
Queries, Modalities, Relations, Trees, XPath
Lecture VII

Core XPath and beyond

Tadeusz Litak

Department of Computer Science
University of Leicester

July 2010: draft

Tadeusz Litak Lecture VII: CXPath and beyond (1/46)

Basic Axioms I: Idempotent Semirings

ISAx1 (A ∪ B) ∪ C ≡ A ∪ (B ∪ C)
ISAx2 A ∪ B ≡ B ∪ A
ISAx3 A ∪ A ≡ A
ISAx4 A/(B/C) ≡ (A/B)/C

ISAx5{ ·/A ≡ A
A/· ≡ A

ISAx6{ A/(B ∪ C) ≡ A/B ∪ A/C
(A ∪ B)/C ≡ A/C ∪ B/C

ISAx7 ⊥ ⊆ A

Distributive lattices, Kleene algebras, Tarski’s relation algebras:
they all have idempotent semiring reducts.

Idempotency is the axiom ISAx3.
⊥ abbreviates · [¬〈·〉]

Tadeusz Litak Lecture VII: CXPath and beyond (2/46)

Basic Axioms II: Predicate Axioms

PrAx1 A [¬〈B〉] /B ≡ ⊥
PrAx2 A [φ ∨ ψ] ≡ A [φ] ∪ A [ψ]
PrAx3 (A/B) [φ] ≡ A/B [φ]
PrAx4 · [〈·〉] ≡ ·

In Tarski’s relation algebras and XPath 2.0,
predicates can be defined away

Note that PrAx3 would not be valid
if we allowed unrestricted positional predicates

Tadeusz Litak Lecture VII: CXPath and beyond (3/46)

Basic Axioms III: Node Axioms

NdAx1 φ ≡ ¬(¬φ ∨ ψ) ∨ ¬(¬φ ∨ ¬ψ)
NdAx2 〈A ∪ B〉 ≡ 〈A〉 ∨ 〈B〉
NdAx3 〈A/B〉 ≡ 〈A [〈B〉] 〉
NdAx4 〈· [φ] 〉 ≡ φ

Note how little was needed to ensure booleanity!
(by Huntington’s result from the 1930’s)

And NdAx2–NdAx4 just mimick PrAx2—PrAx4
(redundancy: price to pay for two-sorted signature)

Tadeusz Litak Lecture VII: CXPath and beyond (4/46)

Axioms in one-sorted signature

Recall all the two-sorted axioms for predicates and
expressions:

PrAx1 A [¬〈B〉] /B ≡ ⊥
PrAx2 A [φ ∨ ψ] ≡ A [φ] ∪ A [ψ]
PrAx3 (A/B) [φ] ≡ A/B [φ]
PrAx4 · [〈·〉] ≡ ·

NdAx1 φ ≡ ¬(¬φ ∨ ψ) ∨ ¬(¬φ ∨ ¬ψ)
NdAx2 〈A ∪ B〉 ≡ 〈A〉 ∨ 〈B〉
NdAx3 〈A/B〉 ≡ 〈A [〈B〉] 〉
NdAx4 〈· [φ] 〉 ≡ φ

Tadeusz Litak Lecture VII: CXPath and beyond (5/46)

Axioms in one-sorted signature

Here is a one-sorted axiomatization for ∼ over idempotent
semi-ring axioms found by Hollenberg:

∼A/A ≡ ⊥
∼∼A/A ≡ A
∼(A/B)/A ≡ (∼(A/B)/A)/∼B
∼(A ∪ B) ≡ ∼A/∼B
∼A ∪ ∼B ≡ ∼∼(∼A ∪ ∼B)

We need to add one more axiom for tests:

?p ≡ ∼∼?p

Tadeusz Litak Lecture VII: CXPath and beyond (5/46)

Now, you may have the feeling that
there was nothing XPath-specific yet

But in fact there is a fragment for which
it is all there is:

Core XPath(↓), the child-axis-only fragment!

Theorem
The axioms presented so far are complete for all valid
equivalences of Core XPath(↓).

In order to find more interesting equivalences,
we have to move to other fragments

Tadeusz Litak Lecture VII: CXPath and beyond (6/46)

Now, you may have the feeling that
there was nothing XPath-specific yet

But in fact there is a fragment for which
it is all there is:

Core XPath(↓), the child-axis-only fragment!

Theorem
The axioms presented so far are complete for all valid
equivalences of Core XPath(↓).

In order to find more interesting equivalences,
we have to move to other fragments

Tadeusz Litak Lecture VII: CXPath and beyond (6/46)

Now, you may have the feeling that
there was nothing XPath-specific yet

But in fact there is a fragment for which
it is all there is:

Core XPath(↓), the child-axis-only fragment!

Theorem
The axioms presented so far are complete for all valid
equivalences of Core XPath(↓).

In order to find more interesting equivalences,
we have to move to other fragments

Tadeusz Litak Lecture VII: CXPath and beyond (6/46)

Now, you may have the feeling that
there was nothing XPath-specific yet

But in fact there is a fragment for which
it is all there is:

Core XPath(↓), the child-axis-only fragment!

Theorem
The axioms presented so far are complete for all valid
equivalences of Core XPath(↓).

In order to find more interesting equivalences,
we have to move to other fragments

Tadeusz Litak Lecture VII: CXPath and beyond (6/46)

Axioms for Linear Axes

The non-transitive case:

LinAx1 s [¬φ] ≡ · [¬〈s [φ] 〉] /s for s ∈ {→,←, ↑}

This forces functionality of the corresponding axis

Tadeusz Litak Lecture VII: CXPath and beyond (7/46)

Axioms for Transitive Axes

One for node expressions, one for path expressions:

TransAx1 〈s+ [φ] 〉 ≡ 〈s+ [φ ∧ ¬〈s+ [φ] 〉] 〉
TransAx2 s+ ≡ s+ ∪ s+/s+

The first one is called the Löb axiom and forces well-foundedness
Don’t get modal logicians started on it—
people wrote books about this formula

In particular, all the consequences of TransAx2 for node expressions
can be already derived from TransAx1

I can neither prove nor disprove that for path expressions
TransAx2 is (ir-)redundant

Tadeusz Litak Lecture VII: CXPath and beyond (8/46)

Finally, Axes which Are Both Transitive and Linear

LinAx2 · [〈s+ [φ] 〉] /s+ ≡ s+ [φ] ∪ s+ [φ] /s+ ∪ s+ [〈s+ [φ] 〉]
for s ∈ {→,←, ↑}

together with transitivity axioms

This forces the corresponding axis is a linear order

Tadeusz Litak Lecture VII: CXPath and beyond (9/46)

