Queries, Modalities, Relations, Trees, XPath Lecture II Preliminaries: Sets. Relations. Structures

Tadeusz Litak

Department of Computer Science University of Leicester

July 2010: draft

Sets

$$\begin{aligned} &A := \{0,1,2,3,4\} \\ &B := \{0,1,1,2,2,3,4,4\} \\ &C := \{x \in N_0 \mid x \leq 4\} \end{aligned}$$

- **1** Is A = B?
- ② Is B = C?
- **3** Is A = C?

Definition (Cardinality)

The number of elements of a set A is called its cardinality and denoted by |A|.

For infinite A, in these lectures we just write $|A| = \infty$.

(There is a theory of cardinality for infinite sets, but we do not have to enter into this)

- What is |∅|?
- **2** What is $|\{0, 1, 2, 3, 4, 5\}|$?
- **3** What is $|\{x \in N_0 \mid x \le 4 \text{ and } x \text{ is even}\}|$?
- **1** What is $|\{x \in N_0 \mid x \le 4 \text{ and } x \text{ is odd}\}|$?

Subsets and Powersets

Definition

• $A \subseteq B$ if $\forall a \in A.a \in B$

[subset]

 $\bullet \ \mathcal{P}(B) := \{A \mid A \subseteq B\}$

[powerset]

- **1** Is $\emptyset \in \{\{\emptyset\}\}$?
- **a** Is $\{\emptyset\} \in \{\{\emptyset\}\}$?
- \bigcirc Is $\emptyset \subseteq \{\{\emptyset\}\}$?
- **1** Is $\{\emptyset\} \subseteq \{\{\emptyset\}\}$?
- **o** Is \emptyset ∈ $\mathcal{P}(\{\{\emptyset\}\})$?
- **o** Is $\{\emptyset\} \in \mathcal{P}(\{\{\emptyset\}\})$?
- \bigcirc Is $\emptyset \subseteq \mathcal{P}(\{\{\emptyset\}\})$?
- Is $\{\emptyset\} \subseteq \mathcal{P}(\{\{\emptyset\}\})$?

Ordered Pairs

Definition (Ordered Pair)

$$\langle a,b\rangle := \{\{a\},\{a,b\}\}$$

- **2** Is $(0,0) = \{0\}$?

Ordered Tuples

Definition (Ordered Tuple)

$$\langle a_0,\ldots,a_n\rangle := \langle \langle a_0,\ldots,a_{n-1}\rangle\,,a_n\rangle$$

- **1** Is (0,0,1) = (0,1,1)?
- **2** Is (0,0,0) = (0,0)?

Cartesian Products, Relations

Definition

 $\bullet \ A \times B := \{ \langle a, b \rangle \mid a \in A, b \in B \}$

[cartesian product]

• $A^n := \underbrace{A \times \cdots \times A}_{n}$

[cartesian power]

- A (binary) relation between A and B: a subset of $A \times B$
- A subset of $A_1 \times ... A_n$ is called *n*-ary relation
- A n-ary relation in A: a subset of Aⁿ
- For any set A, let $\cdot_A := \{\langle a, a \rangle \mid a \in A\}$ [identity relation]

- What is the cardinality of $\{0,1\}^2$?
- How many relations there are on {0,1}?
- **3** For what A and B, \emptyset is a relation from A to B?
- Are there any other relations one can define on any A except for \emptyset and \cdot_A ?

Composition of relations

Definition

Let $R \subseteq A \times B$, $S \subseteq B \times C$. Then

$$R/S := \{ \langle a, c \rangle \mid \exists b \in B. \langle a, b \rangle \in R \text{ and } \langle b, c \rangle \in S \}$$

[composition]

- **1** Let $R \subseteq A \times B$. What is \cdot_A/R ? R/\cdot_B ?
- 2 Is (R/S)/T = R/(S/T)?
- **3** What is R/\emptyset ?

Images, Domain and Range, Functionality

Definition

Let $R \subseteq X \times Y$, $A \subseteq X$, $B \subseteq Y$.

