
Type-based amortized resource prediction

Brian Campbell
Brian.Campbell@ed.ac.uk

Laboratory for Foundations of Computer Science
University of Edinburgh

March 17, 2008

1 / 26

mailto:Brian.Campbell@ed.ac.uk

Overview

Wouldn’t we all like memory predictions for our programs that are

I given in terms of the input.

I actual bounds on the amounts required,

I automatically generated,

I certifiable?

Overview 2 / 26

Limitations

What are we prepared to give up?

I Only get linear bounds in terms of the input,
(surprisingly common)

I no relying on fancy reasoning,

I especially no fancy invariants,

I start with first-order functional language and work up.

Overview 3 / 26

Outline

Overview

Hofmann-Jost Heap Memory Analysis

Extensions

Overview 4 / 26

Idea for Hofmann-Jost

A type system which shows bounds are good:

I Assigns ‘free’ memory to input (proportional to size);

I play game of pass the parcel / carbon credit trading / your
analogy here;

I typing rules enforce no sneaky increases, and all allocations
paid for.

Then we add some inference:

I All the side conditions on assignments are linear (in)equalities;

I reduce to linear programming!

Hofmann-Jost Heap Memory Analysis 5 / 26

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

booltree

[2]

× booltree

[0], 0

→ booltree

[1], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.

Hofmann-Jost Heap Memory Analysis 6 / 26

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

booltree [1] × booltree [0], 0 → booltree [0], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.

Hofmann-Jost Heap Memory Analysis 7 / 26

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

booltree [1] × booltree [0], 0 → booltree [0], 0
booltree [0] × booltree [1], 0 → booltree [0], 0

I means andtrees t1 t2 uses no more than |t1| units of
space.

I The typings (and bounds) are not unique. |t2| is also
sufficient.

Hofmann-Jost Heap Memory Analysis 8 / 26

Heap memory example

The andtrees function computes the pointwise ‘and’ of two
boolean trees (up to the smaller tree):

t
�

f
@

f
�

t
@

f

t
�

f
@

t
�

t

t
�

f
@

f
�

t

booltree [2] × booltree [0], 4 → booltree [1], 4

let x = andtrees y z in ...

I Signatures also ‘translate’ bounds:

I If |x |+ 4 units is enough for . . . , then 2× |y |+ 4 is sufficent
for both allocation and the |x |+ 4 later.

Hofmann-Jost Heap Memory Analysis 9 / 26

Hofmann-Jost is an amortized analysis

t1 :booltree [2], t2 :booltree [0], 4 ` andtrees t1 t2 : booltree [1], 4

The type annotations define potential functions

ΥΓ(t1, t2) = |t1| × 2 + |t2| × 0 + 4

for the context, and for the result:

ΥR(r) = |r | × 1 + 4.

Constraints ensures that the allocation is accounted for by a drop
in potential. (See Physicist’s view in Tarjan 1985)

Hofmann-Jost Heap Memory Analysis 10 / 26

Hofmann-Jost rules — construction

n ≥ size(booltree node) + k + n′

l :booltree[k], r :booltree[k], v :bool, n ` node(l , v , r) : booltree[k], n′

(Node)

means that if we have

|l | × k + |r | × k + n

units of free memory then we can allocate the node and end up
with

|node(l , v , r)| × k + n′ = (1 + |l |+ |r |)× k + n′.

Hofmann-Jost Heap Memory Analysis 11 / 26

Hofmann-Jost rules — matching

Γ, n ` e1 :T , n′

n + k = n2

Γ, l :booltree[k], r :booltree[k], v :bool, n2 ` e2 :T , n′

Γ, t : booltree[k], n ` match t with leaf ′ → e1

| node(l , r , v)′ → e2

(TreeElim′)

We ‘reserved’ k units of memory when we constructed the node, so
we get it back now.

The ′ means the data might still be live.

(Assumes external safety checker.)

Hofmann-Jost Heap Memory Analysis 12 / 26

Hofmann-Jost rules — matching

Γ, n ` e1 :T , n′

n + k + size(booltree node) = n2

Γ, l :booltree[k], r :booltree[k], v :bool, n2 ` e2 :T , n′

Γ, t : booltree[k], n ` match t with leaf → e1

| node(l , r , v) → e2

(TreeElim)

We ‘reserved’ k units of memory when we constructed the node, so
we get it back plus the memory freed up.

No ′, so we get the memory back.
(Assumes external safety checker.)

Hofmann-Jost Heap Memory Analysis 13 / 26

Hofmann-Jost rules — contraction

k = k1 + k2

Γ, x1 :booltree[k1], x2 :booltree[k2], n ` e :T ′, n′

Γ, x :booltree[k], n ` e[x/x1, x/x2] :T
′, n′ (Share)

If |x1| × k1 + |x2| × k2 is sufficient for e, then |x | × k is sufficient
for e[x/x1, x/x2].

Weakening of variables is admissible. Together with Share, we
get weakening of annotations.