Single Axis Completeness Result

Theorem

Base axioms are complete
for Core XPath(↓)

Base axioms with LinAx1 are complete
for other intransitive single axis fragments

Base axioms with TransAx1 and TransAx2 are complete
for Core XPath(↓+)

Base axioms with TransAx1, TransAx2 and LinAx2 are complete
for other transitive single axis fragments

Tadeusz Litak Lecture VII: CXPath and beyond (10/46)

A Few Words About Proofs

First, rewrite node expressions to simple node expressions:

siNode ::= 〈·〉 | p | 〈a [siNode] 〉 | ¬siNode | siNode∨siNode

They are isomorphic variants of modal formulas
Using normal form theorems for modal logic, we provide a
completeness proof for node expressions

Tadeusz Litak Lecture VII: CXPath and beyond (11/46)

A Few Words About Proofs

First, rewrite node expressions to simple node expressions:

siNode ::= 〈·〉 | p | 〈a [siNode] 〉 | ¬siNode | siNode∨siNode

They are isomorphic variants of modal formulas

Using normal form theorems for modal logic, we provide a
completeness proof for node expressions

Tadeusz Litak Lecture VII: CXPath and beyond (11/46)

A Few Words About Proofs

First, rewrite node expressions to simple node expressions:

siNode ::= 〈·〉 | p | 〈a [siNode] 〉 | ¬siNode | siNode∨siNode

They are isomorphic variants of modal formulas
Using normal form theorems for modal logic, we provide a
completeness proof for node expressions

Tadeusz Litak Lecture VII: CXPath and beyond (11/46)

A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free
expressions of the form

S = · [β1] /a [β2] / . . . /a [β`] ,

(all βi are normal forms of

the same nesting degree in case of transitive axes
strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula
is witnessed further down the chain

We prove that for every two such expressions either

one is a subsequence of the other—provably contained or
there is a countermodel for containment

Tadeusz Litak Lecture VII: CXPath and beyond (12/46)

A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free
expressions of the form

S = · [β1] /a [β2] / . . . /a [β`] ,

(all βi are normal forms of

the same nesting degree in case of transitive axes
strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula
is witnessed further down the chain

We prove that for every two such expressions either

one is a subsequence of the other—provably contained or
there is a countermodel for containment

Tadeusz Litak Lecture VII: CXPath and beyond (12/46)

A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free
expressions of the form

S = · [β1] /a [β2] / . . . /a [β`] ,

(all βi are normal forms of

the same nesting degree in case of transitive axes
strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula
is witnessed further down the chain

We prove that for every two such expressions either

one is a subsequence of the other—provably contained or

there is a countermodel for containment

Tadeusz Litak Lecture VII: CXPath and beyond (12/46)

A Few Words About Proofs cntd.

Then we rewrite all path expressions as sums of sum-free
expressions of the form

S = · [β1] /a [β2] / . . . /a [β`] ,

(all βi are normal forms of

the same nesting degree in case of transitive axes
strictly decreasing degree for intransitive axes)

In case of linear axes, we can even guarantee that every formula
is witnessed further down the chain

We prove that for every two such expressions either

one is a subsequence of the other—provably contained or
there is a countermodel for containment

Tadeusz Litak Lecture VII: CXPath and beyond (12/46)

Aside: the issue of labels

There is a fact about XML trees we did not take into account
(unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

p ∧ q ≡ ⊥

for distinct p and q
This axiom itself is not substitution-invariant,
this is why we do not like it

But as our proofs used only Birkhoff’s rules
they are quite flexible and adding this axiom does not hurt

Tadeusz Litak Lecture VII: CXPath and beyond (13/46)

Aside: the issue of labels

There is a fact about XML trees we did not take into account
(unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

p ∧ q ≡ ⊥

for distinct p and q
This axiom itself is not substitution-invariant,
this is why we do not like it

But as our proofs used only Birkhoff’s rules
they are quite flexible and adding this axiom does not hurt

Tadeusz Litak Lecture VII: CXPath and beyond (13/46)

Aside: the issue of labels

There is a fact about XML trees we did not take into account
(unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

p ∧ q ≡ ⊥

for distinct p and q
This axiom itself is not substitution-invariant,
this is why we do not like it

But as our proofs used only Birkhoff’s rules
they are quite flexible and adding this axiom does not hurt

Tadeusz Litak Lecture VII: CXPath and beyond (13/46)

Aside: the issue of labels

There is a fact about XML trees we did not take into account
(unless we opt to render attribute-value pairs as additional labels)

The labels are disjoint!

However, this is easy to fix: add node axiom

p ∧ q ≡ ⊥

for distinct p and q
This axiom itself is not substitution-invariant,
this is why we do not like it

But as our proofs used only Birkhoff’s rules
they are quite flexible and adding this axiom does not hurt

Tadeusz Litak Lecture VII: CXPath and beyond (13/46)

Starting from the Other End

Instead of beginning with single axes
and then trying to combine two or more

LET’S GO FOR THE WHOLE CORE XPATH!

Tadeusz Litak Lecture VII: CXPath and beyond (14/46)

Starting from the Other End

Instead of beginning with single axes
and then trying to combine two or more

LET’S GO FOR THE WHOLE CORE XPATH!

Tadeusz Litak Lecture VII: CXPath and beyond (14/46)

Axiom For Axes Dependencies

TreeAx1{ s+/s ∪ s ≡ s+

s/s+ ∪ s ≡ s+

TreeAx2 s [φ] /s^ ≡ · [〈s [φ] 〉] (for s distinct than ↑)
TreeAx3 ↑ [φ] /↓ ≡ (←+ ∪→+ ∪ ·) [〈↑ [φ] 〉]

TreeAx4 { ←+ ≡ ←+ [〈↑〉]
→+ ≡ →+ [〈↑〉]

TreeAx1 says: s+ is a transitive closure of s
TreeAx2 says non-child axes are functional

and describes their converse
TreeAx3 forces ↑ is the converse of (non-functional) ↓

with TreeAx4, it also describes how horizontal and vertical axes
interplay

Tadeusz Litak Lecture VII: CXPath and beyond (15/46)

Theorem
The axioms presented so far are complete for

Core XPath node expressions

Proof.
By reduction to simple node expressions
and derivation of all axioms of modal logic of finite trees
by Blackburn, Meyer-Viol, de Rijke

Tadeusz Litak Lecture VII: CXPath and beyond (16/46)

Theorem
The axioms presented so far are complete for

Core XPath node expressions

Proof.
By reduction to simple node expressions
and derivation of all axioms of modal logic of finite trees
by Blackburn, Meyer-Viol, de Rijke