- $\bullet R[A] := \{ y \in Y \mid \exists a \in A.aRy \}$
- $R^{-1}[B] := \{x \in X \mid \exists b \in B.xRb\}$
- $dom(R) := \{x \mid R[\{x\}] \neq \emptyset\}$
- $ran(R) := \{ y \mid R^{-1}[\{y\}] \neq \emptyset \}$
- R is functional if for any $x \in X$, $|R[\{x\}]| \le 1$

[image]

[inverse image]

[domain]

[range]

Images, Domain and Range, Functionality

Definition

Let $R \subseteq X \times Y$, $A \subseteq X$, $B \subseteq Y$.

•
$$R[A] := \{ y \in Y \mid \exists a \in A.aRy \}$$

• $R^{-1}[B] := \{x \in X \mid \exists b \in B.xRb\}$

•
$$dom(R) := \{x \mid R[\{x\}] \neq \emptyset\}$$

•
$$\operatorname{ran}(R) := \{ y \mid R^{-1}[\{y\}] \neq \emptyset \}$$

[image]

[inverse image]

[domain]

[range]

With every functional relation R from A to B we can associate

• R is functional if for any $x \in X$, $|R[\{x\}]| \le 1$

a partial function f_R defined as $f_R(a) = b$ iff aRb.

(partial meaning possibly undefined for some elements of A)

In the same way, with every partial function f we can associate a partial function R_f the graph of f

$$dom(f) := dom(R_f)$$

Images, Domain and Range, Functionality

Definition

Let $R \subseteq X \times Y$, $A \subseteq X$, $B \subseteq Y$.

•
$$R[A] := \{ y \in Y \mid \exists a \in A.aRy \}$$

• $R^{-1}[B] := \{x \in X \mid \exists b \in B.xRb\}$

•
$$dom(R) := \{x \mid R[\{x\}] \neq \emptyset\}$$

•
$$\operatorname{ran}(R) := \{ y \mid R^{-1}[\{y\}] \neq \emptyset \}$$

[image]

[inverse image]

[domain]

[range]

With every functional relation R from A to B we can associate

• R is functional if for any $x \in X$, $|R[\{x\}]| \le 1$

a partial function f_R defined as $f_R(a) = b$ iff aRb.

(partial meaning possibly undefined for some elements of A)

In the same way, with every partial function f we can associate a partial function R_f the graph of f

$$dom(f) := dom(R_f)$$

Functions

Definition

- A partial function f from A to B is called a [total] function from A to B iff dom(f) = A
 We abbreviate it as f: A → B.
- Let $f: A \mapsto B$, $g: B \mapsto C$. Then $g \circ f: A \mapsto C$ is defined as [composition]

$$\forall a \in A.$$
 $(g \circ f)(a) = g(f(a))$

Exercise

- **1** Is $R_{g \circ f}$ composition of R_f and R_g ?
- 2 Is \cdot_A the graph of a total function on A?

In set theory, we usually identify a function with its graph

Definition

Let *I* be a set. Any set-valued function *A* from *I* gives rise to *I*-indexed family of sets:

$$\{A_i\}_{i\in I}$$

Definition

Let *I* be a set. Any set-valued function *A* from *I* gives rise to *I*-indexed family of sets:

$$\{A_i\}_{i\in I}$$

Thus, for example, a family $\{A_i\}$ of subsets of X denotes a function $A: I \mapsto \mathcal{P}(X)$

Definition

Let *I* be a set. Any set-valued function *A* from *I* gives rise to *I*-indexed family of sets:

$$\{A_i\}_{i\in I}$$

Thus, for example, a family $\{A_i\}$ of subsets of X denotes a function $A: I \mapsto \mathcal{P}(X)$

Most common indexing set: N₀, N₁

Definition

Let *I* be a set. Any set-valued function *A* from *I* gives rise to *I*-indexed family of sets:

$$\{A_i\}_{i\in I}$$

Thus, for example, a family $\{A_i\}$ of subsets of X denotes a function $A:I\mapsto \mathcal{P}(X)$

Most common indexing set: N₀, N₁

Indexed families of sets are used to define infinitary operations

Unions, infinite unions

Unions, infinite unions

Definition

• Let A, B be sets.

[finite union]

$$A \cup B := \{x \mid x \in A \text{ or } x \in B\}$$

• Let $\{A_i\}_{i\in I}$ be an indexed family of sets.

