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Overview

Wouldn’t we all like memory predictions for our programs that are

I given in terms of the input.

I actual bounds on the amounts required,

I automatically generated,

I certifiable?
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Limitations

What are we prepared to give up?

I Only get linear bounds in terms of the input,
(surprisingly common)

I no relying on fancy reasoning,

I especially no fancy invariants,

I start with first-order functional language and work up.
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Outline

Overview

Hofmann-Jost Heap Memory Analysis

Extensions
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Idea for Hofmann-Jost

A type system which shows bounds are good:

I Assigns ‘free’ memory to input (proportional to size);

I play game of pass the parcel / carbon credit trading / your
analogy here;

I typing rules enforce no sneaky increases, and all allocations
paid for.

Then we add some inference:

I All the side conditions on assignments are linear (in)equalities;

I reduce to linear programming!
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Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):
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[1], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.
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Heap memory example

The andtrees function computes the pointwise ‘and’ of two
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booltree [2] × booltree [0], 4 → booltree [1], 4

let x = andtrees y z in ...

I Signatures also ‘translate’ bounds:

I If |x |+ 4 units is enough for . . . , then 2× |y |+ 4 is sufficent
for both allocation and the |x |+ 4 later.
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Hofmann-Jost is an amortized analysis

t1 :booltree [2], t2 :booltree [0], 4 ` andtrees t1 t2 : booltree [1], 4

The type annotations define potential functions

ΥΓ(t1, t2) = |t1| × 2 + |t2| × 0 + 4

for the context, and for the result:

ΥR(r) = |r | × 1 + 4.

Constraints ensures that the allocation is accounted for by a drop
in potential. (See Physicist’s view in Tarjan 1985)
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Hofmann-Jost rules — construction

n ≥ size(booltree node) + k + n′

l :booltree[k], r :booltree[k], v :bool, n ` node(l , v , r) : booltree[k], n′

(Node)

means that if we have

|l | × k + |r | × k + n

units of free memory then we can allocate the node and end up
with

|node(l , v , r)| × k + n′ = (1 + |l |+ |r |)× k + n′.
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Hofmann-Jost rules — matching

Γ, n ` e1 :T , n′

n + k = n2

Γ, l :booltree[k], r :booltree[k], v :bool, n2 ` e2 :T , n′

Γ, t : booltree[k], n ` match t with leaf ′ → e1

| node(l , r , v)′ → e2

(TreeElim′)

We ‘reserved’ k units of memory when we constructed the node, so
we get it back now.

The ′ means the data might still be live.

(Assumes external safety checker.)
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Hofmann-Jost rules — matching

Γ, n ` e1 :T , n′

n + k + size(booltree node) = n2

Γ, l :booltree[k], r :booltree[k], v :bool, n2 ` e2 :T , n′

Γ, t : booltree[k], n ` match t with leaf → e1

| node(l , r , v) → e2

(TreeElim)

We ‘reserved’ k units of memory when we constructed the node, so
we get it back plus the memory freed up.

No ′, so we get the memory back.
(Assumes external safety checker.)
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Hofmann-Jost rules — contraction

k = k1 + k2

Γ, x1 :booltree[k1], x2 :booltree[k2], n ` e :T ′, n′

Γ, x :booltree[k], n ` e[x/x1, x/x2] :T
′, n′ (Share)

If |x1| × k1 + |x2| × k2 is sufficient for e, then |x | × k is sufficient
for e[x/x1, x/x2].

Weakening of variables is admissible. Together with Share, we
get weakening of annotations.

Hofmann-Jost Heap Memory Analysis 14 / 26



Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

n ≥ n′ for leaf cases

n + k1 = n1 t1 node match

n1 + k2 = n2 t2 node match

n2 ≥ n, n2 − n + n′ ≥ n3 left recursive call

n3 ≥ n, n3 − n + n′ ≥ n4 right recursive call

k1 ≥ k ′ weakening

k2 ≥ k ′ weakening

n4 ≥ size(node) + k ′ + n′ for constructing the result
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Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

. . . which is really just . . .

n ≥ n′

k1 + k2 ≥ size(node) + k ′
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Hofmann-Jost inference

n ≥ size(booltree node) + k + n′

l :booltree[k], r :booltree[k], v :bool, n ` node(l , v , r) : booltree[k], n′

(Node)

I Construct typing with constraint variables k, n, . . . ;

I collect constraints from typing rules;

I solve linear program, minimising the bound.

Note: can use the solutions to the linear program as a checkable
certificate of memory requirements.

[Mobile Resource Guarantees project.]
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Complexity of the inference

I Number of constraints is (roughly) linear in the program size;

I LP solving is polynomial time.

However, often want different uses of a function to have different
signatures (resource polymorphism):

I Easy: Pretend they are different functions by collecting and
duplicating all the constraints.

I Hard: Worst case now exponential (but contrived?)
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Extensions — stack space

‘First adaption’ attempt quite easy:

Σ(f ) = T1, . . . ,Tp, k → T ′, k ′

n ≥ k

+ frame(f )

n − k + k ′ ≥ n′

x :T1, . . . , x :Tp, n ` f (x1, . . . , xp) :T ′, n′ (Fun)

I For tail call optimisation add tail position flag to judgements
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Stack space problem 1

let andtrees2 x y z =
let r1 = andtrees x y in
let r2 = andtrees x z in
(r1,r2)

I Overall stack usage is bounded by |x|.
I But we only ‘pass the parcel’ to r1, so infer 2× |x| instead.
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Stack space solution 1

let andtrees2 x y z =
let r1 = andtrees x y in
let r2 = andtrees x z in
(r1,r2)

I Allow after evaluation bounds to refer to arguments as well as
results.

I Types now have two annotations: booltree[k  k ′] — we are
given k units of space, but we should give back k ′.

andtrees : booltree[1 1]×booltree[0 0], 0 → booltree[0 0], 0
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‘Overlapping’ potential

let id x = x

id : booltree[1 1], 0 → booltree[1 1], 0

This looks OK, but what does it mean?

I Given one unit of space per node, we will have one unit per
node of space w.r.t. the result; and

I we promise to give back that one unit per node for the result,
and then we will have one unit per node of the argument.

Use a separation condition from the memory safety analysis to
approximate data flow and spot where the then occurs.
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