Tadeusz Litak Lecture VII: CXPath and beyond (16/46)

(boolean axioms)
〈s [¬〈·〉] 〉 ≡ ¬〈·〉
〈s [φ ∨ ψ] 〉 ≡ 〈s [φ] 〉 ∨ 〈s [ψ] 〉
φ ≤ ¬〈s [¬〈s^ [φ] 〉] 〉
〈s [¬φ] 〉 ∧ 〈s [φ] 〉 ≡ ¬〈·〉(for s distinct than ↑)
〈s [φ] 〉 ∨ 〈s [〈s+ [φ] 〉] 〉 ≡ 〈s+ [φ] 〉
¬〈s [φ] 〉 ∧ 〈s+ [φ] 〉 ≤ 〈s+ [¬φ ∧ 〈s [φ] 〉] 〉
〈s [〈·〉] 〉 ≤ 〈s+ [¬〈s [〈·〉] 〉] 〉
TransAx1 for ↓+ and→+

〈↓ [¬〈←〉 ∧ ¬〈→∗ [φ] 〉] 〉 ≤ ¬〈↓ [φ] 〉
〈↓ [φ] 〉 ≤ 〈↓ [¬〈←〉] 〉 ∧ 〈↓ [¬〈→〉] 〉
¬〈↑〉 ≤ ¬〈←〉 ∧ ¬〈→〉

Tadeusz Litak Lecture VII: CXPath and beyond (17/46)

A Nasty Trick

We can use this to provide
an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one!
Add the separability rule:

(Sep) IF 〈A [p] 〉 ≡ 〈B [p] 〉 for p not occurring in A,B

THEN A ≡ B.

Except for spoiling the whole equational story,
it does not sit too well with the labelling axiom . . .

Tadeusz Litak Lecture VII: CXPath and beyond (18/46)

A Nasty Trick

We can use this to provide
an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one!
Add the separability rule:

(Sep) IF 〈A [p] 〉 ≡ 〈B [p] 〉 for p not occurring in A,B

THEN A ≡ B.

Except for spoiling the whole equational story,
it does not sit too well with the labelling axiom . . .

Tadeusz Litak Lecture VII: CXPath and beyond (18/46)

A Nasty Trick

We can use this to provide
an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one!

Add the separability rule:

(Sep) IF 〈A [p] 〉 ≡ 〈B [p] 〉 for p not occurring in A,B

THEN A ≡ B.

Except for spoiling the whole equational story,
it does not sit too well with the labelling axiom . . .

Tadeusz Litak Lecture VII: CXPath and beyond (18/46)

A Nasty Trick

We can use this to provide
an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one!
Add the separability rule:

(Sep) IF 〈A [p] 〉 ≡ 〈B [p] 〉 for p not occurring in A,B

THEN A ≡ B.

Except for spoiling the whole equational story,
it does not sit too well with the labelling axiom . . .

Tadeusz Litak Lecture VII: CXPath and beyond (18/46)

A Nasty Trick

We can use this to provide
an axiomatization for path expressions . . .

. . . of a sort—a non-orthodox one!
Add the separability rule:

(Sep) IF 〈A [p] 〉 ≡ 〈B [p] 〉 for p not occurring in A,B

THEN A ≡ B.

Except for spoiling the whole equational story,
it does not sit too well with the labelling axiom . . .

Tadeusz Litak Lecture VII: CXPath and beyond (18/46)

The Nasty Trick Does Its Job

. . . but it’s perfect for obtaining complexity results
for query equivalence problem

by using reductions to corresponding modal logics

Tadeusz Litak Lecture VII: CXPath and beyond (19/46)

Complexity Theorem

Theorem

Query equivalence of Core XPath(→+,←+), Core XPath(↑+),
Core XPath(s) (for s ∈ {↑,←,→}) is coNP-complete.

Query equivalence of Core XPath(←+,←,→+,→, ↑+, ↑) is
PSPACE-complete.
Thus, the PSPACE upper bound applies to all its sublanguages.

Query equivalence of Core XPath(↓) and Core XPath(↓+) is
PSPACE-complete.
Thus, all extensions of this fragment are PSPACE-hard.

Query equivalence of Core XPath(↓, ↓+) is EXPTIME-complete.
Thus, all extensions of this fragment are EXPTIME-hard.

Tadeusz Litak Lecture VII: CXPath and beyond (20/46)

Proofs

. . . by reductions to complexity results for modal logics like K,
K4, Alt.1 and fragments of tense/temporal logic on linear and

branching orders.
The most interesting one is for the second clause—somewhat

tricky embedding into a logic of Sistla and Clarke.

Tadeusz Litak Lecture VII: CXPath and beyond (21/46)

What we have seen so far . . .

We have seen:
equational axiomatizations for path equivalences of all
eight single axis fragments of Core XPath

equational axiomatizations for node equivalences of full
Core XPath 1.0
non-orthodox axiomatization for path equivalences of full
Core XPath 1.0
computational complexity results for path equivalences in
most meaningful sublanguages of Core XPath 1.0

Tadeusz Litak Lecture VII: CXPath and beyond (22/46)

What we have seen so far . . .

We have seen:
equational axiomatizations for path equivalences of all
eight single axis fragments of Core XPath
equational axiomatizations for node equivalences of full
Core XPath 1.0

non-orthodox axiomatization for path equivalences of full
Core XPath 1.0
computational complexity results for path equivalences in
most meaningful sublanguages of Core XPath 1.0

Tadeusz Litak Lecture VII: CXPath and beyond (22/46)

What we have seen so far . . .

We have seen:
equational axiomatizations for path equivalences of all
eight single axis fragments of Core XPath
equational axiomatizations for node equivalences of full
Core XPath 1.0
non-orthodox axiomatization for path equivalences of full
Core XPath 1.0

computational complexity results for path equivalences in
most meaningful sublanguages of Core XPath 1.0

Tadeusz Litak Lecture VII: CXPath and beyond (22/46)

What we have seen so far . . .

We have seen:
equational axiomatizations for path equivalences of all
eight single axis fragments of Core XPath
equational axiomatizations for node equivalences of full
Core XPath 1.0
non-orthodox axiomatization for path equivalences of full
Core XPath 1.0
computational complexity results for path equivalences in
most meaningful sublanguages of Core XPath 1.0

Tadeusz Litak Lecture VII: CXPath and beyond (22/46)

What we have not seen so far . . .