[infinite union]

$$\bigcup_{i\in I}A_i:=\{x\mid \exists i\in I.x\in A_i\}$$

- **1** Is $R/(S \cup T) = (R/S) \cup (R/T)$?
- 2 Is $R/(\bigcup_{i\in I} T_i) = \bigcup_{i\in I} (R/T_i)$?

Transitive Relations, Chain

Transitive Relations, Chain

Definition

- $R \subseteq W \times W$ is transitive iff for every element $x, y, z \in W$, xRy and yRz implies xRz
- A transitive $R \subseteq W \times W$ is a chain iff for $x \neq y$ either xRy or yRx holds

Transitive Closure

Definition

Let *R* be a relation on *A*. Then we define the transitive closure of *R* as

$$R^+ = \bigcup_{n \in \mathbb{N}_1} \underbrace{R/\dots/R}_n$$

Reflexive-and-transitive closure of R is

$$R^* = \cdot_A \cup R^+$$

Fact

The transitive closure of R is the smallest transitive relation containing it

- **1** Let $S = \{ \langle n, n+1 \rangle \mid n \in \mathbb{N}_0 \}$. What is S^+ ?
- ② What is S^* ?
- \odot What is S/S^+ ?

Intersections, infinite intersections

Intersections, infinite intersections

Definition

• Let A, B be sets.

[finite intersection]

$$A \cap B := \{x \mid x \in A \text{ and } x \in B\}$$

• Let $\{A_i\}_{i\in I}$ be an indexed family of sets. [infinite intersection]

$$\bigcap_{i\in I}A_i:=\{x\mid \forall i\in I.x\in A_i\}$$

- **1** Is $R/(S \cap T) = (R/S) \cap (R/T)$?
- 2 Is $A \times (B \cap C) = (A \times B) \cap (A \times C)$?

Relational Structures

Relational Structures

Definition

- A relational signature Σ is any collection of relation symbols $\{R, S, T, R_1, S_1, \dots\}$.
- The basic signature consists of a single relation symbol R
- A relational structure/Kripke frame for Σ is a pair $\mathfrak{F} = \langle W, \{S^{\mathfrak{F}}\}_{S \in \Sigma} \rangle$, where each $S^{\mathfrak{F}} \subseteq W \times W$. W is called the carrier of \mathfrak{F} and denoted as \mathfrak{F} .
- The class of all relational structures for Σ will be denoted as $Str(\Sigma)$

Labelled Relational Structures

Labelled Relational Structures

Definition

- We fix a collection of labels $\Pi = \{P, P_1, P_2, \dots\}$
- A Π-labelled relational structure is a pair $\mathfrak{W} = \langle \mathfrak{F}, \Lambda \rangle$, where
 - $\mathfrak{F} \in \mathsf{Str}(\Sigma)$ and
 - $\Lambda: \Pi \mapsto \mathcal{P}(\underline{\mathfrak{F}})$
- ullet $\underline{\mathfrak{W}}:=\mathfrak{F}$

Well-founded relations

Definition (Well-foundedness)

A relation $R \subseteq W \times W$ is well-founded iff for every non-empty $S \subseteq W$ there is $s \in S$ s.t. for no $s' \in S$, s'Rs.

Fact

- A relation is well-founded iff its transitive closure is.
- A relation is well-founded iff it contains no infinite descending chains: . . . x₃Rx₂Rx₁Rx₀

- Is $\langle N_0, \leq \rangle$ well-founded?
- 2 Is $\langle N_0, < \rangle$ well-founded?
- **③** Is $\langle N_0, \geq \rangle$ well-founded?
- Is $\langle N_0, \rangle$ well-founded?

Trees

Definition

A relational structure $\langle W, R^{\mathfrak{W}} \rangle$ is a tree if

- for every $w \in W$, $(R^{\mathfrak{W}})^{-1}[\{w\}]$ is a well-ordered chain
- there is $r \in W$ s.t. $R^{\mathfrak{W}}[\{r\}] = W$. Such r is called a root

Exercise

Examples of trees and non-trees: on the whiteboard

Sibling-ordered Trees

Definition

A relational structure $\langle W, \downarrow^{\mathfrak{W}}, \rightarrow^{\mathfrak{W}} \rangle$ is a sibling-ordered tree if

- $\langle W, (\downarrow^{\mathfrak{W}})^+ \rangle$ is a tree and
- →²⁰ is the successor relation of some linear ordering between siblings