

Boosting Automated Reasoning by Mining Existing Proofs

Thomas Gransden

Department of Computer Science University of Leicester tg75@student.le.ac.uk

Background

Research Vision

Research Questions

Background

Research Vision

Research Questions

Interactive Theorem Proving is Difficult

• User Driven

Background

Research Vision

Research Questions

- User Driven
- Expert Required

Background

Research Vision

- User Driven
- Expert Required
- Large amounts of knowledge

Background

Research Vision

Research Questions

- User Driven
- Expert Required
- Large amounts of knowledge
- Time Consuming

Background

Research Vision

Research Questions

Interactive Theorem Proving is Difficult

A Large Scale Verification:

- User Driven
- Expert Required
- Large amounts of knowledge
- Time Consuming

Verified

25-30 years combined effort

200,000 lines of Isabelle code

Background

Research Vision

Research Questions

Interactive Theorem Proving is Difficult

A Large Scale Verification:

- User Driven
- Expert Required
- Large amounts of knowledge
- Time Consuming

Verified

25-30 years combined effort

200,000 lines of Isabelle code

Problem:

Finding a suitable sequence of proof steps is hard!

Research Vision

Research Questions

Research Vision

- Much sought after property
 - Reduces Human Intervention
 - Benefits in many fields

Research Vision

- Much sought after property
 - Reduces Human Intervention
 - Benefits in many fields
- Very active research area

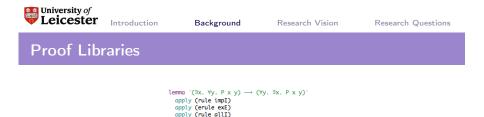
Research Vision

- Much sought after property
 - Reduces Human Intervention
 - Benefits in many fields
- Very active research area
 - International Tournaments!

Research Vision

- Much sought after property
 - Reduces Human Intervention
 - Benefits in many fields
- Very active research area
 - International Tournaments!
- Restricted by underlying logic

Research Vision


- Much sought after property
 - Reduces Human Intervention
 - Benefits in many fields
- Very active research area
 - International Tournaments!
- Restricted by underlying logic
 - Expressivity vs Automation Tradeoff

lemma "($\exists x. \forall y. P \times y$) \rightarrow ($\forall y. \exists x. P \times y$)" apply (rule impl) apply (rule exE) apply (rule allE) apply (rule allE) apply (rule exI) apply (rule exI) apply (assumption done!

- apply (rule impl) apply (erule ext) apply (rule all1) apply (rule all1) apply (rule all1) apply (rule all1) apply (rule ext) apply assumption done
- Examples of successful proofs

apply (erule allE) apply (rule exI) apply assumption done

- Examples of successful proofs
- Provided by an expert

- temma (ux, Y, P x y) (Y, ux, P x y) qply (utle impl) qply (erule exf) qply (erule all1) qply (erule all1) qply (erule all1) qply (utle exf) qply (utle exf) qply assumption done
- Examples of successful proofs
- Provided by an expert
- Variety of complexities/domains

- Examples of successful proofs
- Provided by an expert
- Variety of complexities/domains
- Specified as proof steps

- lemma $(\exists x, \forall y, P \times y) \rightarrow (\forall y, \exists x, P \times y)$ apply (rule impl) apply (rule appl) (rule all 1) apply (rule all 1)apply
- Examples of successful proofs
- Provided by an expert
- Variety of complexities/domains
- Specified as proof steps

Idea:

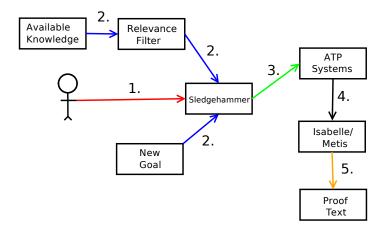
Can we use this information to automate new proofs?

Background

Research Vision

Research Questions

Increasing Automation in ITP's - Link ATP's and ITP's



Background

Research Vision

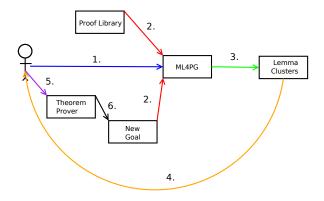
Research Questions

Increasing Automation in ITP's - Link ATP's and ITP's

Background

Research Vision

Research Questions


Increasing Automation in ITP's - Proof Hints

Background

Research Vision

Increasing Automation in ITP's - Proof Hints

Background

Tactic Mining Terminology

Useful Sequences - Sequences of proof steps that could prove useful in proving some new goal

Background

Tactic Mining Terminology

Useful Sequences - Sequences of proof steps that could prove useful in proving some new goal

Tactic - A function that is applied to a proof state

Background

Tactic Mining Terminology

Useful Sequences - Sequences of proof steps that could prove useful in proving some new goal

Tactic - A function that is applied to a proof state

Tactic Mining - Automatically forming tactics from large libraries of existing proofs