Definability and expressivity results (for finite
sibling-ordered trees . . .)
Results for fragments of XPath stronger than CoreXPath
1.0

From now on, I am going to use Balder Ten Cate’s M4M 2007
slides

Tadeusz Litak Lecture VII: CXPath and beyond (23/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize
Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:
Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize

Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:
Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize
Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:
Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize
Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:

Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize
Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:
Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power

Possible yardsticks for expressive power on trees:
First-order logic (FO), (cf. Codd completeness of SQL/RA)
Monadic second-order logic (MSO)
. . . — e.g., in between FO and MSO lies FO(TC)

What kind of queries do we want to characterize
Binary relations definable by path expressions?
Node sets definable by node expressions?
Properties of trees definable by node expressions
evaluated at the root?

Possible types of characterizations:
Syntactic (e.g. “L is equivalent to the two variable . . . ”)
versus semantic (e.g., “bisimulation invariant fragment . . . ”)

Decidable characterizations?

Tadeusz Litak Lecture VII: CXPath and beyond (24/46)

Expressive power (ct’d)

Descendant-only fragment

CoreXPath(↓∗) node expressions have the same expressive
power as MSO formulas ϕ(x) for which

(i) truth of ϕ(x) at a node depends only on the subtree
(ii) ϕ(x) does not distinguish children from descendants, i.e.,

the following operation preserves truth/falsity at the root:

Easy proof from De Jongh-Sambin fixed point theorem for GL
and Janin-Walukiewicz theorem for µ-calculus, see M4M
proceedings paper.

Moreover, the proof is effective: it yields a decision procedure.

Tadeusz Litak Lecture VII: CXPath and beyond (25/46)

Expressive power (ct’d)

Descendant-only fragment

CoreXPath(↓∗) node expressions have the same expressive
power as MSO formulas ϕ(x) for which

(i) truth of ϕ(x) at a node depends only on the subtree
(ii) ϕ(x) does not distinguish children from descendants, i.e.,

the following operation preserves truth/falsity at the root:

Easy proof from De Jongh-Sambin fixed point theorem for GL
and Janin-Walukiewicz theorem for µ-calculus, see M4M
proceedings paper.

Moreover, the proof is effective: it yields a decision procedure.

Tadeusz Litak Lecture VII: CXPath and beyond (25/46)

Expressive power (ct’d)

Descendant-only fragment

CoreXPath(↓∗) node expressions have the same expressive
power as MSO formulas ϕ(x) for which

(i) truth of ϕ(x) at a node depends only on the subtree
(ii) ϕ(x) does not distinguish children from descendants, i.e.,

the following operation preserves truth/falsity at the root:

Easy proof from De Jongh-Sambin fixed point theorem for GL
and Janin-Walukiewicz theorem for µ-calculus, see M4M
proceedings paper.

Moreover, the proof is effective: it yields a decision procedure.

Tadeusz Litak Lecture VII: CXPath and beyond (25/46)

A Lost Exercise

Exercise
1 Prove that finite sibling-ordered trees are bisimiliar iff they

are ismorphic
2 Does this result hold for arbitrary trees?

Tadeusz Litak Lecture VII: CXPath and beyond (26/46)

Expressive power (ct’d)

What about the full Core XPath language?

No decidable characterization in terms of MSO is known. All we
have is:

Syntactic characterization of Core XPath (Marx-De Rijke 05)
Core XPath node expressions have the same expressive power
as formulas φ(x) in the two-variable fragment of
FO[R↓,R↓∗ ,R→,R→∗].
There is a similar characterization for path expressions.

Tadeusz Litak Lecture VII: CXPath and beyond (27/46)

Expressive power (ct’d)

What about the full Core XPath language?

No decidable characterization in terms of MSO is known. All we
have is:

Syntactic characterization of Core XPath (Marx-De Rijke 05)
Core XPath node expressions have the same expressive power
as formulas φ(x) in the two-variable fragment of
FO[R↓,R↓∗ ,R→,R→∗].
There is a similar characterization for path expressions.

Tadeusz Litak Lecture VII: CXPath and beyond (27/46)

Expressive power (ct’d)

What about the full Core XPath language?

No decidable characterization in terms of MSO is known. All we
have is:

Syntactic characterization of Core XPath (Marx-De Rijke 05)
Core XPath node expressions have the same expressive power
as formulas φ(x) in the two-variable fragment of
FO[R↓,R↓∗ ,R→,R→∗].
There is a similar characterization for path expressions.

Tadeusz Litak Lecture VII: CXPath and beyond (27/46)

Brief recap

In summary. . .

Core XPath is reasonably expressive yet computationally
attractive.

In the remainder of this talk, we consider two extensions:

1 Regular XPath: the extension of Core XPath with full
transitive closure.

2 Core XPath 2.0: the navigational core of XPath 2.0,
featuring path intersection and complementation and more.

Tadeusz Litak Lecture VII: CXPath and beyond (28/46)

Brief recap

In summary. . .

Core XPath is reasonably expressive yet computationally
attractive.

In the remainder of this talk, we consider two extensions:

1 Regular XPath: the extension of Core XPath with full
transitive closure.

2 Core XPath 2.0: the navigational core of XPath 2.0,
featuring path intersection and complementation and more.

Tadeusz Litak Lecture VII: CXPath and beyond (28/46)

Brief recap

In summary. . .

Core XPath is reasonably expressive yet computationally
attractive.

In the remainder of this talk, we consider two extensions:

1 Regular XPath: the extension of Core XPath with full
transitive closure.

2 Core XPath 2.0: the navigational core of XPath 2.0,
featuring path intersection and complementation and more.

Tadeusz Litak Lecture VII: CXPath and beyond (28/46)

Brief recap

In summary. . .

Core XPath is reasonably expressive yet computationally
attractive.

In the remainder of this talk, we consider two extensions:

1 Regular XPath: the extension of Core XPath with full
transitive closure.

2 Core XPath 2.0: the navigational core of XPath 2.0,
featuring path intersection and complementation and more.

Tadeusz Litak Lecture VII: CXPath and beyond (28/46)

Motivation for adding transitive closure

Several people have proposed extending XPath with transitive
closure, for various reasons.

Practical reasons: some applications require the use of
transitive closure.
Core XPath extended with transitive closure has full
first-order expressive power, is rich enough to express
DTDs, and admits view based query rewriting with
recursive views.
From the perspective of PDL, extending XPath with
transitive closure seems a very natural thing to do.

The extension of Core XPath with transitive closure is called
Regular XPath.

Tadeusz Litak Lecture VII: CXPath and beyond (29/46)

Motivation for adding transitive closure

Several people have proposed extending XPath with transitive
closure, for various reasons.

Practical reasons: some applications require the use of
transitive closure.

Core XPath extended with transitive closure has full
first-order expressive power, is rich enough to express
DTDs, and admits view based query rewriting with
recursive views.
From the perspective of PDL, extending XPath with
transitive closure seems a very natural thing to do.