Hofmann-Jost Heap Memory Analysis 14 / 26

Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

n ≥ n′ for leaf cases

n + k1 = n1 t1 node match

n1 + k2 = n2 t2 node match

n2 ≥ n, n2 − n + n′ ≥ n3 left recursive call

n3 ≥ n, n3 − n + n′ ≥ n4 right recursive call

k1 ≥ k ′ weakening

k2 ≥ k ′ weakening

n4 ≥ size(node) + k ′ + n′ for constructing the result

Hofmann-Jost Heap Memory Analysis 15 / 26

Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

n ≥ n′ for leaf cases

n + k1 = n1 t1 node match

n1 + k2 = n2 t2 node match

n2 ≥ n, n2 − n + n′ ≥ n3 left recursive call

n3 ≥ n, n3 − n + n′ ≥ n4 right recursive call

k1 ≥ k ′ weakening

k2 ≥ k ′ weakening

n4 ≥ size(node) + k ′ + n′ for constructing the result

Hofmann-Jost Heap Memory Analysis 16 / 26

Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

n ≥ n′ for leaf cases

n + k1 = n1 t1 node match

n1 + k2 = n2 t2 node match

n2 ≥ n, n2 − n + n′ ≥ n3 left recursive call

n3 ≥ n, n3 − n + n′ ≥ n4 right recursive call

k1 ≥ k ′ weakening

k2 ≥ k ′ weakening

n4 ≥ size(node) + k ′ + n′ for constructing the result
Hofmann-Jost Heap Memory Analysis 17 / 26

Example revisited

andtrees t1 t2

booltree [k1] × booltree [k2] , n → booltree [k ′] , n′

|t1| × k1 + |t2| × k2 + n → |r | × k ′ + n′

. . . which is really just . . .

n ≥ n′

k1 + k2 ≥ size(node) + k ′

Hofmann-Jost Heap Memory Analysis 18 / 26

Hofmann-Jost inference

n ≥ size(booltree node) + k + n′

l :booltree[k], r :booltree[k], v :bool, n ` node(l , v , r) : booltree[k], n′

(Node)

I Construct typing with constraint variables k, n, . . . ;

I collect constraints from typing rules;

I solve linear program, minimising the bound.

Note: can use the solutions to the linear program as a checkable
certificate of memory requirements.

[Mobile Resource Guarantees project.]

Hofmann-Jost Heap Memory Analysis 19 / 26

Hofmann-Jost inference

n ≥ size(booltree node) + k + n′

l :booltree[k], r :booltree[k], v :bool, n ` node(l , v , r) : booltree[k], n′

(Node)

I Construct typing with constraint variables k, n, . . . ;

I collect constraints from typing rules;

I solve linear program, minimising the bound.

Note: can use the solutions to the linear program as a checkable
certificate of memory requirements.

[Mobile Resource Guarantees project.]

Hofmann-Jost Heap Memory Analysis 20 / 26

Complexity of the inference

I Number of constraints is (roughly) linear in the program size;

I LP solving is polynomial time.

However, often want different uses of a function to have different
signatures (resource polymorphism):

I Easy: Pretend they are different functions by collecting and
duplicating all the constraints.

I Hard: Worst case now exponential (but contrived?)

Hofmann-Jost Heap Memory Analysis 21 / 26

Extensions — stack space

‘First adaption’ attempt quite easy:

Σ(f) = T1, . . . ,Tp, k → T ′, k ′

n ≥ k

+ frame(f)

n − k + k ′ ≥ n′

x :T1, . . . , x :Tp, n ` f (x1, . . . , xp) :T ′, n′ (Fun)

I For tail call optimisation add tail position flag to judgements

Extensions 22 / 26

Extensions — stack space

‘First adaption’ attempt quite easy:

Σ(f) = T1, . . . ,Tp, k → T ′, k ′

n ≥ k + frame(f) n − k + k ′ ≥ n′

x :T1, . . . , x :Tp, n ` f (x1, . . . , xp) :T ′, n′ (Fun)

I For tail call optimisation add tail position flag to judgements

Extensions 23 / 26

Stack space problem 1

let andtrees2 x y z =
let r1 = andtrees x y in
let r2 = andtrees x z in
(r1,r2)

I Overall stack usage is bounded by |x|.
I But we only ‘pass the parcel’ to r1, so infer 2× |x| instead.

Extensions 24 / 26

Stack space solution 1

let andtrees2 x y z =
let r1 = andtrees x y in
let r2 = andtrees x z in
(r1,r2)

I Allow after evaluation bounds to refer to arguments as well as
results.

I Types now have two annotations: booltree[k k ′] — we are
given k units of space, but we should give back k ′.

andtrees : booltree[1 1]×booltree[0 0], 0 → booltree[0 0], 0

Extensions 25 / 26

‘Overlapping’ potential

let id x = x

id : booltree[1 1], 0 → booltree[1 1], 0

This looks OK, but what does it mean?

I Given one unit of space per node, we will have one unit per
node of space w.r.t. the result; and

I we promise to give back that one unit per node for the result,
and then we will have one unit per node of the argument.

Use a separation condition from the memory safety analysis to
approximate data flow and spot where the then occurs.

Extensions 26 / 26

	Overview
	Hofmann-Jost Heap Memory Analysis
	Extensions