Background

Tactic Mining Terminology

Useful Sequences - Sequences of proof steps that could prove useful in proving some new goal

Tactic - A function that is applied to a proof state

Tactic Mining - Automatically forming tactics from large libraries of existing proofs

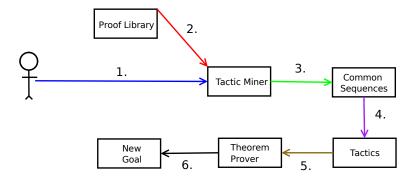
Sequence 1:	Sequence 2:	Tactic:
rule impl	rule conjl	(rule impl OR rule conjl) THEN
assumption	assumption	assumption

Background

Research Vision

Previous Tactic Mining Work

Carried out by Hazel Duncan at Edinburgh.



Background

Research Vision

Previous Tactic Mining Work

Carried out by Hazel Duncan at Edinburgh.

Background

Research Vision

Critique of Duncan's approach

There are some limitations of Duncan's work:

There are some limitations of Duncan's work:

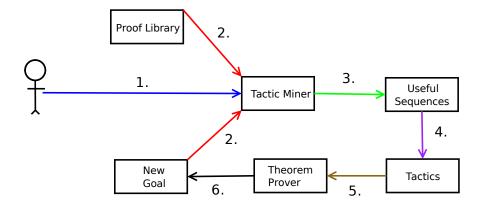
• Moderatley effective on test set

There are some limitations of Duncan's work:

- Moderatley effective on test set
- No subgoal information

There are some limitations of Duncan's work:

- Moderatley effective on test set
- No subgoal information
- Inefficent tactic application

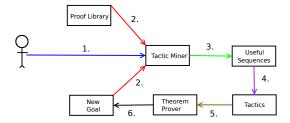


Background

Research Vision

Research Questions

My Tactic Mining Approach


Background

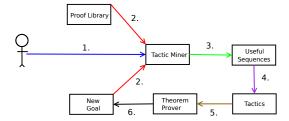
Research Vision

Research Questions

1. How can we deal with complex Higher Order Languages?

Variable instantiations and proof directives

Background


Research Vision

Research Questions

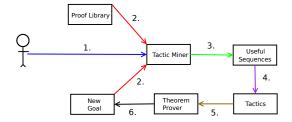
1. How can we deal with complex Higher Order Languages?

Variable instantiations and proof directives

One sequence of steps solves many proofs and vice versa

Background

Research Vision

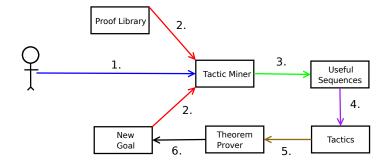

Research Questions

1. How can we deal with complex Higher Order Languages?

Variable instantiations and proof directives

One sequence of steps solves many proofs and vice versa

Different proof styles


Background

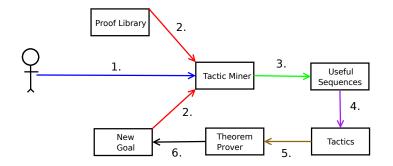
Research Vision

Research Questions

2. Which Data Mining Techniques can help?

An open research question

Background


Research Vision

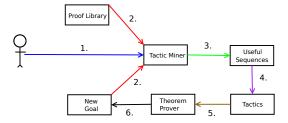
Research Questions

2. Which Data Mining Techniques can help?

An open research question

Two tasks: Finding the patterns and generalising into tactics

Background

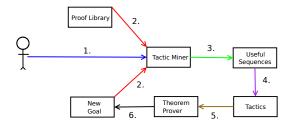

Research Vision

Research Questions

3. How will the theorem prover and tactic miner communicate?

We require two methods of communication to be defined:

- Theorem Prover to Tactic Miner
- Tactic Miner to Theorem Prover


Background

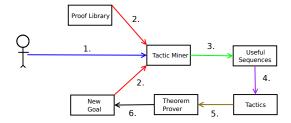
Research Vision

Research Questions

4. How can we make use of negative information?

Leverage negative information from:

Background

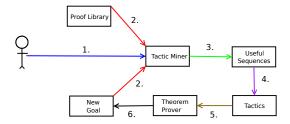

Research Vision

Research Questions

4. How can we make use of negative information?

Leverage negative information from:

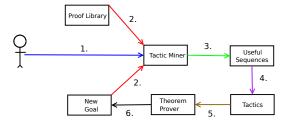
User inputs



4. How can we make use of negative information?

Leverage negative information from:

- User inputs
- Failed traces from existing automated tools



4. How can we make use of negative information?

Leverage negative information from:

- User inputs
- Failed traces from existing automated tools

Would enable a supervised learning approach.

I am currently at the following stage with my work:

I am currently at the following stage with my work:

• Data Extraction from Isabelle

I am currently at the following stage with my work:

- Data Extraction from Isabelle
- Considering learning techniques

Please feel free to ask me any questions, either now or at any point during the workshop!