The extension of Core XPath with transitive closure is called
Regular XPath.

Tadeusz Litak Lecture VII: CXPath and beyond (29/46)

Motivation for adding transitive closure

Several people have proposed extending XPath with transitive
closure, for various reasons.

Practical reasons: some applications require the use of
transitive closure.
Core XPath extended with transitive closure has full
first-order expressive power, is rich enough to express
DTDs, and admits view based query rewriting with
recursive views.

From the perspective of PDL, extending XPath with
transitive closure seems a very natural thing to do.

The extension of Core XPath with transitive closure is called
Regular XPath.

Tadeusz Litak Lecture VII: CXPath and beyond (29/46)

Motivation for adding transitive closure

Several people have proposed extending XPath with transitive
closure, for various reasons.

Practical reasons: some applications require the use of
transitive closure.
Core XPath extended with transitive closure has full
first-order expressive power, is rich enough to express
DTDs, and admits view based query rewriting with
recursive views.
From the perspective of PDL, extending XPath with
transitive closure seems a very natural thing to do.

The extension of Core XPath with transitive closure is called
Regular XPath.

Tadeusz Litak Lecture VII: CXPath and beyond (29/46)

Motivation for adding transitive closure

Several people have proposed extending XPath with transitive
closure, for various reasons.

Practical reasons: some applications require the use of
transitive closure.
Core XPath extended with transitive closure has full
first-order expressive power, is rich enough to express
DTDs, and admits view based query rewriting with
recursive views.
From the perspective of PDL, extending XPath with
transitive closure seems a very natural thing to do.

The extension of Core XPath with transitive closure is called
Regular XPath.

Tadeusz Litak Lecture VII: CXPath and beyond (29/46)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Tadeusz Litak Lecture VII: CXPath and beyond (30/46)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Tadeusz Litak Lecture VII: CXPath and beyond (30/46)

Syntax of Regular XPath

Regular XPath has two types of expressions:

path expressions
α ::= ↑ | ↓ | ← | → | . | α/β | α ∪ β | α∗ | α[φ]

node expressions
φ ::= p | ¬φ | φ ∧ ψ | 〈α〉

Tadeusz Litak Lecture VII: CXPath and beyond (30/46)

An example

“Go to the next book that has at least two authors.”

In Regular XPath:

(→ [¬twoauthorbook])∗/→ [twoauthorbook]

where twoauthorbook stands for
book ∧ 〈↓ [author]/→+ [author]〉.

Tadeusz Litak Lecture VII: CXPath and beyond (31/46)

An example

“Go to the next book that has at least two authors.”

In Regular XPath:

(→ [¬twoauthorbook])∗/→ [twoauthorbook]

where twoauthorbook stands for
book ∧ 〈↓ [author]/→+ [author]〉.

Tadeusz Litak Lecture VII: CXPath and beyond (31/46)

Another example

The following can be expressed in Regular XPath:

“The tree has an even number of nodes”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗.

Let root be short for ¬〈↑〉.
Let leaf be short for ¬〈↓〉.
Let first be short for ¬〈←〉.
Let last be short for ¬〈→〉.

Let suc be shorthand for ↓[first] ∪ .[leaf]/
(
↑ while last

)
/→

(the successor in depth first left-to-right ordering).

Then
〈
(suc/suc)∗[leaf]/

(
↑ while last

)
[root]

〉
is true at the

root iff the number of nodes is even.

Tadeusz Litak Lecture VII: CXPath and beyond (32/46)

Another example

The following can be expressed in Regular XPath:

“The tree has an even number of nodes”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗.

Let root be short for ¬〈↑〉.
Let leaf be short for ¬〈↓〉.
Let first be short for ¬〈←〉.
Let last be short for ¬〈→〉.

Let suc be shorthand for ↓[first] ∪ .[leaf]/
(
↑ while last

)
/→

(the successor in depth first left-to-right ordering).

Then
〈
(suc/suc)∗[leaf]/

(
↑ while last

)
[root]

〉
is true at the

root iff the number of nodes is even.

Tadeusz Litak Lecture VII: CXPath and beyond (32/46)

Another example

The following can be expressed in Regular XPath:

“The tree has an even number of nodes”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗.

Let root be short for ¬〈↑〉.
Let leaf be short for ¬〈↓〉.
Let first be short for ¬〈←〉.
Let last be short for ¬〈→〉.

Let suc be shorthand for ↓[first] ∪ .[leaf]/
(
↑ while last

)
/→

(the successor in depth first left-to-right ordering).

Then
〈
(suc/suc)∗[leaf]/

(
↑ while last

)
[root]

〉
is true at the

root iff the number of nodes is even.

Tadeusz Litak Lecture VII: CXPath and beyond (32/46)

Another example

The following can be expressed in Regular XPath:

“The tree has an even number of nodes”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗.

Let root be short for ¬〈↑〉.
Let leaf be short for ¬〈↓〉.
Let first be short for ¬〈←〉.
Let last be short for ¬〈→〉.

Let suc be shorthand for ↓[first] ∪ .[leaf]/
(
↑ while last

)
/→

(the successor in depth first left-to-right ordering).

Then
〈
(suc/suc)∗[leaf]/

(
↑ while last

)
[root]

〉
is true at the

root iff the number of nodes is even.

Tadeusz Litak Lecture VII: CXPath and beyond (32/46)

Another example

The following can be expressed in Regular XPath:

“The tree has an even number of nodes”

To see this, note that

Let (α while φ) be shorthand for (.[φ]/α)∗.

Let root be short for ¬〈↑〉.
Let leaf be short for ¬〈↓〉.
Let first be short for ¬〈←〉.
Let last be short for ¬〈→〉.

Let suc be shorthand for ↓[first] ∪ .[leaf]/
(
↑ while last

)
/→

(the successor in depth first left-to-right ordering).

Then
〈
(suc/suc)∗[leaf]/

(
↑ while last

)
[root]

〉
is true at the

root iff the number of nodes is even.

Tadeusz Litak Lecture VII: CXPath and beyond (32/46)

One more example

Consider game trees:

leafs are labeled by Anne-wins or Bob-wins
inner nodes are labeled by Anne’s-move or Bob’s-move

Puzzle:
Show that “Anne has a winning strategy” is expressible.

Tadeusz Litak Lecture VII: CXPath and beyond (33/46)

One more example

Consider game trees:

leafs are labeled by Anne-wins or Bob-wins
inner nodes are labeled by Anne’s-move or Bob’s-move

Puzzle:
Show that “Anne has a winning strategy” is expressible.

