(u, v) \leq a_{t'}(u, v)$.

Proof.

Assume otherwise:
Claim

For $t < t'$, $a_t(u, v) \leq a_{t'}(u, v)$.

Proof.

Assume otherwise:

At the crossover point, the faster agent could take over from one of the agents starting at time t, so the package could be transported to reach v before $a_t(u, v)$. Contradiction!
\[d(s) \leftarrow t_s; \quad /* \text{time when first agent reaches } s */ \]
\[d(v) \leftarrow \infty \text{ for all } v \in V \setminus \{s\}; \]
\[\text{final}(v) \leftarrow \text{false} \text{ for all } v \in V; \]
insert \(s \) into priority queue \(Q \) with priority \(d(s) \);
\[\text{while } Q \text{ not empty do} \]
\[\quad u \leftarrow \text{node with minimum } d \text{ value in } Q; \]
\[\quad \text{delete } u \text{ from } Q; \quad \text{final}(u) \leftarrow \text{true}; \]
\[\quad \text{if } u = y \text{ then break; } \]
\[\quad t \leftarrow d(u); \quad /* \text{time when package reaches } u */ \]
\[\text{forall neighbors } v \text{ of } u \text{ with } \text{final}(v) = \text{false} \text{ do} \]
\[\quad a_t(u, v) \leftarrow \text{FastLineDelivery}(u, v, t); \]
\[\quad \text{if } a_t(u, v) < d(v) \text{ then} \]
\[\quad \quad d(v) \leftarrow a_t(u, v); \]
\[\quad \text{if } v \in Q \text{ then decrease priority of } v \text{ to } d(v); \]
\[\quad \text{else insert } v \text{ into } Q \text{ with priority } d(v); \]
Run standard Dijkstra from each of the \(k \) agent nodes \(a_i \) to find the earliest arrival time for each agent at each node in \(V \):
\[
O(k(n \log n + m)) \text{ time.}
\]
Running-Time for Whole Algorithm

- Run standard Dijkstra from each of the k agent nodes a_i to find the earliest arrival time for each agent at each node in V: $O(k(n \log n + m))$ time.

- Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(nk \log k)$ time.
Run standard Dijkstra from each of the k agent nodes a_i to find the earliest arrival time for each agent at each node in V: $O(k(n \log n + m))$ time.

Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(nk \log k)$ time.

Time-dependent Dijkstra framework: $O(n \log n + T)$, where T is the time for m calls of `FastLineDelivery` (including preprocessing)
Run standard Dijkstra from each of the k agent nodes a_i to find the earliest arrival time for each agent at each node in V: $O(k(n \log n + m))$ time.

Sort agent arrivals at each node (and discard slower agents that arrive after faster agents): $O(nk \log k)$ time.

Time-dependent Dijkstra framework: $O(n \log n + T)$, where T is the time for m calls of FastLineDelivery (including preprocessing)

Components of T:
- $O(nk \log k)$ for preprocessing each node in $O(k \log k)$ time
- $O(mk)$ for executing FastLineDelivery(u, v, t) in $O(k)$ time for m edges

\Rightarrow Total: $O(kn \log n + km)$
Agent brings package to u at time t
Preprocessing for $\text{FastLineDelivery}(u, v, t)$

- Same agent could carry package to v
Preprocessing for **FastLineDelivery**\((u, v, t)\)

- Faster agents may help
Preprocessing for \texttt{FastLineDelivery}(u, v, t)

- Trajectories of faster agents
Preprocessing for \textsc{FastLineDelivery}(u, v, t)

- Use sweepline algorithm (Bentley and Ottmann 1979)

![Graph showing lower envelope in $O(k \log k)$ time](image-url)
Fastest way for agents coming from u to deliver package to v
Preprocessing for \textsc{FastLineDelivery}(u, v, t)

Agents coming from \(v \) may help
Preprocessing for \textsc{FastLineDelivery}(u, v, t)

- Trajectories of agents coming from \(v \)
Preprocessing for \textsc{FastLineDelivery}(u, v, t)

Arrangement in $O(k \log k)$ time

- Relevant arrangement of agents coming from v
Result of preprocessing for \(\text{FastLineDelivery}(u, v, t) \)

- Lower envelope of agents from \(u \)
- Relevant arrangement of agents from \(v \)

\(t \) \quad \text{time} \\
\(u \) \quad \text{location} \\
\(v \)
Computing $\text{FastLineDelivery}(u, v, t)$

Trace the lower envelope from u to v
Computing $\text{FastLineDelivery}(u, v, t)$

- Intersect slower agent, do nothing
Computing \textsc{FastLineDelivery}(u, v, t)

- Intersect faster agent, hand over
Computing $\text{FastLineDelivery}(u, v, t)$

- Intersect faster agent, hand over
Computing $\text{FastLineDelivery}(u, v, t)$

- Intersect faster agent, hand over, update lower envelope
Computing \textsc{FastLineDelivery}(u, v, t)

\begin{itemize}
 \item Intersect faster agent, hand over
\end{itemize}
Computing $\text{FastLineDelivery}(u, v, t)$

- Intersect faster agent, hand over
Computing \texttt{FastLineDelivery}(u, v, t)

- Intersect faster agent, hand over, update lower envelope
Computing \textbf{FastLineDelivery}(u, v, t)

- Intersect faster agent, hand over
Computing $\text{FastLineDelivery}(u, v, t)$

- Intersect faster agent, hand over
Computing \textsc{FastLineDelivery}(u, v, t)

- Intersect faster agent, hand over, update lower envelope
Computing \textsc{FastLineDelivery}(u, v, t)
Computing $\text{FastLineDelivery}(u, v, t)$

Solution to $\text{FastLineDelivery}(u, v, t)$
Summary of Solution to \textbf{FastLineDelivery}

- Compute relevant arrangement once for every node: \(O(k \log k)\) time per node
- Compute lower envelope for each node when it is made final: \(O(k \log k)\) time per node
- Compute \(a_t(u, v)\) in \(O(k)\) time (once for each edge):
 - trace lower envelope of agents coming from \(u\), in the direction from \(u\) to \(v\)
 - update lower envelope whenever a faster agent of the relevant arrangement of \(v\) is met
- Correctness can be proved by induction (the current lower envelope is always a fastest and foremost solution using only the agents from \(u\) and those from \(v\) that could have reached the package by now)
Our Result

- **FastDelivery** can be solved in $O(kn \log n + km)$ time
- Key ideas:
 - Use Dijkstra for time-dependent transit times
 - Solve **FastLineDelivery** using geometric representation of agent movements

Future Work

- Can the running-time be improved further?
- Consider **FastDelivery** in the Euclidean plane?
Thank you!

Questions?