Tadeusz Litak Lecture VII: CXPath and beyond (33/46)

Expressive power of Regular XPath

What is the expressive power of Regular XPath?
We know that

FO (Regular XPath ⊆ FO(TC)

(The first inclusion follows from results by Marx 2004).

A natural conjecture:

Regular XPath ≡ FO(TC)

(after all, Regular XPath has a transitive closure operator!)

We managed to prove this only if we extend Regular XPath
with a “within” operator W :

T ,n |= Wφ iff Tn,n |= φ

(cf. temporal logics with forgettable past)

Tadeusz Litak Lecture VII: CXPath and beyond (34/46)

Expressive power of Regular XPath

What is the expressive power of Regular XPath?
We know that

FO (Regular XPath ⊆ FO(TC)

(The first inclusion follows from results by Marx 2004).

A natural conjecture:

Regular XPath ≡ FO(TC)

(after all, Regular XPath has a transitive closure operator!)

We managed to prove this only if we extend Regular XPath
with a “within” operator W :

T ,n |= Wφ iff Tn,n |= φ

(cf. temporal logics with forgettable past)

Tadeusz Litak Lecture VII: CXPath and beyond (34/46)

Expressive power of Regular XPath

What is the expressive power of Regular XPath?
We know that

FO (Regular XPath ⊆ FO(TC)

(The first inclusion follows from results by Marx 2004).

A natural conjecture:

Regular XPath ≡ FO(TC)

(after all, Regular XPath has a transitive closure operator!)

We managed to prove this only if we extend Regular XPath
with a “within” operator W :

T ,n |= Wφ iff Tn,n |= φ

(cf. temporal logics with forgettable past)

Tadeusz Litak Lecture VII: CXPath and beyond (34/46)

Expressive power of Regular XPath

What is the expressive power of Regular XPath?
We know that

FO (Regular XPath ⊆ FO(TC)

(The first inclusion follows from results by Marx 2004).

A natural conjecture:

Regular XPath ≡ FO(TC)

(after all, Regular XPath has a transitive closure operator!)

We managed to prove this only if we extend Regular XPath
with a “within” operator W :

T ,n |= Wφ iff Tn,n |= φ

(cf. temporal logics with forgettable past)

Tadeusz Litak Lecture VII: CXPath and beyond (34/46)

Expressive power of Regular XPath (ct’d)

FO(TC) is the extension of first-order logic with a transitive
closure operator for binary relations.

Theorem: (Ten Cate and Segoufin, PODS 2008, JACM 2010)

Regular XPath(W) path expressions define the same binary
relations as FO(TC) formulas with two free variables.
Similarly for node expressions.

Corollary: Regular XPath(W) is closed under path
intersection and complementation.

Tadeusz Litak Lecture VII: CXPath and beyond (35/46)

Expressive power of Regular XPath (ct’d)

FO(TC) is the extension of first-order logic with a transitive
closure operator for binary relations.

Theorem: (Ten Cate and Segoufin, PODS 2008, JACM 2010)

Regular XPath(W) path expressions define the same binary
relations as FO(TC) formulas with two free variables.
Similarly for node expressions.

Corollary: Regular XPath(W) is closed under path
intersection and complementation.

Tadeusz Litak Lecture VII: CXPath and beyond (35/46)

Expressive power of Regular XPath (ct’d)

FO(TC) is the extension of first-order logic with a transitive
closure operator for binary relations.

Theorem: (Ten Cate and Segoufin, PODS 2008, JACM 2010)

Regular XPath(W) path expressions define the same binary
relations as FO(TC) formulas with two free variables.
Similarly for node expressions.

Corollary: Regular XPath(W) is closed under path
intersection and complementation.

Tadeusz Litak Lecture VII: CXPath and beyond (35/46)

Expressive power of Regular XPath (ct’d)

FO(TC) is the extension of first-order logic with a transitive
closure operator for binary relations.

Theorem: (Ten Cate and Segoufin, PODS 2008, JACM 2010)

Regular XPath(W) path expressions define the same binary
relations as FO(TC) formulas with two free variables.
Similarly for node expressions.

Corollary: Regular XPath(W) is closed under path
intersection and complementation.

Tadeusz Litak Lecture VII: CXPath and beyond (35/46)

Axiomatizations and complexity

No axiomatizations are known yet for Regular XPath and
Regular XPath(W).

As for complexity,

Query evaluation can still be performed in PTime even for
Regular XPath(W).

Query containment is still ExpTime-complete for Regular
XPath but it is 2ExpTime-complete for Regular XPath(W)

Tadeusz Litak Lecture VII: CXPath and beyond (36/46)

Axiomatizations and complexity

No axiomatizations are known yet for Regular XPath and
Regular XPath(W).

As for complexity,

Query evaluation can still be performed in PTime even for
Regular XPath(W).

Query containment is still ExpTime-complete for Regular
XPath but it is 2ExpTime-complete for Regular XPath(W)

Tadeusz Litak Lecture VII: CXPath and beyond (36/46)

Axiomatizations and complexity

No axiomatizations are known yet for Regular XPath and
Regular XPath(W).

As for complexity,

Query evaluation can still be performed in PTime even for
Regular XPath(W).

Query containment is still ExpTime-complete for Regular
XPath but it is 2ExpTime-complete for Regular XPath(W)

Tadeusz Litak Lecture VII: CXPath and beyond (36/46)

Core XPath 2.0

Tadeusz Litak Lecture VII: CXPath and beyond (37/46)

XPath 2.0 extends XPath 1.0 with many features, including the
following new navigational operations:

Intersection and complementation of path expressions.
α intersect β and α except β

Example: ↓∗[p] except ↓∗[q]/↓∗[p]

Variables and for loops
for $x in α return β and
α[. is $x]

Example:
for $x in . return ↓∗[p ∧¬

〈
↑∗[q]/↑∗[. is $x]

〉
]

Core XPath 2.0 is the extension of Core XPath with these
features.

Tadeusz Litak Lecture VII: CXPath and beyond (38/46)

XPath 2.0 extends XPath 1.0 with many features, including the
following new navigational operations:

Intersection and complementation of path expressions.
α intersect β and α except β

Example: ↓∗[p] except ↓∗[q]/↓∗[p]

Variables and for loops
for $x in α return β and
α[. is $x]

Example:
for $x in . return ↓∗[p ∧¬

〈
↑∗[q]/↑∗[. is $x]

〉
]

Core XPath 2.0 is the extension of Core XPath with these
features.

Tadeusz Litak Lecture VII: CXPath and beyond (38/46)

XPath 2.0 extends XPath 1.0 with many features, including the
following new navigational operations:

Intersection and complementation of path expressions.
α intersect β and α except β

Example: ↓∗[p] except ↓∗[q]/↓∗[p]

Variables and for loops
for $x in α return β and
α[. is $x]

Example:
for $x in . return ↓∗[p ∧¬

〈
↑∗[q]/↑∗[. is $x]

〉
]

Core XPath 2.0 is the extension of Core XPath with these
features.

Tadeusz Litak Lecture VII: CXPath and beyond (38/46)

XPath 2.0 extends XPath 1.0 with many features, including the
following new navigational operations:

Intersection and complementation of path expressions.
α intersect β and α except β

Example: ↓∗[p] except ↓∗[q]/↓∗[p]

Variables and for loops
for $x in α return β and
α[. is $x]

Example:
for $x in . return ↓∗[p ∧¬

〈
↑∗[q]/↑∗[. is $x]

〉
]

Core XPath 2.0 is the extension of Core XPath with these
features.

Tadeusz Litak Lecture VII: CXPath and beyond (38/46)

XPath 2.0 extends XPath 1.0 with many features, including the
following new navigational operations:

Intersection and complementation of path expressions.
α intersect β and α except β

Example: ↓∗[p] except ↓∗[q]/↓∗[p]

Variables and for loops
for $x in α return β and
α[. is $x]

Example:
for $x in . return ↓∗[p ∧¬

〈
↑∗[q]/↑∗[. is $x]

〉
]

Core XPath 2.0 is the extension of Core XPath with these
features.

Tadeusz Litak Lecture VII: CXPath and beyond (38/46)

The path intersection and complementation turn Core
XPath 2.0 into a version of Tarski’s relation algebra
(interpreted on finite ordered trees).

The variables and for-loops make it possible to give a
linear translation from first-order logic to Core XPath 2.0:

TR(φ(x , y)) = for $x in ., $y in > return $y[TR′(φ)]

TR′(x = y) =
〈
>[. is $x ∧ . is $y]

〉
TR′(R↓xy) =

〈
>[. is $x ∧ 〈↓[. is $y]〉]

〉
TR′(R↓∗xy) =

〈
>[. is $x ∧ 〈↓∗[. is $y]〉]

〉
TR′(R→xy) =

〈
>[. is $x ∧ 〈→[. is $y]〉]

〉
TR′(R→∗xy) =

〈
>[. is $x ∧ 〈→∗[. is $y]〉]

〉
TR′(φ ∧ ψ) = TR′(φ) ∧ TR′(ψ)
TR′(¬φ) = ¬TR′(φ)
TR′(∃x .φ) = for $x in > return TR′(φ)

where > is shorthand for ↑∗ / ↓∗ (the universal relation)

Tadeusz Litak Lecture VII: CXPath and beyond (39/46)

The path intersection and complementation turn Core
XPath 2.0 into a version of Tarski’s relation algebra
(interpreted on finite ordered trees).
The variables and for-loops make it possible to give a
linear translation from first-order logic to Core XPath 2.0:

TR(φ(x , y)) = for $x in ., $y in > return $y[TR′(φ)]

TR′(x = y) =
〈
>[. is $x ∧ . is $y]

〉
TR′(R↓xy) =

〈
>[. is $x ∧ 〈↓[. is $y]〉]

〉
TR′(R↓∗xy) =

〈
>[. is $x ∧ 〈↓∗[. is $y]〉]

〉
TR′(R→xy) =

〈
>[. is $x ∧ 〈→[. is $y]〉]

〉
TR′(R→∗xy) =

〈
>[. is $x ∧ 〈→∗[. is $y]〉]

〉
TR′(φ ∧ ψ) = TR′(φ) ∧ TR′(ψ)
TR′(¬φ) = ¬TR′(φ)
TR′(∃x .φ) = for $x in > return TR′(φ)

where > is shorthand for ↑∗ / ↓∗ (the universal relation)

Tadeusz Litak Lecture VII: CXPath and beyond (39/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

Expressivity and complexity

Core XPath 2.0 has the same expressive power as
first-order logic, both with and without variables (in the
case with variables there is a linear translation).

The complexity of the query equivalence problem is
non-elementary, both with and without variables.

(even adding only path intersection to Core XPath makes it
2ExpTime-complete.)

Is there anything interesting left to say about XPath 2.0?

Sure! For example, axiomatization.

We have two complete axiomatizations of path equivalence
in Core XPath 2.0: one with and one without variables.

Tadeusz Litak Lecture VII: CXPath and beyond (40/46)

The case without variables

Recall that, without variables, Core XPath 2.0 is essentially
a version of Relation Algebra interpreted on finite sibling
ordered trees.

One apparent problem: Relation Algebra has no node
tests.
However, these can easily be translated away:

Pred1. α[φ ∧ ψ] ≡ α[φ][ψ]
Pred2. α[φ ∨ ψ] ≡ α[φ] ∪ α[ψ]
Pred3. α[¬φ] ≡ α− α[φ]
Pred4. α[〈β〉] ≡ α/((β/>) ∩ .)

Besides these axioms, our axiomatization for variable free
Core XPath 2.0 contains two groups of axioms:

General axioms of Boolean Algebra and Relation Algebra
Axioms describing (first-order) properties of trees.

Tadeusz Litak Lecture VII: CXPath and beyond (41/46)

The case without variables

Recall that, without variables, Core XPath 2.0 is essentially
a version of Relation Algebra interpreted on finite sibling
ordered trees.
One apparent problem: Relation Algebra has no node
tests.
However, these can easily be translated away:

Pred1. α[φ ∧ ψ] ≡ α[φ][ψ]
Pred2. α[φ ∨ ψ] ≡ α[φ] ∪ α[ψ]
Pred3. α[¬φ] ≡ α− α[φ]
Pred4. α[〈β〉] ≡ α/((β/>) ∩ .)

Besides these axioms, our axiomatization for variable free
Core XPath 2.0 contains two groups of axioms:

General axioms of Boolean Algebra and Relation Algebra
Axioms describing (first-order) properties of trees.

Tadeusz Litak Lecture VII: CXPath and beyond (41/46)

The case without variables

Recall that, without variables, Core XPath 2.0 is essentially
a version of Relation Algebra interpreted on finite sibling
ordered trees.
One apparent problem: Relation Algebra has no node
tests.
However, these can easily be translated away:

Pred1. α[φ ∧ ψ] ≡ α[φ][ψ]
Pred2. α[φ ∨ ψ] ≡ α[φ] ∪ α[ψ]
Pred3. α[¬φ] ≡ α− α[φ]
Pred4. α[〈β〉] ≡ α/((β/>) ∩ .)

Besides these axioms, our axiomatization for variable free
Core XPath 2.0 contains two groups of axioms:

General axioms of Boolean Algebra and Relation Algebra
Axioms describing (first-order) properties of trees.

Tadeusz Litak Lecture VII: CXPath and beyond (41/46)

Axioms of Boolean algebra

BA1. α ∪ (β ∪ γ) ≡ (α ∪ β) ∪ γ
BA2. α ∩ (β ∩ γ) ≡ (α ∩ β) ∩ γ
BA3. α ∪ β ≡ β ∪ α
BA4. α ∩ β ≡ β ∩ α
BA5. α ∪ (β ∩ γ) ≡ (α ∪ β) ∩ (α ∪ γ)
BA6. α ∩ (β ∪ γ) ≡ (α ∩ β) ∪ (α ∩ γ)
BA7. α ∪ (α ∩ β) ≡ α
BA8. α ∩ (α ∪ β) ≡ α
BA9. α ∪ (>− α) ≡ >
BA10. α ∩ (>− α) ≡ ⊥
BA11. α ∩ (>− β) ≡ α− β

Tadeusz Litak Lecture VII: CXPath and beyond (42/46)

The axioms of Relation algebra

RA1. α/(β/γ) ≡ (α/β)/γ

RA2. α/. ≡ α
RA3. (α ∪ β)/γ ≡ α/γ ∪ β/γ
RA4. (α ∪ β)^ ≡ α^ ∪ β^

RA5. (α/β)^ ≡ β^/α^

RA6. (α^)^ ≡ α
RA7. (α/(>− (α^/β)) ⊆ > except β

To completely axiomatize relation algebra, normally, one
needs to add also Venema’s Rule:

If X is a relation variable not occurring in α and
X − (((>− .)/X/>) ∪ (>/X/(>− .))) ⊆ α then
α ≡ >.

Fortunately, this rule turns out to be derivable in our case.

Tadeusz Litak Lecture VII: CXPath and beyond (43/46)

The axioms for finite sibling ordered trees

Tr1. ↓+ / ↓+ ⊆ ↓+
Tr2. ↓+ ∩ ↑+ ≡ ⊥
Tr3a. ↓+ ≡ ↓ ∪(↓ / ↓+)
Tr3b. ↓ ≡ ↓+ −(↓+ / ↓+)
Tr4. .[〈↑〉] ≡ .[↑+ [¬〈↑〉]]
Tr5. ↓+ / ↑+ ≡ ↓+ ∪.[〈↓〉] ∪ .[〈↓〉]/ ↑+
Tr6. →+ /→+ ⊆ →+

Tr7. →+ ∩ ←+ ≡ ⊥
Tr8a. →+ ≡ → ∪(→ /→+)
Tr8b. → ≡ →+ −(→+ /→+)
Tr9. .[←] ≡ .[〈←+ [¬〈←〉]〉]
Tr10. →+ ∪ ←+ ≡ (↑ / ↓)− .
Tr11. . ∪ ↑+ ∪ ↓+ ∪

(↑∗ /→+ /↓∗) ∪ (↑∗ /←+ /↓∗) ≡ >

Ind . >[〈α〉] ≡ >[〈α− (α/ <<)〉]
Tadeusz Litak Lecture VII: CXPath and beyond (44/46)

Rounding up

Three languages:

Core XPath: the navigational core of XPath 1.0
Expressivity: FO2

Query evaluation: PTime
Query equivalence: ExpTime-complete

Regular XPath(W): the extension with ∗ and W .
Expressivity: same as FO(TC)
Query evaluation: PTime
Query equivalence: 2ExpTime-complete.

Core XPath 2.0: the navigational core of XPath 2.0
Expressivity: same as FO.
Query evaluation: PSpace-complete
Query equivalence: non-elementary hard.

Tadeusz Litak Lecture VII: CXPath and beyond (45/46)

Rounding up

Three languages:

Core XPath: the navigational core of XPath 1.0
Expressivity: FO2

Query evaluation: PTime
Query equivalence: ExpTime-complete

Regular XPath(W): the extension with ∗ and W .
Expressivity: same as FO(TC)
Query evaluation: PTime
Query equivalence: 2ExpTime-complete.

Core XPath 2.0: the navigational core of XPath 2.0
Expressivity: same as FO.
Query evaluation: PSpace-complete
Query equivalence: non-elementary hard.

Tadeusz Litak Lecture VII: CXPath and beyond (45/46)

Rounding up

Three languages:

Core XPath: the navigational core of XPath 1.0
Expressivity: FO2

Query evaluation: PTime
Query equivalence: ExpTime-complete

Regular XPath(W): the extension with ∗ and W .
Expressivity: same as FO(TC)
Query evaluation: PTime
Query equivalence: 2ExpTime-complete.

Core XPath 2.0: the navigational core of XPath 2.0
Expressivity: same as FO.
Query evaluation: PSpace-complete
Query equivalence: non-elementary hard.

Tadeusz Litak Lecture VII: CXPath and beyond (45/46)

Rounding up

Three languages:

Core XPath: the navigational core of XPath 1.0
Expressivity: FO2

Query evaluation: PTime
Query equivalence: ExpTime-complete

Regular XPath(W): the extension with ∗ and W .
Expressivity: same as FO(TC)
Query evaluation: PTime
Query equivalence: 2ExpTime-complete.

Core XPath 2.0: the navigational core of XPath 2.0
Expressivity: same as FO.
Query evaluation: PSpace-complete
Query equivalence: non-elementary hard.

Tadeusz Litak Lecture VII: CXPath and beyond (45/46)

Some references

Expressive power:
Marx and De Rijke. Semantic characterizations of navigational XPath. SIGMOD
Record 34(2), 2005

Ten Cate, Fontaine and Litak. Some modal aspects of XPath. M4M’07. Journal version
for a special issue of JANCL 2010 in preparation

Ten Cate and Segoufin. XPath, transitive closure logic, and nested tree walking
automata. Journal of the ACM, 2010. Extended abstract appeared in PODS 2008.

Axiomatization:
Ten Cate, Fontaine and Litak. Some modal aspects of XPath. M4M’07. Journal version
for a special issue of JANCL 2010 in preparation

Ten Cate, Litak and Marx. Complete axiomatizations of XPath fragments. JAL 2010.
Extended abstract presented at LiD 2008.

Ten Cate and Marx. Axiomatizing the logical core of XPath 2.0. ICDT’07.

Complexity:
Gottlob, Koch and Pichler. Efficient algorithms for processing XPath queries. TODS
30(2), 2005

Ten Cate and Lutz. Query containment in very expressive XPath dialects. PODS’07.

— Thank you! —Tadeusz Litak Lecture VII: CXPath and beyond (46/46)

